References
-
Batra R., Vashistha S.
Fixed points of an $F$-contraction on metric spaces with a graph.
Int. J. Comput. Math. 2014, 91, 1-8.
-
Banach S.
Sur les opé rations dans les ensembles abstraits et leurs applications aux é quations inté grales.
Fund. Math. 1922, 3, 133-181.
-
Budhia L.B, Kumam P., Martinez-Moreno J., Gopal D.
Extensions of almost-$F$ and $F$-Suzuki contractions with graph and some applications to fractional calculus.
Fixed Point Theory Appl. 2016, (2).
doi: 10.1186/s13663-015-0480-5
-
Choudhury B.S, Konar P., Rhoades B.E, Metiya N.
Fixed point theorems for generalized weakl contractive mappings.
Nonlinear Anal. 2011, 74 (6), 2116 -2126.
-
Ćirić L.B.
A generalization of Banach́s contraction principle.
Proc. Amer. Math. Soc. 1974, 45 (2), 267-273.
-
Cosentino M., Vetroa P.
Fixed point results for $F$-contractive mappings of Hardy-Rogers-type.
Filomat 2014, 28 (4), 715 -722.
doi: 10.2298/FIL1404715C
-
Gopal D., Abbas M., Patel D.K., Vetro C.
Fixed points of $\alpha-type ~F-contractive$ mappings with an application to nonlinear fractional differential equation.
Acta Math. Sci. 2016, 36 (3), 957-970.
-
Gopal D., Abbas M., Vetro C., Patel D.K.
Some coincidence and periodic points results in a metric space endowed with a graph and applications.
Banach J. Math. Anal. 2015, 9 (3), 128-139.
doi: 10.15352/bjma/09-3-9
-
Jachymski J.
The contraction principle for mapping on a metric space with a graph.
Proc. Am. Math. Soc. 2008, 136, 1359-1373.
-
Karapinar E., Kutbi M.A., Piri H., ÓRegan D.
Fixed points of conditionally $F$-contractions incomplete metric-like spaces.
Fixed Point Theory Appl. 2015, 126.
doi: 10.1186/s13663-015-0377-3
-
Karapinar E., Samet B.
Generalized $(\alpha- \psi)$ contractive type mappings and related fixed point theorems with applications.
Abstr. Appl. Anal. 2012.
doi: 10.1155/2012/793486
-
Kirk W., Sims B.
Handbook of metric fixed point theory.
Springer, 2001.
-
Meir A., Keeler E.
A theorem on contraction mappings.
J. Math. Anal. Appl. 1969, 28, 326 -329.
-
Minak G., Helvaci A., Altun I.
Ćirić-type generalized $F$-contractions on complete metric spaces and fixed point results.
Filomat 2014, 28 (6), 1143-1151.
-
Mohammadi B., Rezapour S., Shahzad N.
Some results on fixed points of $(\alpha-\psi)$-Ciric generalized multifunctions.
Fixed Point Theory Appl. 2013, (24).
doi: 10.1186/1687-1812-2013-24
-
Piri H., Kumam P.
Some fixed point theorems concerning $F$-contraction in complete metric spaces.
Fixed Point Theory Appl. 2014 (210).
doi: 10.1186/1687-1812-2014-210
-
Rhoades B.E.
Some theorems on weakly contractive maps.
Nonlinear Anal. 2001 47, 2683-2693.
-
Salimi P., Latif A., Hussain N.
Modified $(\alpha- \psi)$-contractive mappings with applications.
Fixed Point Theory Appl. 2013, 151.
doi: 10.1186/1687-1812-2013-151
-
Samet B., Vetro C., Vetro P.
Fixed point theorems for $(\alpha-\psi)$-contractive type mappings.
Nonlinear Anal. 2012, 75, 2154-2165.
-
Secelean N.A.
Iterated function systems consisting of $F$-contractions.
Fixed Point Theory Appl. 2013, (277).
doi: 10.1186/1687-1812-2013-277
-
Sgroi M., Vetro C.
Multi-valued $F$-contractions and the solution of certain functional and integral equations.
Filomat 2013, 27, 1259-1268.
-
Singh S.L, Kamal R., De la Sen M., Chugh R.
A fixed point theorem for generalized weak contractions.
Filomat 2015, 29 (7), 1481-1490.
-
Suzuki T.
A new type of fixed point theorem in metric spaces.
Nonlinear Anal. 2009, 71 (11), 5313-5317.
-
Wardowski D.
Fixed points of a new type of contractive mappings in complete metric spaces.
Fixed Point Theory Appl. 2012, (94).
doi: 10.1186/1687-1812-2012-94
-
Wardowski D., Van Dung N.
Fixed points of $F$-weak contractions on complete metric spaces.
Demonstr. Math. 2014, 47 (1), 146-155.