References

  1. Batra R., Vashistha S. Fixed points of an $F$-contraction on metric spaces with a graph. Int. J. Comput. Math. 2014, 91, 1-8.
  2. Banach S. Sur les opé rations dans les ensembles abstraits et leurs applications aux é quations inté grales. Fund. Math. 1922, 3, 133-181.
  3. Budhia L.B, Kumam P., Martinez-Moreno J., Gopal D. Extensions of almost-$F$ and $F$-Suzuki contractions with graph and some applications to fractional calculus. Fixed Point Theory Appl. 2016, (2). doi: 10.1186/s13663-015-0480-5
  4. Choudhury B.S, Konar P., Rhoades B.E, Metiya N. Fixed point theorems for generalized weakl contractive mappings. Nonlinear Anal. 2011, 74 (6), 2116 -2126.
  5. Ćirić L.B. A generalization of Banach́s contraction principle. Proc. Amer. Math. Soc. 1974, 45 (2), 267-273.
  6. Cosentino M., Vetroa P. Fixed point results for $F$-contractive mappings of Hardy-Rogers-type. Filomat 2014, 28 (4), 715 -722. doi: 10.2298/FIL1404715C
  7. Gopal D., Abbas M., Patel D.K., Vetro C. Fixed points of $\alpha-type ~F-contractive$ mappings with an application to nonlinear fractional differential equation. Acta Math. Sci. 2016, 36 (3), 957-970.
  8. Gopal D., Abbas M., Vetro C., Patel D.K. Some coincidence and periodic points results in a metric space endowed with a graph and applications. Banach J. Math. Anal. 2015, 9 (3), 128-139. doi: 10.15352/bjma/09-3-9
  9. Jachymski J. The contraction principle for mapping on a metric space with a graph. Proc. Am. Math. Soc. 2008, 136, 1359-1373.
  10. Karapinar E., Kutbi M.A., Piri H., ÓRegan D. Fixed points of conditionally $F$-contractions incomplete metric-like spaces. Fixed Point Theory Appl. 2015, 126. doi: 10.1186/s13663-015-0377-3
  11. Karapinar E., Samet B. Generalized $(\alpha- \psi)$ contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal. 2012. doi: 10.1155/2012/793486
  12. Kirk W., Sims B. Handbook of metric fixed point theory. Springer, 2001.
  13. Meir A., Keeler E. A theorem on contraction mappings. J. Math. Anal. Appl. 1969, 28, 326 -329.
  14. Minak G., Helvaci A., Altun I. Ćirić-type generalized $F$-contractions on complete metric spaces and fixed point results. Filomat 2014, 28 (6), 1143-1151.
  15. Mohammadi B., Rezapour S., Shahzad N. Some results on fixed points of $(\alpha-\psi)$-Ciric generalized multifunctions. Fixed Point Theory Appl. 2013, (24). doi: 10.1186/1687-1812-2013-24
  16. Piri H., Kumam P. Some fixed point theorems concerning $F$-contraction in complete metric spaces. Fixed Point Theory Appl. 2014 (210). doi: 10.1186/1687-1812-2014-210
  17. Rhoades B.E. Some theorems on weakly contractive maps. Nonlinear Anal. 2001 47, 2683-2693.
  18. Salimi P., Latif A., Hussain N. Modified $(\alpha- \psi)$-contractive mappings with applications. Fixed Point Theory Appl. 2013, 151. doi: 10.1186/1687-1812-2013-151
  19. Samet B., Vetro C., Vetro P. Fixed point theorems for $(\alpha-\psi)$-contractive type mappings. Nonlinear Anal. 2012, 75, 2154-2165.
  20. Secelean N.A. Iterated function systems consisting of $F$-contractions. Fixed Point Theory Appl. 2013, (277). doi: 10.1186/1687-1812-2013-277
  21. Sgroi M., Vetro C. Multi-valued $F$-contractions and the solution of certain functional and integral equations. Filomat 2013, 27, 1259-1268.
  22. Singh S.L, Kamal R., De la Sen M., Chugh R. A fixed point theorem for generalized weak contractions. Filomat 2015, 29 (7), 1481-1490.
  23. Suzuki T. A new type of fixed point theorem in metric spaces. Nonlinear Anal. 2009, 71 (11), 5313-5317.
  24. Wardowski D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, (94). doi: 10.1186/1687-1812-2012-94
  25. Wardowski D., Van Dung N. Fixed points of $F$-weak contractions on complete metric spaces. Demonstr. Math. 2014, 47 (1), 146-155.