References

  1. Albiac F., Kalton N. Topics in Banach space theory. Graduate Texts in Mathematics, Springer, 2006.
  2. Galindo P., Vasylyshyn T.V., Zagorodnyuk A.V. The algebra of symmetric analytic functions on $L_\infty$. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 2017, 147 (4), 743-761. doi: 10.1017/S0308210516000287
  3. Galindo P., Vasylyshyn T.V., Zagorodnyuk A.V. Symmetric and finitely symmetric polynomials on the spaces $\ell_\infty$ and $L_\infty[0,+\infty)$. Math. Nachr. 2018, 291 (11-12), 1712-1726. doi: 10.1002/mana.201700314
  4. González M., Gonzalo R., Jaramillo J.A. Symmetric polynomials on rearrangement invariant function spaces. J. London Math. Soc. 1999, 59 (2), 681-697. doi: 10.1112/S0024610799007164
  5. Kahane J.P. Some random series of functions. Cambridge University Press, 1985.
  6. Kravtsiv V.V., Vasylyshyn T.V., Zagorodnyuk A.V. On algebraic basis of the algebra of symmetric polynomials on $\ell_p(\mathbb{C}^n)$. Journal of Function Spaces 2017, 2017, 8 p. doi: 10.1155/2017/4947925
  7. Nemirovskii A.S., Semenov S.M. On polynomial approximation of functions on Hilbert space. Mat. USSR Sbornik 1973, 21 (2), 255-277. doi: 10.1070/SM1973v021n02ABEH002016
  8. Vasylyshyn T.V. Symmetric polynomials on $(L_p)^n$. European Journal of Math. doi: 10.1007/s40879-018-0268-3
  9. Vasylyshyn T.V. Symmetric polynomials on the Cartesian power of $L_p$ on the semi-axis. Mat. Stud. 2018, 50 (1), 93-104. doi: 10.15330/ms.50.1.93-104
  10. Vasylyshyn T.V. The algebra of symmetric polynomials on $(L_\infty)^n$. Mat. Stud. 2019, 52 (1), 71-85. doi: 10.30970/ms.52.1.71-85
  11. Vasylyshyn T.V. Some properties of elementary symmetric polynomials on the Cartesian square of the complex Banach space $L_{\infty}[0,1]$. Precarpathian Bull. Shevchenko Sci. Soc. 2018, 46, 9-16. (in Ukrainian) doi: 10.31471/2304-7399-2018-2(46)-9-16
  12. Vasylyshyn T.V., Zagorodnyuk A.V. Continuous symmetric 3-homogeneous polynomials on spaces of Lebesgue measurable essentially bounded functions. Methods Funct. Anal. Topology 2018, 24 (4), 381-398.