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In the paper we study the semigroup CZ which is a generalization of the bicyclic semigroup.

We describe main algebraic properties of the semigroup CZ and prove that every non-trivial

congruence C on the semigroup CZ is a group congruence, and moreover the quotient semigroup

CZ/C is isomorphic to a cyclic group. Also we show that the semigroup CZ as a Hausdorff

semitopological semigroup admits only the discrete topology. Next we study the closure clT (CZ)

of the semigroup CZ in a topological semigroup T . We show that the non-empty remainder of

CZ in a topological inverse semigroup T consists of a group of units H(1T ) of T and a two-sided

ideal I of T in the case when H(1T ) 6= ∅ and I 6= ∅. In the case when T is a locally compact

topological inverse semigroup and I 6= ∅ we prove that an ideal I is topologically isomorphic to

the discrete additive group of integers and describe the topology on the subsemigroup CZ ∪ I.

Also we show that if the group of units H(1T ) of the semigroup T is non-empty, then H(1T ) is

either singleton or H(1T ) is topologically isomorphic to the discrete additive group of integers.

1 Introduction and preliminaries

In this paper all topological spaces are assumed to be Hausdorff. We shall follow the
terminology of [6, 7, 9, 10]. If Y is a subspace of a topological space X and A ⊆ Y , then by
clY (A) we shall denote the topological closure of A in Y . We denote by N the set of positive
integers.

An algebraic semigroup S is called inverse if for any element x ∈ S there exists the
unique x−1 ∈ S such that xx−1x = x and x−1xx−1 = x−1. The element x−1 is called the
inverse of x ∈ S. If S is an inverse semigroup, then the function inv : S → S which assigns
to every element x of S its inverse element x−1 is called an inversion.

A congruence C on a semigroup S is called non-trivial if C is distinct from universal and
identity congruence on S, and group if the quotient semigroup S/C is a group.

If S is a semigroup, then we shall denote the subset of idempotents in S by E(S). If
S is an inverse semigroup, then E(S) is closed under multiplication and we shall refer to
E(S) a band (or the band of S). If the band E(S) is a non-empty subset of S, then the
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semigroup operation on S determines the following partial order 6 on E(S): e 6 f if and
only if ef = fe = e. This order is called the natural partial order on E(S). A semilattice
is a commutative semigroup of idempotents. A semilattice E is called linearly ordered or a
chain if its natural order is a linear order.

Let E be a semilattice and e ∈ E. We denote ↓e = {f ∈ E | f 6 e} and ↑e = {f ∈ E |
e 6 f}.

If S is a semigroup, then we shall denote by R, L , D and H the Green relations on S

(see [7]):

aRb if and only if aS1 = bS1;

aL b if and only if S1a = S1b;

aJ b if and only if S1aS1 = S1bS1;

D = L ◦ R = R ◦ L ;

H = L ∩ R.

A semigroup S is called simple if S does not contain proper two-sided ideals and bisimple
if S has only one D-class.

A semitopological (resp. topological) semigroup is a Hausdorff topological space together
with a separately (resp. jointly) continuous semigroup operation [6, 18]. An inverse topo-
logical semigroup with the continuous inversion is called a topological inverse semigroup. A
topology τ on a (inverse) semigroup S which turns S to be a topological (inverse) semigroup
is called a (inverse) semigroup topology on S.

An element s of a topological semigroup S is called topologically periodic if for every
open neighbourhood U(s) of s in S there exists a positive integer n > 2 such that sn ∈ U(s).
Obviously, if there exists a subgroup H(e) with a neutral element e in S, then s ∈ H(e) is
topologically periodic if and only if for every open neighbourhood U(e) of e in S there exists
a positive integer n such that sn ∈ U(e).

The bicyclic semigroup C (p, q) is the semigroup with the identity 1 generated by elements
p and q subject only to the condition pq = 1. The distinct elements of C (p, q) are exhibited
in the following useful array:

1 p p2 p3 · · ·
q qp qp2 qp3 · · ·
q2 q2p q2p2 q2p3 · · ·
q3 q3p q3p2 q3p3 · · ·
...

...
...

... . . .

The bicyclic semigroup is bisimple and every one of its congruences is either trivial or a
group congruence. Moreover, every non-annihilating homomorphism h of the bicyclic semi-
group is either an isomorphism or the image of C (p, q) under h is a cyclic group (see [7,
Corollary 1.32]). The bicyclic semigroup plays an important role in algebraic theory of semi-
groups and in the theory of topological semigroups. For example the well-known Andersen’s
result [1] states that a (0–)simple semigroup is completely (0–)simple if and only if it does
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not contain the bicyclic semigroup. The bicyclic semigroup admits only the discrete semi-
group topology and a topological semigroup S can contain the bicyclic semigroup C (p, q) as
a dense subsemigroup only as an open subset [8]. Also Bertman and West in [5] proved that
the bicyclic semigroup as a Hausdorff semitopological semigroup admits only the discrete
topology. The problem of an embedding of the bicycle semigroup into compact-like topolog-
ical semigroups solved in the papers [2, 3, 4, 11, 13] and the closure of the bicycle semigroup
in topological semigroups studied in [8].

Let Z be the additive group of integers. On the Cartesian product CZ = Z×Z we define
the semigroup operation as follows:

(a, b) · (c, d) =


(a− b+ c, d), if b < c;

(a, d), if b = c;

(a, d+ b− c), if b > c,

(1)

for a, b, c, d ∈ Z. The set CZ with such defined operation is called the extended bicycle
semigroup [19].

In this paper we study the semigroup CZ. We describe main algebraic properties of
the semigroup CZ and prove that every non-trivial congruence C on the semigroup CZ is
a group congruence, and moreover the quotient semigroup CZ/C is isomorphic to a cyclic
group. Also we show that the semigroup CZ as a Hausdorff semitopological semigroup
admits only the discrete topology. Next we study the closure clT (CZ) of the semigroup CZ

in a topological semigroup T . We show that the non-empty remainder of CZ in a topological
inverse semigroup T consists of a group of units H(1T ) of T and a two-sided ideal I of T in
the case when H(1T ) 6= ∅ and I 6= ∅. In the case when T is a locally compact topological
inverse semigroup and I 6= ∅ we prove that an ideal I is topologically isomorphic to the
discrete additive group of integers and describe the topology on the subsemigroup CZ ∪ I.
Also we show that if the group of units H(1T ) of the semigroup T is non-empty, then H(1T )

is either singleton or H(1T ) is topologically isomorphic to the discrete additive group of
integers.

2 Algebraic properties of the semigroup CZ

Proposition 2.1. The following statements hold:

(i) E(CZ) = {(a, a) | a ∈ Z}, and (a, a) 6 (b, b) in E(CZ) if and only if a > b in Z, and
hence E(CZ) is isomorphic to the linearly ordered semilattice (Z,max);

(ii) CZ is an inverse semigroup, and the elements (a, b) and (b, a) are inverse in CZ;

(iii) for any idempotents e, f ∈ CZ there exists x ∈ CZ such that x ·x−1 = e and x−1 ·x = f ;

(iv) elements (a, b) and (c, d) of the semigroup CZ are:

(a) R-equivalent if and only if a = c;

(b) L -equivalent if and only if b = d;
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(c) H -equivalent if and only if a = c and b = d;

(d) D-equivalent for all a, b, c, d ∈ Z;

(e) J -equivalent for all a, b, c, d ∈ Z;

(v) CZ is a bisimple semigroup and hence it is simple;

(vi) if (a, b) · (c, d) = (x, y) in CZ then x− y = a− b+ c− d.

(vii) every maximal subgroup of CZ is trivial.

(viii) for every integer n the subsemigroup CZ[n] = {(a, b) | a > n & b > n} of CZ is
isomorphic to the bicyclic semigroup C (p, q), and moreover an isomorphism h : CZ[n] →
C (p, q) is defined by the formula ((a, b))h = qa−npb−n;

(ix) LI CZ = {L a | a ∈ Z}, where L a = {(x, y) ∈ CZ | y > a}, is the family of all left
ideals of the semigroup CZ;

(x) RI CZ = {Ra | a ∈ Z}, where Ra = {(x, y) ∈ CZ | x > a}, is the family of all right
ideals of the semigroup CZ.

Proof. The proofs of statements (i), (ii), (iii), (iv), (vi), (vii) and (viii) are trivial. State-
ment (v) follows from statement (iii) and Lemma 1.1 of [16].

Simple verifications (see: formula (1)) show that

(a, b)CZ = {(x, y) ∈ CZ | x > a} and CZ(a, b) = {(x, y) ∈ CZ | y > b}

for every (a, b) ∈ CZ. This completes the proof of statements (ix) and (x).

Proposition 2.2. Every non-trivial congruence C on the semigroup CZ is a group congru-
ence, and moreover the quotient semigroup CZ/C is isomorphic to a cyclic group.

Proof. First we shall show that if two distinct idempotents (a, a) and (b, b) of CZ are C-
equivalent then the quotient semigroup CZ/C is a group. Without loss of generality we can
assume that (a, a) 6 (b, b), i.e., a > b in Z. Then we have that

(a, b) · (b, b) · (b, a) = (a, a);

(a, b) · (a, a) · (b, a) = (a+ (a− b), a+ (a− b)) ;

(a, b) · (a+ (a− b), a+ (a− b)) · (b, a) = (a+ 2(a− b), a+ 2(a− b)) ;

· · · · · · · · · · · · · · ·
(a, b) · (a+ j(a− b), a+ j(a− b)) · (b, a) = (a+ (j + 1)(a− b), a+ (j + 1)(a− b)) ;

· · · · · · · · · · · · · · ·

This implies that for every non-negative integers i and j we have that

(a+ i(a− b), a+ i(a− b))C (a+ j(a− b), a+ j(a− b)) .
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If b > k in Z for some integer k, then by Proposition 2.1(viii) we get that any two distinct
idempotents of the subsemigroup CN[k] of CZ are C-equivalent and hence Proposition 2.1(viii)
and Corollary 1.32 from [7] imply that for every integer n all idempotents of the subsemigroup
CN[n] are C-equivalent. This implies that all idempotents of the subsemigroup CN[n] are C-
equivalent. Since the semigroup CZ is inverse we conclude that the quotient semigroup CZ/C

contains only one idempotent and hence by Lemma II.1.10 from [17] the semigroup CZ/C is
a group.

Suppose that two distinct elements (a, b) and (c, d) of the semigroup CZ are C-equivalent.
Since CZ is an inverse semigroup, Lemma III.1.1 from [17] implies that (a, a)C(c, c) and
(b, b)C(d, d). Since (a, b) 6= (c, d) we have that either (a, a) 6= (c, c) or (b, b) 6= (d, d), and
hence by the first part of the proof we get that all idempotents of the semigroup CZ are
C-equivalent.

Next we shall show that if Cmg be a least group congruence on the semigroup CZ, then
the quotient semigroup CZ/Cmg is isomorphic to the additive group of integers Z.

By Proposition 2.1(i) and Lemma III.5.2 from [17] we have that elements (a, b) and (c, d)

are Cmg-equivalent in CZ if and only if there exists an integer n such that (a, b) · (n, n) =

(c, d) · (n, n). Then Proposition 2.1(i) implies that (a, b) · (g, g) = (c, d) · (g, g) for any integer
g such that g > n in Z. If g > b and g > d in Z, then the semigroup operation in CZ implies
that (a, b) · (g, g) = (g− b+a, g) and (c, d) · (g, g) = (g− d+ c, g), and since Z is the additive
group of integers we get that a − b = c − d. Converse, suppose that (a, b) and (c, d) are
elements of the semigroup CZ such that a− b = c−d. Then for any element g ∈ Z such that
g > b and g > d in Z we have that (a, b)·(g, g) = (g−b+a, g) and (c, d)·(g, g) = (g−d+c, g),
and since a − b = c − d we get that (a, b)Cmg(c, d). Therefore, (a, b)Cmg(c, d) in CZ if and
only if a− b = c− d.

We determine a map f : CZ → Z by the formula ((a, b)) f = a − b, for a, b ∈ Z. Propo-
sition 2.1(vi) implies that such defined map f : CZ → Z is a homomorphism. Then we have
that (a, b)Cmg(c, d) if and only if ((a, b)) f = ((c, d)) f, for (a, b), (c, d) ∈ CZ, and hence the
homomorphism f generates the least group congruence Cmg on the semigroup CZ.

If c is any congruence on the semigroup CZ then the mapping c 7→ c ∨ Cmg maps the
congruence c onto a group congruence c∨Cmg, where Cmg is the least group congruence on the
semigroup CZ (cf. [17, Section III]). Therefore every homomorphic image of the semigroup
CZ is a homomorphic image of the quotient semigroup CZ/C, i.e., it is a homomorphic image
of the additive group of integers Z. This completes the proof of the theorem.

3 The semigroup CZ: topologizations and closures of CZ in topological
semigroups

Theorem 1. Every Hausdorff topology τ on the semigroup CZ such that (CZ, τ) is a semi-
topological semigroup is discrete, and hence CZ is a discrete subspace of any semitopological
semigroup which contains CZ as a subsemigroup.

Proof. We fix an arbitrary idempotent (a, a) of the semigroup CZ and suppose that (a, a) is
a non-isolated point of the topological space (CZ, τ). Since the maps λ(a,a) : CZ → CZ and
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ρ(a,a) : CZ → CZ defined by the formulae ((x, y))λ(a,a) = (a, a) · (x, y) and ((x, y)) ρ(a,a) =

(x, y) · (a, a) are continuous retractions we conclude that (a, a)CZ and CZ(a, a) are closed
subsets in the topological space (CZ, τ). We put

DL(a,a) [(a, a)] = {(x, y) ∈ CZ | (x, y) · (a, a) = (a, a)} .

Simple verifications show that

DL(a,a) [(a, a)] = {(x, x) ∈ CZ | x 6 a in Z} ,

and since right translations are continuous maps in (CZ, τ) we get that DL(a,a) [(a, a)] is a
closed subset of the topological space (CZ, τ). Then there exists an open neighbourhood
W(a,a) of the point (a, a) in the topological space (CZ, τ) such that

W(a,a) ⊆ CZ \
(
(a+ 1, a+ 1)CZ ∪ CZ(a+ 1, a+ 1) ∪ DL(a−1,a−1)(a− 1, a− 1)

)
.

Since (CZ, τ) is a semitopological semigroup we conclude that there exists an open neighbour-
hood V(a,a) of the idempotent (a, a) in the topological space (CZ, τ) such that the following
conditions hold:

V(a,a) ⊆ W(a,a), (a, a) · V(a,a) ⊆ W(a,a) and V(a,a) · (a, a) ⊆ W(a,a).

Hence at least one of the following conditions holds:

(a) the neighbourhood V(a,a) contains infinitely many points (x, y)∈CZ such that x< y 6 a;
or

(b) the neighbourhood V(a,a) contains infinitely many points (x, y)∈CZ such that y< x 6 a.

In case (a) we have that

(a, a) · (x, y) =
(
a, a+ (y − x)

)
/∈ W(a,a),

because y − x > 1, and in case (b) we have that

(x, y) · (a, a) =
(
a+ (x− y), a

)
/∈ W(a,a),

because x − y > 1, a contradiction. The obtained contradiction implies that the set V(a,a)

is singleton, and hence the idempotent (a, a) is an isolated point of the topological space
(CZ, τ).

Let (a, b) be an arbitrary element of the semigroup CZ and suppose that (a, b) is a non-
isolated point of the topological space (CZ, τ). Since all right translations are continuous
maps in (CZ, τ) and every idempotent (a, a) of CZ is an isolated point of the topological
space (CZ, τ) we conclude that

DL(b,a) [(a, a)] =
{
(x, y) ∈ CZ | (x, y) · (b, a) = (a, a)

}
is a closed-and-open subset of the topological space (CZ, τ). Simple verifications show that

DL(b,a) [(a, a)] =
{
(x, y) ∈ CZ | x− y = a− b and x 6 a

}
.
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Then we have that {
(a, b)

}
= DL(b,a) [(a, a)] \ DL(b−1,a−1) [(a− 1, a− 1)] ,

and hence (a, b) is an isolated point of the topological space (CZ, τ). This completes the
proof of the theorem.

Theorem 1 implies the following:

Corollary 3.1. Every Hausdorff semigroup topology τ on CZ is discrete, and hence CZ is a
discrete subspace of any topological semigroup which contains CZ as a subsemigroup.

Since every discrete topological space is locally compact, Theorem 1 and Theorem 3.3.9
from [9] imply the following:

Corollary 3.2. Let T be a semitopological semigroup which contains CZ as a subsemigroup.
Then CZ is an open subsemigroup of T .

Lemma 3.1. Let T be a Hausdorff semitopological semigroup which contains CZ as a dense
subsemigroup. Let f ∈ T \ CZ be an idempotent of the semigroup T which satisfies the
property: there exists an idempotent (n, n) ∈ CZ, n ∈ Z, such that (n, n) 6 f . Then the
following statements hold:

(i) there exists an open neighbourhood U(f) of f in T such that U(f) ∩ CZ ⊆ E(CZ);

(ii) f is the unit of T .

Proof. (i) Let W (f) be an arbitrary open neighbourhood of the idempotent f in T . We fix
an arbitrary element (n, n) ∈ CZ, n ∈ Z. By Corollary 3.2 the element (n, n) is an isolated
point in T , and since T is a semitopological semigroup we have that there exists an open
neighbourhood U(f) of f in T such that

U(f) ⊆ W (f), U(f) · {(n, n)} = {(n, n)} and {(n, n)} · U(f) = {(n, n)}.

If the set U(f) contains a non-idempotent element (x, y) ∈ CZ, then Proposition 2.1(vi)
implies that (x, y) ·(n, n), (n, n) ·(x, y) /∈ E(CZ), a contradiction. The obtained contradiction
implies the statement of the assertion.

(ii) First we show that f · (k, l) = (k, l) · f = (k, l) for every (k, l) ∈ CZ.
Suppose the contrary: there exists an element (k, l) ∈ CZ such that x = f · (k, l) 6= (k, l)

for some x ∈ T . Let U(x) be an open neighbourhood of x in T such that (k, l) /∈ U(x). Since
T is a semitopological semigroup we get that there exists an open neighbourhood V (f) of
f in T such that V (f) · {(k, l)} ⊆ U(x). Again, since for an arbitrary integer a the maps
λ(a,a) : CZ → CZ and ρ(a,a) : CZ → CZ defined by the formulae ((x, y))λ(a,a) = (a, a) · (x, y)
and ((x, y)) ρ(a,a) = (x, y) · (a, a) are continuous retractions we conclude that statement (i)

implies that there exists an open neighbourhood W (f) of f in T such that W (f) ⊆ V (f),
W (f) ∩ CZ ⊆ E(CZ) and the following condition holds:

(p, p) ∈ W (f) ∩ CZ if and only if p > k.
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Then (p, p) ·(k, l) = (k, l) /∈ U(x) for every (p, p) ∈ W (f)∩CZ, a contradiction. The obtained
contradiction implies that f · (k, l) = (k, l) for every (k, l) ∈ CZ. Similar arguments show
that (k, l) · f = (k, l) for every (k, l) ∈ CZ.

Next we show that f · x = x · f = x for every x ∈ T \ CZ. Suppose the contrary: there
exists an element x ∈ T \ CZ such that y = f · x 6= x for some y ∈ T . Let U(x) and U(y)

be open neighbourhoods of x and y in T , respectively, such that U(x) ∩ U(y) = ∅. Since T

is a semitopological semigroup we get that there exists an open neighbourhood V (x) of x in
T such that V (x) ⊆ U(x) and f · V (x) ⊆ U(y). Again, since x ∈ T \ CZ we have that the
set V (x) ∩ CZ is infinite, and the previous part of the proof of the statement implies that
f · (V (x) ∩ CZ) ⊆ (V (x) ∩ CZ). But we have that V (x) ∩ U(y) = ∅, a contradiction. The
obtained contradiction implies the equality f · x = x. Similar arguments show that x · f = x

for every x ∈ T \ CZ.

Remark 3.1. We observe that the assertion (i) of Lemma 3.1 holds for right-topological
and left-topological monoids.

Lemma 3.2. Let T be a Hausdorff topological monoid with the unit 1T which contains CZ

as a dense subsemigroup. Then the following assertions hold:

(i) there exists an open neighbourhood U(1T ) of the unit 1T in T such that U(1T )∩CZ ⊆
E(CZ);

and if the group of units H(1T ) of T is non-singleton, then:

(ii) for every x ∈ H(1T ) there exists an open neighbourhood U(x) in T such that a− b =

c− d for all (a, b), (c, d) ∈ U(x) ∩ CZ;

(iii) for distinct x, y ∈ H(1T ) there exist open neighbourhoods U(x) and U(y) of x and y

in T , respectively, such that a − b 6= c − d for every (a, b) ∈ U(x) ∩ CZ and for every
(c, d) ∈ U(y) ∩ CZ;

(iv) the group H(1T ) is torsion free;

(v) the group of units H(1T ) of T is a discrete subgroup in T ;

(vi) the group of units H(1T ) of T is isomorphic to the infinite cyclic group;

(vii) every non-identity element of the group of units H(1T ) in the semigroup T is not
topologically periodic.

Proof. Statement (i) follows from Lemma 3.1(i).
(ii) In the case H(1T ) = {1T} statement (i) implies our assertion. Hence we suppose that

H(1T ) 6= {1T} and let x ∈ H(1T )\{1T}. By statement (i) there exists an open neighbourhood
U(1T ) of the unit 1T in T such that U(1T ) ∩ CZ ⊆ E(CZ). Then the continuity of the
semigroup operation in T implies that there exist open neighbourhoods U(x) and U(x−1) in
the topological space T of x and the inverse element x−1 of x in H(1T ), respectively, such
that

U(x) · U(x−1) ⊆ U(1T ) and U(x−1) · U(x) ⊆ U(1T ).



On the closure of the extended bicyclic semigroup 139

Since U(1T ) ∩ CZ ⊆ E(CZ) we have that Proposition 2.1(vi) implies that a − b + u − v =

c − d + u − v for all (a, b), (c, d) ∈ U(x) ∩ CZ and some (u, v) ∈ U(x−1) ∩ CZ, and hence
a− b = c− d.

(iii) Suppose the contrary: there exist distinct x, y ∈ H(1T ) and for all open neigh-
bourhoods U(x) and U(y) of x and y in T , respectively, there are (a, b) ∈ U(x) ∩ CZ and
(c, d) ∈ U(y)∩CZ such that a− b = c− d. The Hausdorffness of T implies that without loss
of generality we can assume that U(x) ∩ U(y) = ∅. Then statement (i) and the continuity
of the semigroup operation in T imply that there exist open neighbourhoods V (1T ), V (x)

and V (y) of 1T , x and y in T , respectively, such that

V (1T ) ∩ CZ ⊆ E(CZ), V (x) ⊆ U(x), V (y) ⊆ U(y), V (1T ) · V (x) ⊆ U(x)

and V (1T ) · V (y) ⊆ U(y).

Since by Theorem 1.7 from [6, Vol. 1] the sets (a, a)T and T (a, a) are closed in T for every
idempotent (a, a) ∈ CZ and both neighbourhoods V (x) and V (y) contain infinitely many
elements of the semigroup CZ we conclude that for every (p, p) ∈ V (1T ) ∩ CZ there exist
(k, l) ∈ V (x) ∩ CZ and (m,n) ∈ V (y) ∩ CZ such that

p > k > m, p > l > n and k − l = m− n.

Then we get that

(p, p) · (k, l) = (p, p+ (l − k)) and (p, p) · (m,n) = (p, p+ (n−m)),

a contradiction. The obtained contradiction implies our assertion.
(iv) Suppose the contrary: there exist x ∈ H(1T ) \ {1T} and a positive integer n such

that xn = 1T . Then by statement (i) there exists an open neighbourhood U(1T ) of the unit
1T in T such that U(1T ) ∩ CZ ⊆ E(CZ). The continuity of the semigroup operation in T

and statement (ii) imply that there exists an open neighbourhood V (x) of x in T such that
a − b = c − d for all (a, b), (c, d) ∈ V (x) ∩ CZ and V (x) · . . . · V (x)︸ ︷︷ ︸

n-times

⊆ U(1T ). We fix an

arbitrary element (a, b) ∈ V (x) ∩ CZ. If (a, b)n = (x, y), then Proposition 2.1(vi) implies
that x − y = n · (a − b) and since x 6= 1T we get that (x, y) /∈ U(1T ), a contradiction. The
obtained contradiction implies statement (iv).

(v) Statement (iv) implies that the group of units H(1T ) is infinite.
We fix an arbitrary x ∈ H(1T ) and suppose that x is not an isolated point of H(1T ).

Then by statement (ii) there exists an open neighbourhood U(x) in T such that a−b = c−d

for all (a, b), (c, d) ∈ U(x) ∩ CZ. Since the point x is not isolated in H(1T ) we conclude that
there exists y ∈ H(1T ) such that y ∈ U(x). Hence the set U(x) is an open neighbourhood
of y in T . Statement (iii) implies that there exist open neighbourhoods W (x) ⊆ U(x) and
W (y) ⊆ U(x) of x and y in T , respectively, such that a−b 6= c−d for every (a, b) ∈ W (x)∩CZ

and for every (c, d) ∈ W (y) ∩ CZ. This contradicts the choice of the neighbourhood U(x).
The obtained contradiction implies that every x ∈ H(1T ) is an isolated point of H(1T ).

(vi) Since the group of units H(1T ) is not trivial, i.e., the group H(1T ) is non-singleton,
we fix an arbitrary x ∈ H(1T ) \ {1T}. Then by statement (iv) we have that xn 6= 1T for any
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positive integer n. Statement (ii) implies that there exists an open neighbourhood U(x) in
T such that a− b = c− d for all (a, b), (c, d) ∈ U(x)∩CZ. We define the map ϕ : H(1T ) → Z
by the following way: (x)ϕ = k if and only if a − b = k for every (a, b) ∈ U(x) ∩ CZ. Then
statement (iv) and Proposition 2.1(vi) imply that the map ϕ : H(1T ) → Z is an injective
homomorphism. Obviously that (H(1T ))ϕ is a subgroup in the additive group of integers.
We fix the least positive integer p ∈ (H(1T ))ϕ. Then the element p generates the subgroup
(H(1T ))ϕ in the additive group of integers Z, and hence the group (H(1T ))ϕ is cyclic.

(vii) We fix an arbitrary element x ∈ H(1T ) \ {1T}. Suppose the contrary: x is a
topologically periodic element of S. Then there exist open neighbourhoods U(1T ) and U(x)

of 1T and x in T , respectively, such that U(1T ) ∩ U(x) = ∅. Statements (i) and (iii) imply
that without loss of generality we can assume that U(1T )∩CZ ⊆ E(CZ), and a−b = c−d 6= 0

for all (a, b), (c, d) ∈ U(x) ∩ CZ. Then the topologically periodicity of x implies that there
exists a positive integer n such that xn ∈ U(1T ). Since the semigroup operation in T is
continuous we conclude that there exists an open neighbourhood V (x) of x in T such that
V (x) · . . . · V (x)︸ ︷︷ ︸

n-times

⊆ U(1T ). We fix an arbitrary element (a, b) ∈ V (x)∩CZ. Then we have that

(a, b)n ∈ U(1T ) ∩ CZ and hence n(a − b) = 0, a contradiction. The obtained contradiction
implies assertion (vii).

Proposition 3.1. Let G be non-trivial subgroup of the additive group of integers Z and
n ∈ Z. Then the subsemigroup H which is generated by the set {n}∪G is a cyclic subgroup
of Z.

Proof. Without loss of generality we can assume that n ∈ Z \G and n > 0.
Since every subgroup of a cyclic group is cyclic (see [14, P. 47]), we have that G is a

cyclic subgroup in Z. We fix a generating element k of G such that k > 0. Then we have
that

(n+ · · ·+ n︸ ︷︷ ︸
(k−1)-times

)− (k + · · ·+ k︸ ︷︷ ︸
n-times

) + n = 0,

and hence we have that −n ∈ H. Since Z is a commutative group we conclude that H is a
subgroup in Z, which is generated by elements n and k, and hence H is a cyclic subgroup
in Z.

Proposition 3.2. Let T be a Hausdorff topological monoid with the unit 1T which contains
CZ as a dense subsemigroup. Then the following assertions hold:

(i) if the set LCZ = {x ∈ T \ CZ | there exists y ∈ CZ such that x · y ∈ CZ} is non-empty,
then LCZ is a subsemigroup of T , and moreover if a ∈ LCZ , then there exists an open
neighbourhood U(a) of a in T such that n1 −m1 = n2 −m2 for all (n1,m1), (n2,m2) ∈
U(a) ∩ CZ;

(ii) if the set RCZ = {x ∈ T \ CZ | there exists y ∈ CZ such that y · x ∈ CZ} is non-empty,
then RCZ is a subsemigroup of T , and moreover if a ∈ RCZ , then there exists an open
neighbourhood U(a) of a in T such that n1 −m1 = n2 −m2 for all (n1,m1), (n2,m2) ∈
U(a) ∩ CZ;
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(iii) if the set LCZ (resp., RCZ) is non-empty, then for every a ∈ LCZ (resp., a ∈ RCZ) there
exist an open neighbourhood U(a) of a in T and an integer na such that p 6 na and
q 6 na for all (p, q) ∈ U(a) ∩ CZ;

(iv) LCZ = RCZ ;

(v) ↑CZ = CZ ∪ LCZ is a subsemigroup of T and CZ is a minimal ideal in ↑CZ;

(vi) if for an element a ∈ T \ CZ there is an open neighbourhood U(a) of a in T and the
following conditions hold:

(a) m1 −m2 = n1 − n2 for all (m1, n1), (m2, n2) ∈ U(a) ∩ CZ; and

(b) there exists an integer na such that n 6 na and m 6 na for every (m,n) ∈
U(a) ∩ CZ,

then a ∈ LCZ ;

(vii) if I = T \ ↑CZ 6= ∅, then I is an ideal of T ;

(viii) the set

↑(a, b) = {x ∈ T | x · (b, b) = (a, b)}
= {x ∈ T | (a, a) · x = (a, b)}
= {x ∈ T | (a, a) · x · (b, b) = (a, b)}

is closed-and-open in T for every (a, b) ∈ CZ;

(ix) the set ↑(a, b) ∩ LCZ is either singleton or empty;

(x) LCZ is isomorphic to a submonoid of the additive group of integers Z, and moreover
if a maximal subgroup of LCZ is non-singleton, then LCZ is isomorphic to the additive
group of integers Z;

(xi) ↑CZ is an open subset in T , and hence if I = T \ ↑CZ 6= ∅, then the ideal I is a closed
subset in T ;

(xii) if the semigroup T contains a non-singleton group of units H(1T ), then H(1T ) =

T \ (CZ ∪ I).

Proof. (i) We observe that since CZ is an inverse semigroup we conclude that x ∈ LCZ if and
only if there exists an idempotent e ∈ CZ such that x · e ∈ CZ, for x ∈ T .

We fix an arbitrary x ∈ LCZ . Let (n, n) be an idempotent in CZ such that (a, b) =

x · (n, n) ∈ CZ. Then by Corollary 3.1 we have that (n, n) and (a, b) are isolated points
in T , and the continuity of the semigroup operation in T implies that there exists an open
neighbourhood U(x) of x in T such that

U(x) · {(n, n)} = {(a, b)} ∈ CZ.
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Then Proposition 2.1(vi) implies that p− q = a− b for all (p, q) ∈ U(x) ∩ CZ. Also, since

(p, q)(n, n) =

{
(p− q + n, n), if q 6 n;

(p, q), if q > n
(2)

we have that q 6 n = b.
Suppose that x, y ∈ LCZ , and (i, i) and (j, j) are idempotents in CZ such that x · (i, i) =

(k, l) ∈ CZ and y · (j, j) ∈ CZ, i, j, k, l ∈ Z. We fix an arbitrary integer d such that
d > max{k, j}. Then we have that

(y · x) · ((i, i) · (l, k) · (d, d)) = y · (x · (i, i) · (l, k) · (d, d))
= y · ((k, l) · (l, k) · (d, d))
= y · ((k, k) · (d, d))
= y · (d, d)
= y · ((j, j) · (d, d))
= (y · (j, j)) · (d, d) ∈ CZ.

This implies that LCZ is a subsemigroup of T and completes the proof of our assertion.
The proof of assertion (ii) is similar to (i).
Statement (i) and formula (2) imply assertion (iii). In the case a ∈ RCZ the proof is

similar.
(iv) Let be LCZ 6= ∅. We fix an arbitrary element a ∈ LCZ . Then there exists an

idempotent (ia, ia) ∈ CZ such that a · (ia, ia) = (i, j) ∈ CZ. Assertion (iii) implies that there
exist an open neighbourhood U(a) of a in T and an integer na such that n − m = i − j,
n 6 na and m 6 na for all (n,m) ∈ U(a) ∩ CZ. Without loss of generality we can assume
that ia > na.

We shall show that (ia, ia) · a ∈ CZ. Suppose the contrary: (ia, ia) · a = b ∈ T \ CZ.
Assertion (iii) implies that there exist integers

n0(a) = max{n | (n,m) ∈ U(a) ∩ CZ} and m0(a) = max{m | (n,m) ∈ U(a) ∩ CZ}.

Since ia > na we have that

(ia, ia) · (n0(a),m0(a)) = (ia, ia − n0(a) +m0(a)).

Let W (b) be an open neighbourhood of b in T such that (ia, ia − n0(a) + m0(a)) /∈ W (b).
Then the continuity of the semigroup operation in T implies that there exists an open
neighbourhood V (a) of a in T such that

V (a) ⊆ U(a) and {(ia, ia)} · V (a) ⊆ W (b).

We fix an arbitrary element (n,m) ∈ V (a) ∩ CZ. Then we have that

(ia, ia) · (n,m) = (ia, ia − n+m) = (ia, ia − n0(a) +m0(a)),

a contradiction. The obtained contradiction implies that a ∈ RCZ , and hence we have that
LCZ ⊆ RCZ .
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The proof of the inclusion RCZ ⊆ LCZ is similar.
Statement (v) follows from statements (i)− (iv) and Proposition 2.1(v).
(vi) Let U(a) be an open neighbourhood of a in T such that conditions (a) and (b) hold,

and let na be such integer as in condition (b). Then for all (m1, n1), (m2, n2) ∈ U(a)∩CZ we
have that

(m1, n1) · (na, na) = (m1 − n1 + na, na) = (m2 − n2 + na, na) = (m2, n2) · (na, na),

and hence the continuity of the semigroup operation in T implies that a ∈ LCZ .
(vii) Statements (i) and (iii) imply that a · (m,n) ∈ I and (m,n) · a ∈ I for all a ∈ I

and (m,n) ∈ CZ.
Fix arbitrary elements a, b ∈ I. We consider the following two cases:

1) a · b ∈ CZ and 2) a · b ∈ LCZ .

In case 1) we put a · b = (m,n) ∈ CZ. Then the continuity of the semigroup operation in T

implies that there exist open neighbourhoods U(a) and U(b) of a and b in T , respectively,
such that

U(a) · U(b) = {(m,n)}.

Since a and b are accumulation points of CZ in T , we conclude that there exist (ma, na) ∈
U(a) ∩ CZ and (mb, nb) ∈ U(b) ∩ CZ. Hence we have that

(ma, na) · b ∈ {(ma, na)} · U(b) ⊆ U(a) · U(b) = {(m,n)}

and
a · (mb, nb) ∈ U(a) · {(mb, nb)} ⊆ U(a) · U(b) = {(m,n)}

This implies that a, b ∈ LCZ , a contradiction.
Suppose case 2) holds and a · b = x ∈ LCZ . Then by statements (i) and (iii) we have that

there exist an open neighbourhood U(x) of x in T and an integer nx such that m1 − n1 =

m2 −n2, m1 6 nx and n1 6 nx for all (m1, n1), (m2, n2) ∈ U(x)∩CZ. Also, the continuity of
the semigroup operation in T implies that there exist open neighbourhoods U(a) and U(b)

of a and b in T , respectively, such that

U(a) · U(b) ⊆ U(x).

Since U(a)∩CZ 6= ∅ and U(b)∩CZ 6= ∅, we can find arbitrary elements (ma, na) ∈ U(a)∩CZ

and (mb, nb) ∈ U(b) ∩ CZ. Then by Proposition 2.1(vi) we have that

xa − ya +mb − nb = m1 − n1 and ma − na + xb − yb = m1 − n1

for all (xa, ya) ∈ U(a) ∩ CZ and (xb, yb) ∈ U(b) ∩ CZ. This implies that there exist integers
ka and kb such that

xa − ya = ka and xb − yb = kb

for all (xa, ya) ∈ U(a) ∩ CZ and (xb, yb) ∈ U(b) ∩ CZ. Then by statement (vi) we have that
a, b ∈ LCZ , a contradiction.
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The obtained contradictions imply that a · b ∈ I, and hence we get that the set I is an
ideal of T .

(viii) Proposition 2.1(vi) and assertion (vi) imply the following equalities:

{x ∈ T | x · (b, b) = (a, b)} = {x ∈ T | (a, a) · x = (a, b)} = {x ∈ T | (a, a) · x · (b, b) = (a, b)}.

Since by Corollary 3.1 every element (a, b) of the semigroup CZ is an isolated point in T , the
continuity of the semigroup operation in T implies that ↑(a, b) is a closed-and-open subset
in T .

(ix) Suppose that the set ↑(a, b)∩LCZ is non-empty. Assuming that the set ↑(a, b)∩LCZ

is non-singleton implies that there exist distinct x, y ∈ ↑(a, b)∩LCZ . Then the Hausdorffness
of T implies that there exist disjoint open neighbourhoods U(x) and U(y) of x and y in T ,
respectively. By the continuity of the semigroup operation in T we can find open neigh-
bourhoods V (1T ), V (x) and V (y) of 1T , x and y in T , respectively, such that the following
conditions hold:

V (x) ⊆ U(x), V (y) ⊆ U(y), V (1T ) · V (x) ⊆ U(x) and V (1T ) · V (y) ⊆ U(y).

By assertions (i)− (iii) we can find the integers n, n1, n2,m1 and m2 such that

(n, n) ∈ V (1T ), (n1, n2) ∈ V (x), (m1,m2) ∈ V (y), n1 − n2 = m1 −m2,

n > n1 and n > m1.

Then we have that

(n, n) · (n1, n2) = (n, n− n1 + n2) = (n, n−m1 +m2) = (n, n) · (m1,m2),

and hence (V (1T ) · V (x)) · (V (1T ) · V (y)) 6= ∅, a contradiction. The obtained contradiction
implies that x = y.

(x) Statement (vii) implies that T \ (I ∪ CZ) = LCZ . Let Z be the additive group of
integers. We define a map h : LCZ → Z as follows:

(x)h = n if and only if there exists a neighbourhood U(x) of x in T such that

a− b = n, for all (a, b) ∈ U(x) ∩ CZ,

where x ∈ LCZ . We observe that assertions (i)−(v) imply that the map h is well defined. Also,
Proposition 2.1 implies that h : LCZ → Z is a monomorphism, and hence LCZ is a submonoid
of Z. In the case when a maximal subgroup of LCZ is non-singleton Proposition 3.1 implies
that (LCZ) h is a cyclic subgroup of Z. This completes the proof of our assertion.

(xi) Assertion (v) implies that

↑CZ = {x ∈ T | there exists y ∈ CZ such that x · y ∈ CZ} =
⋃

(a,b)∈CZ

↑(a, b).

Then assertion (viii) implies that ↑CZ is an open subset in T and hence by assertion (vii)

we get that the ideal I is a closed subset of T .
Assertion (xii) follows from (x).
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4 On a closure of the semigroup CZ in a locally compact topological
inverse semigroup

For every non-negative integer k by kZ we denote a subgroup of the additive group of
integers Z which is generated by an element k ∈ Z. We observe if k = 0 then the group kZ
is trivial. Also, we denote G0 = Z and G1(k) = kZ for a positive integer k.

The following five examples illustrate distinct structures of a closure of the semigroup CZ

in a locally compact topological inverse semigroup.

Example 1. Let be S1 = G1(0)tCZ. Then G1(0) is a trivial group and we put {e1} = G1(0).
We extend the semigroup operation from CZ onto S1 as follows:

e1 · (a, b) = (a, b) · e1 = (a, b) ∈ CZ and e1 · e1 = e1,

i.e., S1 is the semigroup CZ with the adjoined unit e1. We fix an arbitrary decreasing sequence
{mi}i∈N of negative integers and for every positive integer n we put

Un(e1) = {e1} ∪ {(mi,mi) ∈ CZ | i > n} .

Then we determine a topology τ1 on S1 as follows:

1) all elements of the semigroup CZ are isolated points in (S1, τ1); and

2) the family B1(e1) = {Un(e1) | n ∈ N} is a base of the topology τ1 at the point e1 ∈
G1(0) ⊆ S1.

Then for every positive integer n we have that

Un(e1) · Un(e1) = Un(e1) and (Un(e1))
−1 = Un(e1).

Let (m,n) be an arbitrary element of the semigroup CZ. We fix a positive integer i(m,n) such
that mi(m,n)

6 m and mi(m,n)
6 n. Then we have that

Ui(m,n)
(e1) · {(m,n)} = {(m,n)} and {(m,n)} · Ui(m,n)

(e1) = {(m,n)}.

Hence we get that (S1, τ1) is a topological inverse semigroup. Obviously, (S1, τ1) is a Haus-
dorff locally compact space.

Example 2. Let k and n be any positive integers such that n ∈ {1, . . . , k} is a divisor of
k and we put k = n · s, where s is some positive integer. We put S2 = G1(k) t CZ. Later
an element of the group G1(k) = kZ will be denote by ki, where i ∈ Z. We extend the
semigroup operation from CZ onto S2 by the following way:

ki · (a, b) = (−ki+ a, b) ∈ CZ and (a, b) · ki = (a, b+ ki) ∈ CZ,

for arbitrary (a, b) ∈ CZ and ki ∈ G1(k). To see that the extended binary operation is
associative we need only check six possibilities, the other being evident.

Then for arbitrary ki1, ki2 ∈ G1(k) and (a, b), (c, d) ∈ CZ we have that:
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1) (ki1 · ki2) · (a, b) = (ki1 + ki2)(a, b) = (−ki1 − ki2 + a, b) = ki1 · (−ki2 + a, b)

= ki1 · (ki2 · (a, b));

2) (a, b)·(ki1·ki2) = (a, b)·(ki1+ki2) = (a, b+ki1+ki2) = (a, b+ki1)·ki2 = ((a, b) · ki1)·ki2;

3) (ki1 · (a, b)) · ki2 = (−ki1 + a, b) · ki2 = (−ki1 + a, b + ki2) = ki1 · (a, b + ki2)

= ki1 · ((a, b) · ki2);

4) (ki1 · (a, b)) · (c, d) = (−ki1 + a, b) · (c, d) =
{

(−ki1 + a− b+ c, d), if b 6 c;

(−ki1 + a, b− c+ d), if b > c

=

{
ki1 · (a− b+ c, d), if b 6 c;

ki1 · (a, b− c+ d), if b > c
= ki1 · ((a, b) · (c, d));

5) ((a, b) · (c, d)) · ki1 =
{

(a− b+ c, d) · ki1, if b 6 c;

(a, b− c+ d) · ki1, if b > c

=

{
(a− b+ c, d+ ki1), if b 6 c;

(a, b− c+ d+ ki1), if b > c
= (a, b) · (c, d+ ki1) = (a, b) · ((c, d) · ki1);

6) ((a, b) · ki1) · (c, d) = (a, b+ ki1) · (c, d) =
{

(a− b− ki1 + c, d), if b+ ki1 6 c;

(a, b+ ik1 − c+ d), if b+ ki1 > c

=

{
(a− b− ki1 + c, d), if b 6 −ki1 + c;

(a, b+ ki1 − c+ d), if b > −ki1 + c
= (a, b)·(−ki1+c, d) = (a, b)·(ki1 · (c, d)).

Also simple verifications show that S2 is an inverse semigroup.
Let ki be an arbitrary element of the group G1(k). For every positive integer j we denote

Un
j (ki) = {ki} ∪ {(−nq,−nq + ki) | q > j, q ∈ N} .

We determine a topology τ2 on S2 as follows:

1) all elements of the semigroup CZ are isolated points in (S2, τ2); and

2) the family B2(ki) =
{
Un
j (ki) | j ∈ N

}
is a base of the topology τ2 at the point ki ∈

G1(k) ⊆ S2.

Then for every positive integer j we have that

Un
j (ki1) · Un

j−i1s
(ki2) ⊆ Un

j (ki1 + ki2) and
(
Un
j (ki1)

)−1
= Un

j (−ki1),

for ki1, ki2 ∈ G1(k).
Let (a, b) be an arbitrary element of the semigroup CZ and ki ∈ G1(k). Then we have

that

Un
j (ki) · {(a, b)} = {(a− ki, b)} and {(a, b)} · Un

j (ki) = {(a, b+ ki)},

for every positive integer j such that nj > max{−b; ki− a}.
Therefore (S2, τ2) is a topological inverse semigroup, and moreover the topological space

(S2, τ2) is Hausdorff and locally compact.
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Example 3. We put S3 = CZtG0 and extend the semigroup operation from the semigroup
CZ onto S3 by the following way:

(a, b) · n = n · (a, b) = n+ b− a ∈ G0,

for all (a, b) ∈ CZ and n ∈ G0. To see that the extended binary operation is associative we
need only check two possibilities, the other being evident.

Then for arbitrary m,n ∈ G0 and (a, b), (c, d) ∈ CZ we have that:

1) (n · (a, b)) ·(c, d) = (n+b−a) ·(c, d) = n+b−a+d−c =

{
n · (a− b+ c, d), if b 6 c;

n · (a, b− c+ d), if b > c
= n · ((a, b) · (c, d));

2) (m · n) · (a, b) = m+ n+ b− a = m · (n+ b− a) = m · (n · (a, b)).

This completes the proof of the associativity of such defined binary operation on S3. Also,
we observe that S3 with such defined semigroup operation is an inverse semigroup.

For every positive integer n and every element k ∈ G0 we put:

Un(k) =

{
{k} ∪ {(a, a+ k) | a = n, n+ 1, n+ 2, . . .} , if k > 0;

{k} ∪ {(a− k, a) | a = n, n+ 1, n+ 2, . . .} , if k 6 0.

We determine a topology τ3 on S3 as follows:

1) all elements of the semigroup CZ are isolated points in (S3, τ3); and

2) the family B3(k)={Un(k) |n ∈ N} is a base of the topology τ3 at the point k ∈ G0 ⊆ S3.

Then for all k1, k2 ∈ G0 we have that

U2n(k1) · U2n(k2) ⊆ Un(k1 + k2),

for every positive integer n > max {|k1| , |k2|}, and

(Ui(k1))
−1 = Ui(−k1),

for every positive integer i. Also, for arbitrary (a, b) ∈ CZ and k ∈ G0 we have that

(a, b) · U2n(k) ⊆ Un(k + b− a) and U2n(k) · (a, b) ⊆ Un(k + b− a),

for every positive integer n > max {|a| , |b| , |k|}.
This completes the proof that (S3, τ3) is a topological inverse semigroup. Obviously,

(S3, τ3) is a Hausdorff locally compact space.

Example 4. Let be S4 = G1(0) t S3, where the group G1(0) and the semigroup S3 are
defined in Example 1 and Example 3, respectively. We extend the semigroup operation from
S3 onto S4 as follows:

e1 · x = x · e1 = x ∈ CZ and e1 · e1 = e1,
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i.e., S4 is the semigroup S3 with the adjoined unit e1.
Let τ4 be a topology on S4 which is generated by the family τ1 ∪ τ3 (see Examples 1 and

3). Then for every element k0 ∈ G0 and every positive integers n1 and n0 we have that the
following inclusions hold:

Un1(e1) · Un0(k0) ⊆ Un0(k0) and Un0(k0) · Un1(e1) ⊆ Un0(k0),

where Un1(e1) ∈ B1(e1) and Un0(k0) ∈ B3(k0) (see Examples 1 and 3). These inclusions and
Examples 1 and 3 imply that (S4, τ4) is a Hausdorff topological inverse semigroup. Obviously,
(S4, τ4) is a locally compact space.

Example 5. Let k and n be such positive integers as in Example 2. We put S5 = G1(k) t
CZtG0 and extend semigroup operation from S2 and S3 onto S5 as follows. Later we denote
elements of groups G1(K) and G0 by (ki)1 and (n)0, respectively. We put

(ki)1 · (n)0 = (n)0 · (ki)1 = (ki+ n)0 ∈ G0,

for all (ki)1 ∈ G1(k) and (n)0 ∈ G0. To see that the extended binary operation is associa-
tive we need only check twelve possibilities, the other either are evident or are proved in
Examples 2 and 3.

Then for arbitrary (ki1)
1, (ki2)

1 ∈ G1(k), (n1)
0, (n2)

0 ∈ G0 and (a, b) ∈ CZ we have that:

1) ((n1)
0 · (n2)

0) · (ki1)1 = (n1 + n2)
0 · (ki1)1 = (n1 + n2 + ki1)

0 = (n1)
0 · (n2 + ki1)

0

= (n1)
0 · ((n2)

0 · (ki1)1);

2) ((n1)
0 · (ki1)1) · (n2)

0 = (n1 + ki1)
0 · (n2)

0 = (n1 + ki1 + n2)
0 = (n1)

0 · (ki1 + n2)
0

= (n1)
0 · ((ki1)1 · (n2)

0);

3) ((n1)
0 · (ki1)1) · (ki2)1 = (n1 + ki1)

0 · (ki2)1 = (n1 + ki1 + ki2)
0 = (n1)

0 · (ki1 + ki2)
1

= (n1)
0 · ((ki1)1 · (ki2)1);

4) ((n1)
0 · (ki1)1) · (a, b) = (n1 + ki1)

0 · (a, b) = (n1 + ki1 + b− a)0 = (n1)
0 · (−ki1 + a, b)

= (n1)
0 · ((ki1)1 · (a, b));

5) ((n1)
0 · (a, b)) · (ki1)1 = (n1 + b− a)0 · (ki1)1 = (n1 + b− a+ ki1)

0 = (n1)
0 · (a, b+ ki1)

= (n1)
0 · ((a, b) · (ki1)1);

6) ((ki1)
1 · (n1)

0) · (n2)
0 = (ki1 + n1)

0 · (n2)
0 = (ki1 + n1 + n2)

0 = (ki1)
1 · (n1 + n2)

0

= (ki1)
1 · ((n1)

0 · (n2)
0);

7) ((ki1)
1 · (n1)

0) · (ki2)1 = (ki1 + n1)
0 · (ki2)1 = (ki1 + n1 + ki2)

0 = (ki1)
1 · (n1 + ki2)

0

= (ki1)
1 · ((n1)

0 · (ki2)1);

8) ((ki1)
1 · (n1)

0) · (a, b) = (ki1 + n1)
0 · (a, b) = (ki1 + n1 + b− a)0 = (ki1)

1 · (n1 + b− a)0

= (ki1)
1 · ((n1)

0 · (a, b));

9) ((ki1)
1 · (ki2)1) · (n1)

0 = (ki1 + ki2)
1 · (n1)

0 = (ki1 + ki2 + n1)
0 = (ki1)

1 · (ki2 + n1)
0

= (ki1)
1 · ((ki2)1 · (n1)

0);
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10) ((ki1)
1 · (a, b)) · (n1)

0 = (−ki1 + a, b) · (n1)
0 = (ki1 + b− a+ n1)

0

= (ki1)
1 · (b− a+ n1)

0 = (ki1)
1 · ((a, b) · (n1)

0);

11) ((a, b) · (n1)
0) · (ki1)1 = (b− a+ n1)

0 · (ki1)1 = (b− a+ n1 + ki1)
0 = (a, b) · (n1 + ki1)

0

= (a, b) · ((n1)
0 · (ki1)1);

12) ((a, b) · (ki1)1) · (n1)
0 = (a, b+ ki1)

0 · (n1)
0 = (b+ ki1 − a+ n1)

0 = (a, b) · (ki1 + n1)
0

= (a, b) · ((ki1)1 · (n1)
0).

This completes the proof of the associativity of such defined binary operation on S5.
Also, we observe that S5 with such defined semigroup operation is an inverse semigroup.

Let τ5 be a topology on S5 which is generated by the family τ2 ∪ τ3 (see Examples 2 and
3). Also Examples 2 and 3 imply that it is sufficient to show that the semigroup operation
in S5 is continuous in cases (ki)1 · (n)0 and (n)0 · (ki)1, where (n)0 ∈ G0 and (ki)1 ∈ G1(k).
Then for every positive integer p > max {|ki|, |n|} we have that

U2p

(
(ki)1

)
·U2p

(
(n)0

)
⊆ Up

(
(ki+ n)0

)
and U2p

(
(n)0

)
·U2p

(
(ki)1

)
⊆ Up

(
(ki+ n)0

)
.

This completes the proof that (S5, τ5) is a topological inverse semigroup. Obviously, (S5, τ5)

is a locally compact space.

Theorem 2. Let T be a Hausdorff topological inverse semigroup. If T contains CZ as a
dense subsemigroup and I = T \ ↑CZ 6= ∅, then the following assertions hold:

(i) E(T ) is a countable linearly ordered semilattice;

(ii) E(T ) ∩ (T \ ↑CZ) is a singleton set;

(iii) T \ ↑CZ is a subgroup in T .

Proof. (i) By Proposition II.3 from [8] we have that clT (E(CZ)) = E(T ) and since the
closure of a linearly ordered subsemilattice in a topological semilattice is a linearly ordered
subsemilattice too (see [12, Lemma 1]) we get that E(T ) is a linearly ordered semilattice.
Then the semilattice operation in E(T ) implies that the sets E(T )\

⋃
e∈E(CZ)

↓e and E(T )\
⋃

e∈E(CZ)

↑e

are either singleton or empty. This completes the proof of our assertion.
Assertion (ii) follows from assertion (i).
(iii) Since T is an inverse semigroup and e is a minimal idempotent in E(T ) we conclude

that the H -class He which contains e coincides with the ideal I = T \ ↑CZ. Indeed, if there
exist x ∈ I and an H -class Hx ⊆ I in T such that x ∈ Hx 6= He, then since T is an inverse
semigroup we have that there exists an idempotent e ∈ T such that either xx−1 = e ∈ ↑CZ

or x−1x = e ∈ ↑CZ. If xx−1 = e ∈ ↑CZ, then we have that x = xx−1x = ex ∈ eT , and since
T is an inverse semigroup Theorem 1.17 from [7] implies e ∈ xT , a contradiction. Similar
arguments show that x−1x 6= e ∈ ↑CZ. Hence assertion (ii) implies that xx−1 = x−1x = e

and hence x ∈ Hx = He.
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The following theorem describes the structure of a closure of the semigroup CZ in a locally
compact topological inverse semigroup T , i.e., it gives the description of the non-empty ideal
I = T \ ↑CZ in the remainder of CZ in T .

Theorem 3. Let T be a Hausdorff locally compact topological inverse semigroup. If T

contains CZ as a dense subsemigroup and I = T \ ↑CZ 6= ∅, then the following assertions
hold:

(i) ↓en is a compact subsemilattice in E(T ) for every idempotent en = (n, n) ∈ CZ, n ∈ Z;

(ii) T \ ↑CZ is isomorphic to the discrete additive group of integers;

(iii) if e is a unit of T \↑CZ, then the map h : CZ → T \↑CZ which is defined by the formula
((a, b))h = (a, b) · e is the natural homomorphism generated by the minimal group
congruence Cmg on the semigroup CZ;

(iv) the subsemigroup S = CZ ∪ I is topologically isomorphic to the topological inverse
semigroup (S3, τ3) from Example 3.

Proof. (i) We show that ↓e0 is a compact subset in E(T ) for e0 = (0, 0). By assertion
(ii) of Theorem 2 we get that the set E(T ) ∩ (T \ ↑CZ) is singleton and we put {e} =

E(T )∩ (T \ ↑CZ). Then e is a smallest idempotent in E(T ). By Theorem 1.5 from [6, Vol. 1]
we have that E(T ) is a closed subset in T , and hence by Theorem 3.3.9 from [9] we get that
E(T ) is a locally compact space. Suppose the contrary: ↓e0 is not a compact subset in E(T ).
Since Corollary 3.1 implies that every element of the semigroup CZ is an isolated point in
T and hence so it is in E(T ), we get that there exists an open neighbourhood U(e) of e in
E(T ) such that the set ↓e0 \U(e) is an infinite discrete subspace of E(T ), U(e) ⊆ E(T )\↑e0
and clE(T )(U(e)) = U(e) is a compact subset of E(T ). Then for every positive integer i there
exists an integer j > i such that (j, j) /∈ U(e) and (j+1, j+1) ∈ U(e). Then the semigroup
operation in CZ implies that by induction we can construct an infinite subset M ⊆ ↓e0 \ {e}
of E(T ) such that M ⊆ U(e) \ {e} and {(0, 1)} · M · {(1, 0)} ⊆ ↓e0 \ U(e). Since the set
U(e) is compact and the set M ⊆ U(e) \ {e} contains only isolated points from E(CZ), we
conclude that e ∈ clT (M). Since ↓e0 \ U(e) is a closed subset of E(T ) we have that the
continuity of the semigroup operation in T and Proposition 1.4.1 from [9] imply that

e ∈ {(0, 1)} · clT (M) · {(1, 0)} ⊆ clT ({(0, 1)} ·M · {(1, 0)}) ⊆ ↓e0 \ U(e),

which contradicts e ∈ U(e). The obtained contradiction implies that the set ↓e0 \ U(e)

is finite, and hence the set ↓e0 is compact. Since for every integer n the set ↓en \ ↓e0 is
either finite or empty and en is an isolated point in E(T ) we conclude that ↓en is a compact
subsemilattice of E(T ).

(ii) By assertion (i) we have that e is an accumulation point of the subsemigroup CN[0]

in T . Since by Theorem 3.3.9 from [9] a closed subset of a locally compact space is a locally
compact subspace too, and by Proposition 2.1(viii) the semigroup CN[0] is isomorphic to
the bicyclic semigroup, Proposition V.3 from [8] implies that the subset clT (CN[0]) \ CN[0]
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is a non-singleton subgroup of T . By Corollary 3.1 we get that CZ is an open discrete
subsemigroup of T and hence we get that clT (CN[0]) \ CN[0] ⊆ clT (CZ) \ CZ.

By assertion (iii) of Theorem 2 we have that I = T \ ↑CZ is a non-singleton subgroup in
T . Since T is a topological inverse semigroup we get that I is a topological group. Then by
Proposition 3.2(xi) we have that I is a closed subset of T and hence by Theorem 3.3.9 from
[9] we get that I is a locally compact topological group.

Later we show that (a, b) · e = e · (a, b) for every (a, b) ∈ CZ. Suppose the contrary:
there exists (a, b) ∈ CZ such that (a, b) · e 6= e · (a, b). Without loss of generality we can
assume that a 6 b in Z. Then the Hausdorffness of the space T implies that there exist open
neighbourhoods U((a, b) ·e) and U(e · (a, b)) of the points (a, b) ·e and e · (a, b) in T such that
U((a, b) · e)∩U(e · (a, b)) = ∅. Then the continuity of the semigroup operation of T implies
that there exists an open neighbourhood V (e) of e in T such that the following conditions
hold:

{(a, b)} · V (e) ⊆ U((a, b) · e) and V (e) · {(a, b)} ⊆ U(e · (a, b)).
By assertion (i) we get that without loss of generality we can assume that V (e) ∩ E(T )

is a compact subset in T and there exists a positive integer n0 > max{a, b} such that
(n, n) ∈ V (e) ∩ E(T ) for all integers n > n0. Then for n = 2n0 − a and k = 2n0 − b we get
that (n, n), (k, k) ∈ V (e) ∩ E(T ). But we have

(a, b) · (n, n) = (a, b) · (2n0 − a, 2n0 − a) = (2n0 − a− b+ a, 2n0 − a) = (2n0 − b, 2n0 − a)

and

(k, k) · (a, b) = (2n0 − b, 2n0 − b) · (a, b) = (2n0 − b, 2n0 − b− a+ b) = (2n0 − b, 2n0 − a),

which contradicts U((a, b) · e) ∩ U(e · (a, b)) = ∅. The obtained contradiction implies that
(a, b) · e = e · (a, b) for every (a, b) ∈ CZ.

Next we show that x · e = e · x for every x ∈ T \ CZ. Suppose contrary: there exists
x ∈ T \ CZ such that x · e 6= e · x. Then the Hausdorffness of the space T implies that there
exist open neighbourhoods U(x · e) and U(e · x) of the points x · e and e · x in T such that
U(x · e) ∩ U(e · x) = ∅. The continuity of the semigroup operation of T implies that there
exists an open neighbourhood V (x) of x in T such that the following conditions hold:

V (x) · {e} ⊆ U(x · e) and {e} · V (x) ⊆ U(e · x).

Since CZ is a dense subsemigroup of T we conclude that there exists (a, b) ∈ CZ such that
(a, b) ∈ V (x). Then we get that (a, b) ·e = e · (a, b), which contradicts U(x ·e)∩U(e ·x) = ∅.
The obtained contradiction implies that x · e = e · x for every x ∈ T .

We define a map h : T → I by the formula (x)h = x · e. Since x · e = e · x for every x ∈ T

we get that h is a homomorphism. Since CZ is a dense subsemigroup of T , Proposition 2.2
and assertion (iii) of Theorem 2 imply that the topological group I contains a dense cyclic
subgroup. Since I is a locally compact topological group, Pontryagin-Weil Theorem (see [15,
p. 71, Theorem 19]) implies that either I is compact or I is discrete. If I is compact, then
by Proposition 3.2(viii) we get that

S = T \
⋃

(a,b)/∈CN[0]

↑(a, b)
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is a closed subset in T . Then by Theorem 3.3.9 from [9] S is a locally compact space.
Obviously, S = CN[0] ∪ I. Since I is a locally compact ideal in T , Proposition 2.1(viii)
and Proposition II.4 from [8] imply that the Rees quotient semigroup S/I with the quotient
topology is locally compact topological inverse semigroup which is isomorphic to the bicyclic
semigroup with an adjoined zero. This contradicts Proposition V.3 from [8]. The obtained
contradiction implies that the group I is discrete and hence I is a discrete additive group of
integers.

(iii) Let (a, b), (c, d) ∈ CZ such that (a, b)Cmg(c, d). Then there exists an idempotent
(n, n) ∈ CZ such that (a, b) · (n, n) = (c, d) · (n, n). Since (i, i) · e = e for every idempotent
(i, i) ∈ CZ we get that ((a, b))h = ((c, d))h.

Let (a, b), (c, d) ∈ CZ such that ((a, b))h = ((c, d))h. Suppose the contrary: (a, b)·(n, n) 6=
(c, d) · (n, n) for any idempotent (n, n) ∈ CZ. If (a, b) · (n1, n1) = (c, d) · (n2, n2) for some
idempotents (n1, n1), (n2, n2) ∈ CZ, then we have that

(a, b) · (n1, n1) · (n2, n2) = (a, b) · (n1, n1) · (n1, n1) · (n2, n2)

= (c, d) · (n2, n2) · (n1, n1) · (n2, n2)

= (c, d) · (n1, n1) · (n2, n2).

Therefore we get that (a, b) · (n1, n1) 6= (c, d) · (n2, n2) for all idempotents (n1, n1), (n2, n2) ∈
CZ. Then Proposition 2.1(vi) implies that b− a 6= d− c, and hence by the proof of Propo-
sition 2.2 we get that the congruence on the semigroup CZ which is generated by the ho-
momorphism h distincts from the minimal group congruence Cmg on CZ. Then the ideal I
is not isomorphic to the additive group of integers Z and hence by Proposition 2.2 we have
that the ideal I contains a finite cyclic group. This contradicts assertion (ii). The obtained
contradiction implies our assertion.

(iv) Assertions (ii) and (iii) imply that the subsemigroup S = CZ∪I of T is algebraically
isomorphic to the inverse semigroup S3 from Example 3. We identify the group I with G0

and put e = 0 ∈ G0.
By τ we denote the topology of the topological inverse semigroup T . Since G0 is a discrete

subgroup of T , assertion (i) implies that there exists a compact open neighbourhood U(0)

of 0 in T with the following property:

U(0) ⊆ E(T ) and there is a positive integer n0 such that n0 = max{(n, n) ∈ E(CZ) |
(n, n) ∈ U(0)} and (i, i) ∈ U(0) for all integers i > n0.

Hence, we get that B3(0) = {Un(0) | n ∈ N} is a base of the topology of the space T at
the point 0 ∈ G0 ⊆ T , where Un(0) = {0} ∪ {(n+ i, n+ i) | i ∈ N}.

We fix an arbitrary element k ∈ G0. Without loss of generality we can assume that
k > 0. Then k−1 = −k ∈ Z = G0. Since G0 is a discrete subgroup of T , the continuity of
the homomorphism h : T → G0 : x 7→ x · e = x · 0 implies that (k)h−1 is an open subset in
T . We observe that, since the homomorphism h generates the minimal group congruence on
CZ (see assertion (iii)) we get that (k)h−1 ∩ CZ = {(a, b) ∈ CZ | b− a = k}. Also, since

↑(a, b) = {(x, y) ∈ CZ | (x, y) · (b, b) = (a, b)},
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for every (a, b) ∈ CZ, Proposition 3.2(viii) implies that ↑(a, b) is a closed-and-open subset in
T for every (a, b) ∈ CZ. Hence we get that {k} ∪ {(i, i+ k) ∈ CZ | i = 1, 2, 3, . . .} is an open
subset in T .

We fix an arbitrary positive integer i. Since (i + k, i) · k = 0 ∈ G0, the continuity of
the semigroup operation in T implies that for every Ui(0) ∈ B3(0) there exists an open
neighbourhood

V (k) ⊆ {k} ∪ {(i, i+ k) ∈ CZ | i = 1, 2, 3, . . .}

of k in T such that (i + k, i) · V (k) ⊆ Ui(0). Then the semigroup operation of CZ implies
that V (k) ⊆ Ui(k) for Ui(k) ∈ B3(k).

We observe that for every k ∈ G0 and for every positive integer i we have that

0 · (i, k + i) = k and Ui(0) · {(i, i+ k)} = Ui(k),

where Ui(0) ∈ B3(0) and Ui(k) ∈ B3(k). Then the continuity of the semigroup operation
in T implies that for every open neighbourhood W (k) of k in T there exists Ui(0) ∈ B3(0)

such that
Ui(0) · {(i, i+ k)} = Ui(k) ⊆ W (k).

This implies that the bases of topologies τ and τ3 at the point k ∈ T coincide.
In the case when k < 0 the proof is similar. This completes the proof of our assertion.

Theorem 3 implies the following:

Corollary 4.1. Let T be a Hausdorff locally compact topological inverse semigroup. If T
contains CZ as a dense subsemigroup such that I = T \ ↑CZ 6= ∅ and ↑CZ = CZ, then T is
topologically isomorphic to the topological inverse semigroup (S3, τ3) from Example 3.

Theorem 4. Let (T, τ) be a Hausdorff locally compact topological inverse monoid with
unit 1T . If CZ is a dense subsemigroup of T such that ↑CZ = T and the group of units of T
is singleton, then there exists a decreasing sequence of negative integers {mi}i∈N such that
(T, τ) is topologically isomorphic to the semigroup (S1, τ1) from Example 1.

Proof. By the assumption of the theorem we have that T \ CZ = {1T}. Then Lemma 3.2(i)
implies that there exists a base B(1T ) of the topology τ at the unit 1T such that U(1T ) ⊆
E(CZ) for any U(1T ) ∈ B(1T ). Also statements (c) and (d) of Theorem 1.7 from [6, Vol. 1]
imply that we can assume that (n, n) ∈ U(1T ) if and only if n is a negative integer. Since
by Corollary 3.1 every element of the semigroup CZ is an isolated point of T , without loss of
generality we can assume that all elements of the base B(1T ) are closed-and-open subsets of
T . Also, the local compactness of T implies that without loss of generality we can assume
that the base B(1T ) consists of compact subsets, and Corollary 3.3.6 from [9] implies that
the base B(1T ) is countable.

We suppose that B(1T ) = {Un(1T ) | n = 1, 2, 3, . . .}. We put

W1(1T ) = U1(1T ) and Wi(1T ) = Wi−1(1T ) ∩ Ui(1T ),

for all i = 2, 3, 4, . . .. We observe that B̃(1T ) = {Wn(1T ) | n = 1, 2, 3, . . .} is a base of the
topology τ at the unit 1T of T such that Wn+1(1T ) $ Wn(1T ) for every positive integer
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n. Then the compactness of Ui(1T ), i = 1, 2, 3, . . ., and the discreteness of the space CZ

imply that the family B̃(1T ) consists of compact-and-open subsets of T . Let {mi}i∈N be a

decreasing sequence of negative integers such that
∞⋃
i=1

{(mi,mi)} = W1(1T ) \ {1T}. We put

Vn = {1T} ∪ {(mi,mi) ∈ CZ | i > n} for every positive integer n. Since every element of the
family B̃(1T ) is a compact subset of T , Corollary 3.1 implies that the family

B(1T ) = {Vn | n = 1, 2, 3, . . .}

is a base of the topology τ at 1T of T and this completes the proof of our theorem.

Theorems 3 and 4 imply the following:

Corollary 4.2. Let (T, τ) be a Hausdorff locally compact topological inverse semigroup. If
CZ is a dense subsemigroup of T such that the group of units of T is singleton, then there
exists a decreasing sequence of negative integers {mi}i∈N such that (T, τ) is topologically
isomorphic either to the semigroup (S1, τ1) from Example 1 or to the semigroup (S4, τ4)

from Example 4.

Theorem 5. Let (T, τ) be a Hausdorff locally compact topological inverse monoid with unit
1T . Suppose that CZ is a dense subsemigroup of T such that the following conditions hold:

(i) ↑CZ = T ;

(ii) the group of units H(1T ) of T is non-singleton; and

(iii) there exists an integer j such that K = {1T}∪{(i, i) ∈ CZ | i > j} is a compact subset
of T .

Then there exists a decreasing sequence of negative integers {mi}i∈N such that mi+1 = mi−1

for every positive integer i and (T, τ) is topologically isomorphic to the semigroup (S2, τ2)

for n = 1 from Example 2.

Proof. As in the proof of Theorem 4 we construct a decreasing sequence of negative integers
{mi}i∈N such that the family

B(1T ) = {Ui(1T ) | i = 1, 2, 3, . . .}

determines a base of the topology τ at the point 1T of T , where

Uj(1T ) = {1T} ∪ {(mi,mi) ∈ CZ | i > j} .

The compactness of the set K implies that we can construct a sequence of negative integers
{mi}i∈N such that mi+1 = mi − 1 for every positive integer i.

Then for every element x of the group of units H(1T ) left and right translations λx : T →
T : s 7→ x · s and ρx : T → T : s 7→ s · x are homeomorphisms of the topological space T (see
[6, Vol. 1, P. 19]), and hence the following families

Bl(x) = {x · Ui(1T ) | Ui(1T ) ∈ B(1T )}
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and

Br(x) = {Ui(1T ) · x | Ui(1T ) ∈ B(1T )}

are bases of the topology τ at the point 1T of T . Also, we observe that the family

B(x) = {U ∩ V | U ∈ Bl(x) and V ∈ Br(x)}

is a base of the topology τ at the point 1T of T .
Then Lemma 3.2 and Proposition 3.2 imply that the group of units H(1T ) of T is topo-

logically isomorphic to the discrete additive group of integers Z+. Let g be a generator of
Z+. Then by Lemma 3.2(iii) there exist an open neighbourhood U(g) of the point g in T

and an integer k such that a − b = k for all (a, b) ∈ U(g) ∩ CZ. Without loss of generality
we can assume that g is a positive integer and k < 0. Then we have that

g · Ui(1T ) = {(mi + k,mi) | (mi,mi) ∈ Ui(1T )} ∪ {g} (3)

and

Ui(1T ) · g = {(mi,mi − k) | (mi,mi) ∈ Ui(1T )} ∪ {g} (4)

We shall show that equality (4) holds. Let be (mi,mi) ∈ Ui(1T ). Then we get

((mi,mi) · g)·((mi,mi) · g)−1 = (mi,mi)·g·g−1·(mi,mi)
−1 = (mi,mi)·1T ·(mi,mi) = (mi,mi).

Since (mi,mi) ·g ∈ CZ and CZ is an inverse semigroup we conclude that (mi,mi) ·g = (mi, a)

for some integer a, and by Lemma 3.2(vi) we have that (mi,mi) · g = (mi,mi − k). This
completes the proof of equality (4). The proof of equality (3) is similar. Then Lemma 3.2(vi),
equalities (3) and (4) imply that T is topologically isomorphic to the semigroup (S2, τ2) for
n = 1 from Example 2. This completes the proof of the theorem.

Theorems 3 and 5 imply the following:

Corollary 4.3. Let (T, τ) be a Hausdorff locally compact topological inverse monoid with
unit 1T . Suppose that CZ is a dense subsemigroup of T such that the following conditions
hold:

(i) the group of units H(1T ) of T is non-singleton; and

(ii) there exists an integer j such that K = {1T}∪{(i, i) ∈ CZ | i > j} is a compact subset
of T .

Then there exists a decreasing sequence of negative integers {mi}i∈N such that mi+1 = mi−1

for every positive integer i and (T, τ) is topologically isomorphic either to the semigroup
(S2, τ2) from Example 2 or to the semigroup (S5, τ5) from Example 5.
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Фiгель I.Р., Гутiк О.В. Про замикання розширеної бiциклiчної напiвгрупи // Карпатськi
математичнi публiкацiї. — 2011. — Т.3, №2. — C. 131–157.

У статтi вивчається напiвгрупа CZ, яка є узагальненням бiциклiчної напiвгрупи. Опи-
сано основнi алгебраїчнi властивостi напiвгрупи CZ, зокрема доведено, що кожна нетри-
вiальна конгруенцiя C на напiвгрупi CZ є груповою, i бiльше того, фактор-напiвгрупа
CZ/C iзоморфна циклiчнiй групi. Показано, що на напiвгрупi CZ не iснує вiдмiнних вiд
дискретної гаусдорфових топологiй τ таких, що (CZ, τ) — напiвтопологiчна напiвгрупа.
Також вивчається замикання напiвгрупи CZ у топологiчнiй iнверснiй напiвгрупi T . По-
казано, що непорожнiй нарiст напiвгрупи CZ у напiвгрупi T складається з групи одиниць
H(1T ) напiвгрупи T та двобiчного iдеалу I в T , якщо H(1T ) 6= ∅ та I 6= ∅. У випадку,
коли T є локально компактною топологiчною iнверсною напiвгрупою та I 6= ∅, доведено,
що iдеал I топологiчно iзоморфний дискретнiй адитивнiй групi цiлих чисел та описано
топологiю на пiднапiвгрупi CZ ∪ I. Також доведено, якщо група одиниць H(1T ) в T є
непорожньою, то або H(1T ) є одноточковою множиною, або група H(1T ) топологiчно
iзоморфна дискретнiй адитивнiй групi цiлих чисел.

Фигель И.Р., Гутик О.В. О замыкании расширенной бициклической полугруппы // Кар-
патские математические публикации. — 2011. — Т.3, №2. — C. 131–157.

В работе изучается полугруппа CZ, которая является обобщением бициклической полу-
группы. Описаны основные алгебраические свойства полугруппы CZ, в частности дока-
зано, что каждая нетривиальная конгруэнция C на CZ является групповой, и более того,
фактор-полугруппа CZ/C изоморфна циклической группе. Показано, что на полугруппе
CZ не сущетвует отличных от дискретной топологий τ таких, что (CZ, τ) — хаусдорфова
полутопологическая полугруппа. Также изучается замыкание полугруппы CZ в топо-
логической инверсной полугруппе T . Показано, что непустой нарост полугруппы CZ в
полугруппе T состоит из группы единиц H(1T ) полугруппы T и идеала I в T , когда
H(1T ) 6= ∅ и I 6= ∅. В случае, когда T является локально компактной топологической
инверсной полугруппой и I 6= ∅, доказано, что идеал I топологически изоморфен дискрет-
ной аддитивной группе целых чисел, и описано топологию на подполугруппе CZ∪I. Также
показано, если группа единиц H(1T ) в T непуста, то или H(1T ) является одноточечным
множеством, или группа H(1T ) топологически изоморфна дискретной аддитивной группе
целых чисел.


