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Introduction

The properties of solutions of differential equations with an analytic right-hand side
depend on the singular points of these solutions, lying in the complex plane of time, in a
great extent. For example, S.Kovalevskaya’s classic solution ([3]) of the Euler – Poisson
equations was found just during the investigation of single-valued solutions of this problem.
A systematic research of the singular points of the solutions together with compactification of
the flow ([10]), defined by the Euler – Poisson equations, allow us not only to find the partial
solutions with given properties of their singular points ([9]) but also to investigate some
global properties of these solutions ([11]). Therefore it is quite natural to use this approach
for studying another classical problem of mechanics, namely, the three-body problem (see,
for example, [4], [5], [14]).

The essence of this method lies in getting a compact holomorphic manifold with a struc-
ture of a one-dimensional foliation F with singular points, as the result of factorization of
the flow of the phase space. Such a reduction of the problem leads to the loss of a true
parametrization of solutions of the initial differential equations. However this loss is not
important, because in case if we obtain an effective representation for layers of the foliation
F we will be able to find the starting parametrization by means of single integration.

At the same time, compactification of this problem permits to consider the solutions in the
large, that is very important for investigating any nonlinear differential equations. Besides,
the singularities of the foliation F are correspondent to the ones of complex solutions of the
initial problem, and can be studied efficiently.
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Thus, in this paper we realize the factorization of the flow of the three-body problem,
achieve the asymptotics of the singular points of the solution and the classification of these
singular points for this problem.

When describing the results of this paper we can’t but note that they do not seem to be
impressive against the background of the numerous results, already achieved on the way to
solving the three-body and the n-body problems (see bibliography in [2], [1]). All our results
follow practically from the primary problem setting and do not guarantee drawing the same
considerable results as those, that are already known, a priory. Moreover, as it is naturally
to expect, some results received within the scope of our approach are known in another form.
For example the characteristic system which determines the singular points of the foliation
F is almost equivalent to the system which determines the Euler’s and Lagrange’s central
configurations of n bodies ([12], [13], [16]). The asymptotics of the singular points of the
solutions is almost the asymptotics of collisions of the bodies ([15]).

Nevertheless the fundamental difference of the present paper’s results from the well known
ones is that we begin to investigate systematically the solutions of the three-body problem
as analytic functions defined on the whole complex plane that is not only on the stripe,
containing the real axis. Thanks to the fact that we consider not only real solutions of the
characteristic system we get most general asymptotic behavior of solutions in the singular
points.

It is necessary to add that even in the beginning of investigation our method leads to
the facts which show its significance. These facts are the classification of the singular points
and the absence of the entire solutions. At last we obtain the next surprising result: for
any mass of bodies the operators which determine linear approximations of the foliation F
in any types of the singular points, have the identical whole eigenvalues and the identical
conditions which determine correspondent eigenspaces.

1 Preliminaries

We consider the problem (see, for example, [4], [5]) on n bodies moving (m1, r1), ...

(mn, rn), mi ∈ R+, ri ∈ R3 which move by the law of gravity. Kinetic and potential energy
are correspondingly equal

T =
1

2

∑
miṙ

2
i , U = −G

2

∑
j,k

mjmk

|rj − rk|
.

Lagrangian L = T − U determines the following system of differential equations:

mr̈i = −Gmi

∑
j

mj
ri − rj
|ri − rj|3

. (1)

In the Hamiltonian form

H =
∑
i

ṙi
∂L

∂ṙi
− L =

1

2

∑
miṙ

2
i −

G

2

∑
j,k

mjmk

|rj − rk|
,
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canonical coordinates are
qi = ri, pi =

∂L

∂ṙi
= miṙi

and a Hamiltonian system has the next form:
q̇i =

∂H
∂pi

=
pi
mi

.
pi= −

∂H
∂qi

= −Gmi

∑
j

mj
qi − qj
|qi − qj|3

.
(2)

The first integrals of system (2) are

H, I =
∑

miq̇i, M =
∑

qi × pi.

In the classic notation (1), (2) of the n-body problem in the right-hand side there is
the module which is a local real-analytic function. As we want to consider the n-body
problem for complex time, the right-hand side of the differential equations is necessary to
be complex-analytical. Therefore we consider the function module for the vector q ∈ C3 as
a complex-analytical function which is determined by the formula:

|q| =
√
q2
1 + q2

2 + q2
3.

We use the next notation for a norm of the vector :

‖q‖ =
√
q1q̄1 + q2q̄2 + q3q̄3.

2 The factorization of the flow of the n-body problem

Let pi(t), qi(t), i = 1, 2, 3 be a solution of the n-body problem then αpi(α3t), α−2qi(α
3t)

is a solution too. This fact gives a possibility for factorization on the set of trajectories of
the system (2).

Remark 2.1. The flow of the problem (2) allows the factorization by the action of the
orthogonal group So(3,C) ([8])

pi → Api, qi → Aqi, A ∈ So(3,C),

but using of this does not give any visible technic preferences.

The following proposition is well known.

Proposition 2.1. Let C act as a transformation group on Cn in the following way:

α : (z1, ..., zn)→ (αk1z1, ..., α
knzn),

k = (k1, ..., kn) ∈ Nn. Then the factor-space P n−1
k = {(zk11 : ... : zkn

n )} is a compact holomor-
phic manifold ([7]) with respect to this action.



The analytical properties of solutions of the three-body problem 21

Proposition 2.2. The projection

π : C3n + C3n → P 6n−1
∗ ,

where ∗ = (
︷ ︸︸ ︷
1, .., 1

n

,
︷ ︸︸ ︷
2, .., 2

n

), is determined by the next formula:

π : (p1, ..., pn, q1, ..., qn)→ (p1 : ... : pn :
q1
|q1|2

: ... :
qn
|qn|2

),

and induces the structure of a holomorphic C-one-dimension foliation ([6]) F of the compact
holomorphic manifolds P 6n−1

∗ .

Proof. According to the definition of π the vector

(αp1, ..., αpn, α
−2q1, ..., α

−2qn)

is projected onto
(αp1 : ... : αpn : α2 q1

|q1|2
: ... : α2 qn

|qn|2
).

Remark 2.2. The projection π can be defined by more natural means:

π : (p1, ..., pn, q1, ..., qn)→ (p1 : ... : pn : q1 : ... : qn),

but in this case the image of this mapping is a noncompact manifold.

Remark 2.3. We can use the mapping π−1 which has the next presentation:

π−1 : (p1 : ... : pn : q1, ..., qn)→ (p1 : ... : pn :
q1
|q1|2

: ... :
qn
|qn|2

)

if it is necessary.

Remark 2.4. The foliation F is integrable as there is the invariant mapping J : P 6n−1
∗ \X →

P 6,

J : η → (H(ξ) : I2
1 (ξ) : I2

2 (ξ) : I2
3 (ξ) :M2

1(ξ) :M2
2(ξ) :M2

3(ξ)),

where ξ = π−1(η),

X = {η ∈ P 6n−1
∗ : H(π−1(η)) = 0, I(π−1(η)) = 0,M(π−1(η)) = 0}.

Moreover the surface X is fiber invariant for the foliation F too.

Proposition 2.3. All the singular points of the foliation F are the following:
π-projections of the solutions (p̃0, q̃0) of the characteristic system (3),
π-projections of the singular points of the system (2), i.e. the points

{π(p1, ..., pn, q1, ..., qn) : ∃i, j |qi − qj| = 0}

and
{(p1 : ... : pn : q1 : ... : qn) ∈ P 6n−1

∗ : ∃i |qi| = 0}.
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Proof. Evidently singular points of the equation (2)

{π(p1, ..., pn, q1, ..., qn) : ∃i, j |qi − qj| = 0}

are projected onto singular points of the foliation F . Moreover if the vector (ṗ, q̇) touches
the π-pre-image of π(p, q) the point π(p, q) will be a singular point of the foliation too. Such
points satisfy the system 

−2
∼
qi +3

∼
pi
mi

= 0,

∼
pi − 3 Gmi

∑
j

mj

∼
qi −

∼
qj

| ∼qi −
∼
qj |3

= 0.
(3)

We call this system characteristic. At last the points of the manifold P 6n−1
∗ , which haven’t

got a pre-image, i.e. the points {(p1 : ... : pn : q1 : ... : qn) : ∃i |qi| = 0}, may be singular
points.

Remark 2.5. The solution of the characteristic system (3) designates the central configura-
tion specifying some partial solutions of the three-body problem that were known to Euler
and Lagrange ([12], [13], [16]).

Further we make some calculations for the 3-body problem.

3 The change of variables for the 3-body problem

In this case the problem has dimension 18. Using the first integrals, this dimension
can be lowered to 8 ([17]). However the differential equations derived in such a way are
rather inconvenient for any further investigations, and besides, the dimensionality of the
reduced problem remains rather high. Therefore we change the variables without lowering
the problem’s dimensionality trying to make the equations, defining this problem, as simple
as possible.

At first we make the change of variables, switching to relative coordinates: x1 = (q2 − q3) ·G−1/3, σ

y1 =

(
p2

m2

− p3

m3

)
·G−1/3, σ

(4)

here and lower σ denotes the circle permutation of indexes (1, 2, 3). The system (2) takes
the next form  ẋ1 = y1, σ

ẏ1 = (m1(
x2

|x2|3
+

x3

|x3|3
)− (m2 +m3)

x1

|x1|3
), σ. (5)

If the system (5) is solved it will be simple to find pi, qi. In this case we express the
variables pi through yi and the value of the first integral I = p1 + p2 + p3. Then we find
q1 =

∫
p1dtσ, and we may consider the initial values qi to be known.
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Now let us suppose that

u̇ = −
∑
σ

x1

|x1|3
, m =

∑
σ

m1, mz1 = y1 −m1u, σ,

then 
ż1 = − x1

|x1|3
, σ

ẋ1 = mz1 +m1u, σ

u̇ =
∑
σ

x1

|x1|3
.

(6)

Since

u+
∑
σ

z1 =
1

m

∑
σ

y1 =
1

m

∑
σ

(
p2

m2

− p3

m3

)
G−1/3 ≡ 0,

then u = −
∑

σ z1 and finally we get the following system: ẋ1 = mz1 −m1

∑
σ z1, σ

ż1 = − x1

|x1|3
, σ.

(7)

Theorem 1. The system of differential equations (7) is equivalent to the three-body problem
(2) and is a canonical Hamiltonian system with coordinates ( xi

mi
, zi). Its Hamiltonian has the

form:

H =
1

2
(
∑
σ

mz2
1

m1

− (
∑
σ

z1)
2)−

∑
σ

1

m1|x1|
.

The system of differential equations (7) has the following first integrals:

I1 =
∑
σ

x1, I2 =
∑
σ

1

m1

z1 × x1.

Proof.
I1 =

∑
σ

(q1 − q2)G−1/3 ≡ 0.

İ2 =
∑
σ

1

m1

(ż1 × x1 + z1 × ẋ1) =
∑
σ

[
1

m1

(− x1

|x1|3
× x1 + z1 × (mz1 −m1

∑
σ

z1)]

=
∑
σ

(z1 ×
∑
σ

z1) =
∑
σ

z1 ×
∑
σ

z1 = 0.

The fact that the system (7) is canonical can be tested by straight calculations.

Now we make one more change of variables ([10]) which allows to investigate the asymp-
totics of the singular points of solutions of the three-body problem.

Let t∗ ∈ C be a singular point of the solution (xi(t), zi(t)) (i. e. t∗ is a singular point of one
of the coordinate functions of (xi(t), zi(t))). Get rid of branching in t∗, if any, by representing
xi(t) = x̂i(Ln(t− t∗)α), zi(t) = ẑi(Ln(t− t∗)α), where x̂i(τ), ẑi(τ) are single-valued functions
for Re τ → −∞.
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The system (7) is transformed into
.

x̂1=
1
α
eτ/α (mz1 −m1

∑
σ

z1), σ

.

ẑ1= − 1
α
eτ/α

x̂1

|x̂1|3
, σ;

where the derivative is taken with respect to τ.
In order to make the right-hand side of the equation independent of τ, we make a re-

placement of the variable in the following form: x̃i(τ) = eβτ x̂i(τ), z̃i(τ) = eγτ ẑi(τ). Then
we have 

.∼
x1= β

∼
x1 + 1

α
eτβ+τ/α (m

∼
z1 −m1

∑
σ

∼
z1), σ

.
∼
zi= γ

∼
z1 − 1

α
eτγ+τ/α

x̂1

|x1|3
, σ.

We see that the right-hand side is independent of τ, if β + 1
α

= γ, γ + 1
α

= −2β, i. e. if
γ = 1

3α
, β = − 2

3α
. Taking α = 1

3
, we obtain the following system:

.∼
x1= −2

∼
x1 + 3 (m

∼
z1 −m1

∑
σ

∼
z1), σ

.
∼
z1=

∼
z1 − 3

∼
x1

| ∼x1 |3
, σ.

(8)

The dependence between the differential systems (7) and (8) is expressed by the next
relations:

zi(t) = (t− t∗)−1/3z̃i(
1

3
Ln(t− t∗)), xi(t) = (t− t∗)2/3x̃i(

1

3
Ln(t− t∗)). (9)

Proposition 3.1. The solution of the system (7) has not got a singularity at the point
t∗ if and only if the corresponding solutions of (8) by (9) have the asymptotic behavior
x̃i ∼ x̃i0e

−2τ , z̃i ∼ z̃i0e
τ for Re τ → −∞.

Proof. It is enough to substitute the asymptotics x̃i ∼ x̃i0e
−2τ , z̃i ∼ z̃i0e

τ to (9).

Remark 3.1. If we know the asymptotic behavior of the solutions x̃i, z̃i in the neighbourhood
of the singular points, we will be able to obtain the asymptotics of the singular points of the
solutions (7) having the representation (9).

4 The singular points of the foliation F for the 3-body problem

The projection π from the Proposition 2.2 for the system (7) has the following form:

π : (z1, z2, z3, x1, x2, x3)

→ (z1 : z2 : z3 :
x1

|x1|2
:
x2

|x2|2
:
x3

|x3|2
) = (z1 : z2 : z3 : w1 : w2 : w3).
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The correspondent system of differential equations for the fiber of F on the manifold P 17
∗

obtains the following form:{
ẇ1 = −2w1(w1,mz1 −m1

∑
σ z1) + |w1|2(mz1 −m1

∑
σ z1), σ

ż1 = −w1|w1|, σ.
(10)

The system (10) is suitable for the investigation of the three-body problem because this
system is defined on the compact manifold and its right-hand side is always determined. At
the same time the system (7) is more convenient for calculations, as essentially more simple.

Proposition 4.1. The projections π(x̃0
i , z̃

0
i ) of the solutions of the characteristic system

−2
∼
x

0

1 + 3 (m
∼
z

0

1 −m1

∑
σ

∼
z

0

1) = 0, σ

∼
z

0

1 − 3

∼
x

0

1

| ∼x
0

1 |3
= 0, σ

(11)

are the singular points of the foliation F . In addition to this, the points (z1 : z2 : z3 : w1 :

w2 : w3), satisfying the condition |wi| = 0 for some i may also be the singular points of this
foliation.

Proof. This Proposition repeats the Proposition 2.3 for the three-body problem (10).
As for the singular points of the form {(z1 : z2 : z3 : w1 : w2 : w3) ∈ P 17

∗ : ∃i|wi| = 0},
which pretend to be singular points thanks to singularity of the functions |wi|, these points
form an invariant surface in P 17

∗ . We can make sure that it is true by finding the derivative
of the function |wi|2 along the vector field (10). This derivative is identically equal to zero
on the surface |wi|2 = 0.

The roots of the characteristic system (11) were already known to Euler and Lagrange.
We present their finding for completing the paper taking into account that this finding is
simple.

Substitute z̃1 into the first equation of (10). Omitting the sign ∼ for simplicity we get

x1

m1

=
9

2

(
m

m1

x1

|x1|3
−
∑
σ

x1

|x1|3

)
, σ.

Then we subtract these equations one from another and get:

x1

m1

− x2

m2

=
9m

2

(
x1

|x1|3m1

− x2

|x2|3m2

)
, σ

or
x1

m1

(
1− 9m

2|x1|3

)
=

x2

m2

(
1− 9m

2|x2|3

)
=

x3

m3

(
1− 9m

2|x3|3

)
. (12)

Let all the vectors xi be collinear. Let also x1, x2 > 0, x3 < 0. Denote x2 = ρx1, x3 =

−(1 + ρ)x1 and substitute x2, x3 into (4.3). Then we get following quintic polynomial:

(m2 +m3)ρ
5 + (3m2 + 2m3)ρ

4 + (3m2 +m3)ρ
3−
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(3m1 +m3)ρ
2 − (3m1 + 2m3)ρ− (m1 +m3) = 0. (13)

Similarly it is possibly to consider all the rest cases when vectors xi are collinear.
Now let vectors xi be non-collinear then

|x1|3 = |x2|3 = |x3|3 =
2

9m

and besides x1 + x2 + x3 = 0.

The singular points of the foliation F are interesting primarily for finding the asymptotic
behaviors of the singular points of the three-body problem’s solutions.

Definition 4.1. The singular points π(x̃0, z̃0) of the foliation F where (x̃0, z̃0) is a root of
the characteristic system with non-collinear vectors xi (11) will be called α-singular points.
The singular points π(x̃0, z̃0) of the foliation F where (x̃0, z̃0) is a root of the characteristic
system with collinear vectors xi (11) will be called β-singular points.

Let (x̃0, z̃0) be a solution of the characteristic system (11). At the same time it is a
singular point of the system of differential equations (8). The linearized system (8) has the
following form in the neighbourhood of such a point:

.∼
x1= −2

∼
x1 + 3 (m

∼
z1 −m1

∑
σ

∼
z1), σ

.
∼
z1=

∼
z1 − 3

∼
x1

| ∼x1

0
|3

+ 9

∼
x1

0

| ∼x1

0
|5

(
∼
x1

0
,
∼
x1), σ.

(14)

5 The asymptotic behavior of α-singular points of the foliation F

Suppose that |x̃0
1|3 = |x̃0

2|3 = |x̃0
1|3 = 9m

2
= a3 then the linear system for finding the

eigenvectors of the right-hand side (14) has the following form: (m2 +m3)z1 −m1(z2 + z3) = λ+2
3
x1σ

− 3

a3
x1 +

9

a5
(
∼
x1

0
, x1)

∼
x1

0
= (λ− 1)z1, σ.

(15)

Theorem 2. The eigenvalues and the eigenvectors, corresponding to these eigenvalues, of
the linear system (15) are the following:

λ = 1

The eigenvector u1 has the form:

x1 = 0, z1 = m1r, σ, r ∈ C3.

The dimension of the eigenspace is equal to 3.
λ(λ+ 1) = 0

The eigenvectors u0, u−1 satisfy the conditions:

x1⊥x̃0
1, z1 =

3

a3(1− λ)
, σ.

The dimension of the eigenspaces for λ = 0 and λ = −1 is equal to 3.
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(λ+ 3)(λ− 2) = 0.

The eigenvectors u−3, u2 have the form: x1 = νx̃0
1, z1 = µz̃0

1 , σ, 2µ = (λ + 2)ν. The
dimension of the eigenspace for λ = −3 and λ = 2 is equal to 1.

The rest of the eigenvalues λk, k = 1, ..., 4 are the roots of the equation (compare with
§16, [14])

λ(λ+ 1)(λ+ 3)(λ− 2) +
27

m2

∑
σ

m1m2 = 0.

The dimension of the eigenspaces for these λ is equal to 1.
It is possible to select a proper basis from all the eigenvectors, mentioned above.

Proof. λ = 1.

We get the next presentation from the second equation of the system (15):

x1 =
3

a2
(x̃0

1, x1)x̃
0
1 = µx̃0

1 =
3µ

a2
(x̃0

1, x̃
0
1)x̃

0
1 = 3µx̃0

1, σ.

We see that µ = 0 hence x1 = 0, σ. We find the vectors zi from the first equation of the
system (15).

λ 6= 1.

Substitute the presentation of zi taken from the second equation of the system (15) to
the first equation. Then we use the relation

∑
σ x̃

0
1 =

∑
σ x1 = 0. As a result we obtain the

following system:
m(

∼
x1

0
, x1)

∼
x1

0
+m1((

∼
x2

0
, x1 + x2) + (

∼
x1

0
, x2))

∼
x1

0

+m1((
∼
x1

0
, x1 + x2) + (

∼
x2

0
, x1))

∼
x2

0
= 1

27
a5 λ(λ+ 1)x1

m(
∼
x2

0
, x2)

∼
x2

0
+m2((

∼
x1

0
, x1 + x2) + (

∼
x2

0
, x1))

∼
x2

0

+m2((
∼
x2

0
, x1 + x2) + (

∼
x1

0
, x2))

∼
x1

0
= 1

27
a5 λ(λ+ 1)x2.

(16)

λ = −1 or λ = 0.

Multiply the first and the second equations of the system (16) by m2 and m1 correspond-
ingly and then subtract the second equation from the first one. We get:

m2
∼
x1

0
(
∼
x1

0
, x1)−m1

∼
x2

0
(
∼
x2

0
, x2) = 0⇒ (

∼
x1

0
⊥ x1), σ. (17)

Now we can state with assurance that the system (15) is true if λ(λ + 1) = 0 and the
orthogonal condition (17) is held true.

The vectors xi have two components: the first component lies on the plane {x̃0
1, σ}

and the second component lies on the plane that is orthogonal to the first plane. There is
only one free parameter for the components lying in the first plane taking into account that∑

σ x1 = 0 and there are two free parameters for the components, lying on the second plane
on the same condition.

λ = −3 or λ = 2.

Now let us find the eigenvectors having the following presentation: x1 = νx̃0
1, z1 = µz̃0

1 , σ.

Using the characteristic system (11) we obtain the next relations:{
2µ = (λ+ 2)ν

2ν = (λ− 1)µ
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from which we get (λ+ 3)(λ− 2) = 0.

λ 6= −1, 0, 1.

In this case (as it follows from (16)) vectors xi lie on the plane {x̃0
1, σ}. Denote the

expression a3λ(λ+ 1)/27 by µ. Then the linear system (16) in the basis

e1 =

(
∼
x2

0

0

)
, e2 =

(
0
∼
x1

0

)
, e3 =

( ∼
x1

0

∼
x2

0

)
, e4 =

( ∼
x1

0
+2

∼
x2

0

−2
∼
x1

0
− ∼
x2

0

)

will be presented by the following matrix:
1
2
(−m1 +m2 +m) 1

2
(2m1 +m2 −m) 0 0

1
2
(m1 + 2m2 −m) 1

2
(m1 −m2 +m) 0 0

1
4
(2m1 +m2 −m) 1

4
(m1 + 2m2 −m) m 0

1
2
(2m1 −m2 −m) 1

2
(m1 − 2m2 +m) 0 0

− µE,
where E is a unitary matrix and its characteristic polynomial may be easily found.

Being equal to 15 the total dimension of the eigen-spaces is equal to dimension of the
subspace C18, which is defined by the condition x1 + x2 + x3 = 0.

6 The asymptotic behavior of β-singular points of the foliation F

Thus, we try to find the solution of the following system:
(m2 +m3)z1 −m1(z2 + z3) = λ+2

3
x1, σ

− 3

| ∼x1

0
|3
x1 +

9

| ∼x1

0
|5

(
∼
x1

0
, x1)

∼
x1

0
= (λ− 1)z1, σ.

(18)

Without any restrictions of generality we can suppose that the vectors x̃0
i , z̃

0
i have the

forms (ai, 0, 0), (bi, 0, 0) correspondingly. In this case the operator (6.1) has three following
eigenspaces: xi, zi ∈ V1 = {(∗, 0, 0)}, xi, zi ∈ V2 = {(0, ∗, 0)} and xi, zi ∈ V3 = {(0, 0, ∗)}.

Considering the problem (18) in the every proper subspace we get the following theorem.

Theorem 3. The eigenvalues and the eigenvectors, that are corresponding to these eigen-
values of the linear system (18) are the following:

λ = 1

The eigenvector u1 has the form:

x1 = 0, z1 = m1r, σ, r ∈ C3.

The dimension of the eigenspace is equal to 3.
In the space V1.

(λ+ 3)(λ− 2) = 0.

The eigenvectors u−3, u2 have the following form: x1 = νx̃0
1, z1 = µz̃0

1 , σ, 2µ = (λ + 2)ν.

The dimension of the eigenspaces for λ = −3, λ = 0 and λ = 2 is equal to 1.
λ 6= −3, 1, 2.
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The eigenvalues λ1, λ2 are found as the roots of the equation

λ2 + λ+ 2− 18
∑
σ

m1 +m2

a3
3

= 0.

The dimension of the eigenspaces for every root is equal to 1.
In the space V2.

λ(λ+ 1) = 0.

The eigenvectors u0, u−1 have the following form: x1 = ν(0, a1, 0), z1 = µ(0, b1, 0), σ,

2µ = (λ− 1)ν. The dimension of the eigenspaces for λ = −1, λ = 0 and λ = 1 is equal to 1.
λ 6= 0, 1, 2.

The eigenvalues λ3, λ4 are found as the roots of the equation

λ2 + λ− 4 + 9
∑
σ

m1 +m2

a3
3

= 0.

The dimension of the eigenspace for every root is equal to 1.
In the space V3 the eigenvalues are the same as in the space V2. The eigenvectors are

found similarly.
It is possible to select a proper basis from all the eigenvectors, mentioned above.

Proof. First of all, consider the case λ = 1. Then we’ll be able to substitute zi from the
second equation (18) to the first one. The second equation of the system (18) for the space
V1 and the spaces V2, V3 has the form

6

|x̃0
1|3
x1 = (λ− 1)z1, σ

and −3

|x̃0
1|3
x1 = (λ− 1)z1, σ

correspondingly. In either case xi = 0 and we get the presentation of the eigenvectors for
the eigenvalue λ = 1.

Consider the space V1.

Repeating the proof of the Theorem 2 let us find the eigenvectors in such a form: x1 =

νx̃0
1, z1 = µz̃0

1 , σ. In this case we get the equation (λ+3)(λ−2) = 0. In order to find the rest
of the roots λ, substitute zi from second equation (18) to the first one. At the same time,
denote the product (λ− 1)(λ+ 2) by µ and replace −x1 − x2 by x3.

We shall get a quadratic polynomial by µ. Finally, taking into account that the derived
polynomial is exactly divided by (λ+ 3)(λ− 2) = µ+ 4, we get the first power polynomial

µ+ 4− 18
∑
σ

m1 +m2

a3
3

= 0.

Now consider the space V2.

Now let us pay our attention to the fact that the system (18) for the spaces V1 and V2

doesn’t differ much from the same one for the space V1. That is why the eigenvectors for V2
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can be found in the form xi = ν(0, ai, 0), zi = µ(0, bi, 0) and similarly - for V3. So we get the
following system: {

2µ = (λ+ 2)ν

−ν = (λ− 1)µ

from where it follows that λ2 + λ = 0.

Repeating the same calculations as for the space V1 we get the polynomial

µ− 2 + 9
∑
σ

m1 +m2

a3
3

= 0,

where µ = (λ− 1)(λ+ 2).

The calculations for the space V3 exactly coincide with the case of V2.
Being equal to 15 the total dimension of the eigenspaces is equal to the dimension of the

subspace C18, which is defined by the condition x1 + x2 + x3 = 0.

Undoubtedly, we can’t but pay our attention to the surprising coincidence of properties
of the eigenvectors of α and β-points.

Theorem 4. The operators (15), (18), which linearize the differential equations (14) in the
neighbourhoods of α and β-points, have the following entire eigenvalues for any masses mi

and the following eigenvectors, corresponding to these eigenvalues:
λ = 1.

The eigenvector u1 has the following form:

x1 = 0, z1 = m1r, σ, r ∈ C3.

λ(λ+ 1) = 0.

The eigenvectors u0, u−1 satisfy the following conditions:

x1⊥x̃0
1, z1 =

3

|x̃0|3(1− λ)
, σ.

(λ+ 3)(λ− 2) = 0.

The eigenvector u1 has the following form:
x1 = νx̃0

1, z1 = µz̃0
1 , σ, 2µ = (λ+ 2)ν.

Proof. The correctness of the theorem follows from Theorems 2 and 3.

Suppose that the functions x1(t), x2(t) from the system (7) are known. Then x3(t) =

−x1(t)− x2(t), z1(t) =

∫
x1(t)

|x1(t)|3
dt, σ.

If we know the functions w1(t), w2(t) we can find x1(t), x2(t) as x1(t) =
w1(t)

|w1(t)|2
, σ.

At last if we know the functions z1(t), z2(t), then x1(t) =
ż1(t)

|ż1(t)|3/2
, σ, according to (7).

Taking into account the reasoning adduced above we call any collection x(t) = ((x1(t),

x2(t)), w(t) = (w1(t), w2(t)), z(t) = (z1(t), z2(t)), σ the solution of the three-body problem.
The properties of the foliation F are important for profound studying the three-body

problem but we’ll try to investigate the singular points of the solutions x(t), w(t), z(t).
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Proposition 6.1. If t∗ is the singular point of the solution of the three-body problem (10)
then maxi{|wi|} → ∞, t→ t∗. At the same time ‖w(t)‖ → ∞.

Proof. Let the functions |wi(t)| be bounded in the neighbourhood of the singular point
t∗. It means that the solution (w(t), z(t)) of the differential equation (10) is holomorphic
in this neighbourhood. We get the contradiction hence maxi{ |wi|} → ∞, t → t∗ and
‖w(t)‖ → ∞.

Theorem 5. There exist the singular points of the solutions

w1(t) =
x1(t)

|x1(t)|2
, σ

of the three-body problem (10) with the asymptotic behavior (compare with 2.4. [2]):

x(t) = x̃0t2/3 + κ1u1t+ κ2u2t
4/3 +

∑
k

µkvkt
(2+λk)/3 + ...,

where x̃0 is the solution of the characteristic system (11), κ1, κ2, µk are free parameters, u1, u2

are the eigenvectors of the operators (15), (18), vk are the eigenvectors of these operators
for the eigenvalues λk > 0, k = 1, ..., 4 (see Theorems 2, 3).

Proof. Using the results of Theorems 2, 3, we get the first approximation of the asymptotic
behavior of the solutions (7) and then apply the Piccard operator.

Remark 6.1. If λ < 0, τ →−∞, because of (8), the trajectories, outgoing from the singular
points specify the expansion of x(t) by powers t−1/3 due to (8), i.e. the asymptotic behavior
when t→∞.

According to the proved theorem, the singular points (8) don’t have an asymptotic be-
havior of a general position. Undoubtedly, this fact is quite natural, for the reason that these
singular points characterize triple collisions or movements of the bodies, making some stable
configurations.

All other singular points of the foliation F can be obtained when the right hand side (7)
is not defined: these are binary collisions when ‖xi‖ = 0 or |xi| = 0, ‖xi‖ 6= 0.

Definition 6.1. Let us call the singular points of the solutions of the system (7), that are
specified by the condition |xi| = 0, ‖xi‖ 6= 0 the points of quasi-collisions.

Certainly, all the types of collisions and solutions, defining them, are interesting for us,
even if the measure of such solutions is equal to zero. Nevertheless, we pass to considering
the singular points of quasi-collisions that are the singular points of a general position taking
into account the problem of the solar system stability.

7 The asymptotic behavior of quasi-collisions

Let |x1| = 0, ‖x1‖ 6= 0 in the system (7). Then the variables z2, z3 are small in comparison
with z1, hence the system (2.4) is approximately described by the system
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 ẋ1 = mz1,

ż1 = − x1

|x1|3
.

(19)

We can also get this system, if the mass of one of these three bodies is equal to zero.
This is natural because it is clear that we speak about the situation when the influence of
one of the bodies on the two others is minimal.

The problem (19) is plane; denote the coordinates of the vector x1 = (χ1, χ2), z1 =

(ξ1, ξ2), then

(χ̇1χ2 − χ1χ̇2)̇ = χ̈1χ2 − χ1χ̈2 = m

(
χ1

|x1|3
χ2 − χ1

χ2

|x1|3

)
= 0.

It means that in the polar coordinates

χ̇1χ2 − χ1χ̇2 = (r cos(ϕ))̇ r sin(ϕ)− r cos(ϕ)(r sin(ϕ))̇ = −r2ϕ̇ = C.

The integral from Theorem 1 takes the following form:

H =
m

2
z2
1 −

1

|x1|
(20)

and then we have:
χ̇1 = ṙ cos(ϕ)− r ϕ̇ sin(ϕ),

χ̇2 = ṙ sin(ϕ)− r ϕ̇ cos(ϕ),
ṙ =

√
−C

2

r2
+ 2m

(
H +

1

r

)
ϕ̇ = −C

r2
.

The derived system can be solved by quadratures, but regretfully, r(t) = |x1(t)| has a
"bad" asymptotic behavior when r → 0. Applying the iterations of the Piccard operator to
r(t) =

√
2Cit+ ... we get the summands of the form tk ln(t)m, k,m→∞.

Another reason, for which the polar coordinates are inconvenient is that they do not have
a natural generalization for the three-body problem. That is why trying to get the required
asymptotic behavior in the current coordinates (z, x), being convenient so far, is absolutely
reasonable.

It will be recalled that besides the energy integral there is also the moment integral:

M = χ1ξ2 − χ2ξ1. (21)

We’re interested in considering the easiest case, when one of the points moves on a
parabola relative to the other one. Thus we consider the motion of the following form:

χ2 = kχ2
1 − a. (22)

Further representations are obtained, using the relations (19)–(22), being quite simple.
That is the reason for which we do not comment them at length.
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(19), (22)⇒ χ̇2 = 2kχ1χ̇1 = 2mkχ1ξ1 = m ξ2 ⇒ ξ2 = 2kχ1ξ1, (23)

(23), (19), (22)⇒ ξ̇2 = 2km ξ2
1 −

2kχ2
1

|χ1|3
=
a− kχ2

1

|χ1|3
⇒ 2km ξ2

1 =
a+ kχ2

1

|χ1|3
. (24)

(22), (23)⇒M = 2kχ2
1ξ1 − (kχ2

1 − a)ξ1 ⇒ ξ1 =
M

a+ kχ2
1

. (25)

(24), (25)⇒ 2kmM
(a+ kχ2

1)
2

=
a+ kχ2

1

|χ1|3
=

a+ kχ2
1

(χ2
1 + (a− kχ2

1)
2)3/2

⇒ |x1| = (χ2
1 + (a− kχ2

1)
2)1/2 = a+ kχ2

1 (26)

⇒ 4ka = 1. (27)

(24)− (27)⇒ 2M2km = 1⇒ a =
M2m

2
, k =

1

2M2m
.

Thus, we have the solution in the following form:

ξ1 =
2M3m

χ2
1 +M4m2

, ξ2 =
4M3kmχ1

χ2
1 +M4m2

, χ2 =
χ2

1

2M2m
− M

2m

2
, (28)

χ̇1 =
2M3m2

χ2
1 +M4m2

,
χ3

1

3M4m2
+ χ1 =

2t

M
, (29)

where the last relation follows from (19), (25).
On the assumption of the formulae, we have just obtained, it is easy to get the asymptotic

behavior of the solution χ1(t).

χ1 = −M2mi+
√

2iMm t1/2 +
t

3M
+

5 t3/2

18M2
√

2iMm
+

4 it2

27M4m
+ ...,

χ2 = −M2m− i
√

2iMm t1/2 +
2it

3M
+

7 i t3/2

18M2m
√

2iMm
+

5t2

27M4m
+ ...,

ξ1 =
χ̇1

m
=

√
Mi√
2mt

+
1

3Mm
+

5 t1/2

12M2
√

2iMm
+

8 it

27M4m2
+ ...,

ξ2 =
χ̇2

m
= −i

√
Mi√
2mt

+
2i

3Mm
+

7 i t1/2

12mM2
√

2iMm
+

10 t2

27M4m2
+ ... (30)

Now let us consider the hyperbolic motion.√
(χ1 + a)2 + χ2

2 −
√
χ2

1 + χ2
2 = b,

k2χ2
2 − χ1(χ1 + a) =

c2

4
, a2 − b2 = c2, k =

b

c
. (31)

After having differentiated (31) by t, we get:

2k2χ2ξ2 − 2χ1ξ1 − aξ1 = 0,

2k2mξ2
2 −

2k2χ2
2

|χ|3
− 2mξ2

1 +
2χ2

1

|χ|3
+
aχ1

|χ|3
= 0.
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After having expressed ξ2 by H, we get:

2m(1 + k2)ξ2
1 =

2(1 + k2)χ2
1 + aχ1

|χ|3
+ 4Hk2m,

|χ|2 = χ2
1 + χ2

2 = χ2
1 +

1

k2

(
χ2

1 + aχ1 +
c2

4

)
=

1 + k2

k2

(
χ1 +

a

2(1 + k2)

)2

,

(χ̇1)
2 =

4mk3(1 + k2)1/2χ1

(2(1 + k2)χ1 + a)2 ,

χ1 = − c
2

2a
+ κ1

√
t+ ..., κ1 ∈ C, (32)

that is we get the asymptotic behavior χ1 = χ10 +χ11

√
t+ ... in the point of a quasi-collision

as well as in the parabolic case.
Then from (31) we get:

χ2 =
ic2

2a
+ κ2

√
t+ ..., κ2 ∈ C. (33)

Thus, a one-parameter family of solutions of the two-body problem is obtained. It is
quite evident, that if the third body participates in a quasi-collision, the asymptotic behavior
(32),(33) will change only a little and moreover, it will be possible to get it by means of the
Piccard iterations.

Theorem 6. For almost all the initial conditions the trajectory of solutions of the three-body
problem x(t) = (x1(t), x2(t), x3(t)) ∈ C9 ẋ1 = mz1 −m1

∑
σ z1, σ

ż1 = − x1

|x1|3
, σ

specifies a smooth manifold, immersed into C9.

Theorem 7. (see [9]) There are no entire solutions of three-body problem.

Proof. Let the solution (w(t), z(t)) be an arbitrary solution of the problem (10) and Y =

π(w(t), z(t)) be a fiber of the foliation F . Assume that the solution (w(t), z(t)) has no singular
points t∗ ∈ C. Then the leaf Y has no singular points for otherwise the leaf Y would have
a singular point π(w̃0, z̃0) and the solution (w(t), z(t)) would have singular α or β-points or
would be bounded in infinity, that is impossible for entire solution.

Let y ∈ Y be an arbitrary point and π(w(t0), z(t0)) = y, ‖w(t0), z(t0)‖ = maxi{‖wi(t0)‖,
‖zi(t0)‖} = 1. One can move along a path γ ⊂ C from the point t0 to the point t1 where
‖w(t0), z(t0)‖ > 2.

And what is more, there exists an neighbourhood U in P 17
∗ such as for all ý ∈ U if

π(w(t0), z(t0)) = ý, ‖w(t0), z(t0)‖ = 1 then along γ we have ‖w(t0), z(t0)‖ > 2. So we have
an open covering of the closure of Y and choose a finite sub-covering Ui. Let |t0i − t1i| < T

for all i. Now construct a path Γ which contains the points t0, t1, ..., tn, ... where tk can be
found from tk−1 in the same way as t1 was found by t0. Then the points t0, t1, ..., tn, ... must
be in the circle with the radius T + T

2
+ T

22 + ... = 2T and there exist the limit point t∗ ∈ C
which must be a singular point.
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