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In the paper we study the semigroup %z which is a generalization of the bicyclic semigroup.
We describe main algebraic properties of the semigroup %7 and prove that every non-trivial
congruence € on the semigroup %7 is a group congruence, and moreover the quotient semigroup
%7/C€ is isomorphic to a cyclic group. Also we show that the semigroup %7 as a Hausdorff
semitopological semigroup admits only the discrete topology. Next we study the closure cly (47)
of the semigroup %7 in a topological semigroup 7. We show that the non-empty remainder of
%z in a topological inverse semigroup 7' consists of a group of units H (1) of T and a two-sided
ideal I of T in the case when H(17) # & and I # &. In the case when T is a locally compact
topological inverse semigroup and I # & we prove that an ideal I is topologically isomorphic to
the discrete additive group of integers and describe the topology on the subsemigroup %7z U I.
Also we show that if the group of units H(17) of the semigroup 7' is non-empty, then H(17) is
either singleton or H(17) is topologically isomorphic to the discrete additive group of integers.

1 INTRODUCTION AND PRELIMINARIES

In this paper all topological spaces are assumed to be Hausdorff. We shall follow the
terminology of |6, 7, 9, 10]. If Y is a subspace of a topological space X and A CY, then by
cly (A) we shall denote the topological closure of A in Y. We denote by N the set of positive
integers.

An algebraic semigroup S is called inverse if for any element x € S there exists the
unique 2! € S such that 227 'z = 2 and 27 'zz~! = 27!, The element 2! is called the
mverse of v € S. If S is an inverse semigroup, then the function inv: S — S which assigns
to every element x of S its inverse element 27! is called an inversion.

A congruence € on a semigroup S is called non-trivial if € is distinct from universal and
identity congruence on S, and group if the quotient semigroup S/€ is a group.

If S is a semigroup, then we shall denote the subset of idempotents in S by E(S). If
S is an inverse semigroup, then E(S) is closed under multiplication and we shall refer to

E(S) a band (or the band of S). If the band E(S) is a non-empty subset of S, then the
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semigroup operation on S determines the following partial order < on E(S): e < f if and
only if ef = fe = e. This order is called the natural partial order on E(S). A semilattice
is a commutative semigroup of idempotents. A semilattice E is called linearly ordered or a
chain if its natural order is a linear order.

Let E be a semilattice and e € E. We denote le ={f € F| f <e} and fe={f € F |
e< f}.

If S is a semigroup, then we shall denote by Z, ., ¥ and ¢ the Green relations on S
(see [7]):

ab if and only if aS' = bS*;

a.Zb if and only if S'a = S'b;
a_Zb if and only if StaSt = S'bS*;
D=L oKR=XH0L;

H =L NAK.

A semigroup S is called simple if S does not contain proper two-sided ideals and bisimple
if S has only one Z-class.

A semitopological (resp. topological) semigroup is a Hausdorff topological space together
with a separately (resp. jointly) continuous semigroup operation [6, 18]. An inverse topo-
logical semigroup with the continuous inversion is called a topological inverse semigroup. A
topology 7 on a (inverse) semigroup S which turns S to be a topological (inverse) semigroup
is called a (inverse) semigroup topology on S.

An element s of a topological semigroup S is called topologically periodic if for every
open neighbourhood U(s) of s in S there exists a positive integer n > 2 such that s™ € U(s).
Obviously, if there exists a subgroup H(e) with a neutral element e in S, then s € H(e) is
topologically periodic if and only if for every open neighbourhood U(e) of € in S there exists
a positive integer n such that s™ € Ufe).

The bicyclic semigroup € (p, q) is the semigroup with the identity 1 generated by elements
p and ¢ subject only to the condition pg = 1. The distinct elements of & (p, ¢) are exhibited
in the following useful array:

I p p D

2 3
¢ qp qp* qp
¢ ¢p ¢ P
¢ ¢p ¢ ¢Pp?

The bicyclic semigroup is bisimple and every one of its congruences is either trivial or a
group congruence. Moreover, every non-annihilating homomorphism A of the bicyclic semi-
group is either an isomorphism or the image of € (p,q) under h is a cyclic group (see |7,
Corollary 1.32]). The bicyclic semigroup plays an important role in algebraic theory of semi-
groups and in the theory of topological semigroups. For example the well-known Andersen’s
result 1] states that a (0—)simple semigroup is completely (0-)simple if and only if it does
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not contain the bicyclic semigroup. The bicyclic semigroup admits only the discrete semi-
group topology and a topological semigroup S can contain the bicyclic semigroup € (p, q) as
a dense subsemigroup only as an open subset [8]. Also Bertman and West in [5] proved that
the bicyclic semigroup as a Hausdorff semitopological semigroup admits only the discrete
topology. The problem of an embedding of the bicycle semigroup into compact-like topolog-
ical semigroups solved in the papers [2, 3, 4, 11, 13| and the closure of the bicycle semigroup
in topological semigroups studied in [8].

Let Z be the additive group of integers. On the Cartesian product %7 = Z x Z we define
the semigroup operation as follows:

(a—b+cd), if b<c;
(a,b) - (c,d) =<« (a,d), if b=g¢ (1)
(a,d+b—rc), if b>c,

for a,b,c,d € Z. The set 67 with such defined operation is called the extended bicycle
semigroup [19].

In this paper we study the semigroup %7. We describe main algebraic properties of
the semigroup %7z and prove that every non-trivial congruence € on the semigroup 7 is
a group congruence, and moreover the quotient semigroup %7/€ is isomorphic to a cyclic
group. Also we show that the semigroup %7 as a Hausdorff semitopological semigroup
admits only the discrete topology. Next we study the closure cly (47%) of the semigroup ¢z
in a topological semigroup 7. We show that the non-empty remainder of %7 in a topological
inverse semigroup 7' consists of a group of units H(1r) of T and a two-sided ideal I of T in
the case when H(1r) # @ and [ # @. In the case when T is a locally compact topological
inverse semigroup and [ # & we prove that an ideal I is topologically isomorphic to the
discrete additive group of integers and describe the topology on the subsemigroup %7 U I.
Also we show that if the group of units H(17) of the semigroup 7" is non-empty, then H(17)
is either singleton or H(17) is topologically isomorphic to the discrete additive group of
integers.

2 ALGEBRAIC PROPERTIES OF THE SEMIGROUP %7

Proposition 2.1. The following statements hold:

(1) E(%z) = {(a,a) | a € Z}, and (a,a) < (b,b) in E(%y) if and only if a > b in Z, and
hence E(%7) is isomorphic to the linearly ordered semilattice (7, max);
(11) €7 is an inverse semigroup, and the elements (a,b) and (b, a) are inverse in €z;

l—ecandx™' o= f;

(17i) for any idempotents e, f € €7, there exists x € 6y such that x -z~
(iv) elements (a,b) and (c,d) of the semigroup ¢z are:

(a) Z-equivalent if and only if a = ¢;
(b) ZL-equivalent if and only if b = d;
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(¢) F-equivalent if and only if a = ¢ and b = d;
(d) P-equivalent for all a,b,c,d € Z;
(e) _#-equivalent for all a,b,c,d € Z;
(v) €7 is a bisimple semigroup and hence it is simple;
(vi) if (a,b) - (¢,d) = (x,y) in €z thenx —y=a—b+c—d.
(vii) every maximal subgroup of €7 is trivial.

(viii) for every integer n the subsemigroup ézn] = {(a,b) | a = n & b > n} of €y is
isomorphic to the bicyclic semigroup € (p, q), and moreover an isomorphism h: éz[n] —
€ (p,q) is defined by the formula ((a,b)) h = ¢* "p*~";

(iv) LIy, = {L* | a € L}, where £* = {(z,y) € ¢z | y > a}, is the family of all left
ideals of the semigroup ¢7;

() BI ¢, = {%#" | a € L}, where Z* = {(z,y) € €1 | v > a}, is the family of all right
ideals of the semigroup 7.

Proof. The proofs of statements (7), (i7), (iii), (iv), (vi), (vii) and (viii) are trivial. State-
ment (v) follows from statement (i7i) and Lemma 1.1 of [16].
Simple verifications (see: formula (1)) show that

(a,0)6z ={(z,y) € Gz |lw>a}  and  Cyla,b) ={(z,y) €z |y > b}
for every (a,b) € 67. This completes the proof of statements (iz) and (z). O

Proposition 2.2. Every non-trivial congruence € on the semigroup %7 is a group congru-
ence, and moreover the quotient semigroup é7/€ is isomorphic to a cyclic group.

Proof. First we shall show that if two distinct idempotents (a,a) and (b,b) of 47 are €-
equivalent then the quotient semigroup %7/¢ is a group. Without loss of generality we can
assume that (a,a) < (b,b), i.e., a > b in Z. Then we have that

(CL, b) ’ (bv b) : (b’ a) :(aaa);
(a,b) - (a,a)- (bya) = (a+ (a —0b),a+ (a—0b));
(a,b) - (a+ (a—"b),a+ (a—10))-(bya) = (a+2(a—0b),a+2(a—0b));

(a,b) - (a+jla=b),a+jla=0))-(ba) = (a+ (G +1(a=b)a+(j+1)(a—0b));

This implies that for every non-negative integers ¢ and j we have that

(a+i(a—"b),a+i(a—0b))C(a+jla—>b),a+jla—Db)).
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If b > k in Z for some integer k, then by Proposition 2.1(viii) we get that any two distinct
idempotents of the subsemigroup éy[k] of €7 are €-equivalent and hence Proposition 2.1(viii)
and Corollary 1.32 from [7] imply that for every integer n all idempotents of the subsemigroup
%n|n] are €-equivalent. This implies that all idempotents of the subsemigroup %y[n] are €-
equivalent. Since the semigroup %7 is inverse we conclude that the quotient semigroup ¢7/€
contains only one idempotent and hence by Lemma II1.1.10 from [17]| the semigroup %7/¢ is
a group.

Suppose that two distinct elements (a, b) and (c, d) of the semigroup %7 are €-equivalent.
Since %7 is an inverse semigroup, Lemma II1.1.1 from [17| implies that (a,a)@(c,c) and
(b,b)€(d,d). Since (a,b) # (c¢,d) we have that either (a,a) # (¢, ¢) or (b,b) # (d,d), and
hence by the first part of the proof we get that all idempotents of the semigroup %7 are
¢-equivalent.

Next we shall show that if &,,, be a least group congruence on the semigroup ¢z, then
the quotient semigroup %7/¢,,, is isomorphic to the additive group of integers Z.

By Proposition 2.1(i) and Lemma II1.5.2 from [17] we have that elements (a, b) and (¢, d)
are €, -equivalent in %7 if and only if there exists an integer n such that (a,b) - (n,n) =
(¢,d)- (n,n). Then Proposition 2.1(z) implies that (a,b)-(g,9) = (¢,d) - (g, g) for any integer
gsuch that g > nin Z. If g > b and g > d in 7Z, then the semigroup operation in %7 implies
that (a,b)-(g,9) = (9—b+a,g) and (¢,d)-(g,9) = (9 —d+¢, g), and since Z is the additive
group of integers we get that a — b = ¢ — d. Converse, suppose that (a,b) and (c,d) are
elements of the semigroup %7 such that a —b = ¢ —d. Then for any element g € Z such that
g = band g > din Z we have that (a,b)-(g,9) = (9—b+a,g) and (¢,d)-(g,9) = (9—d+c, g),
and since a — b = ¢ — d we get that (a,b)€,,4(c,d). Therefore, (a,b)€,4(c,d) in €7 if and
only ifa —b=c—d.

We determine a map f: 7 — Z by the formula ((a,b))f = a — b, for a,b € Z. Propo-
sition 2.1(vi) implies that such defined map §: 7 — Z is a homomorphism. Then we have
that (a,b)€,,4(c,d) if and only if ((a,b))f = ((¢,d))f, for (a,b), (c,d) € €z, and hence the
homomorphism § generates the least group congruence &,,, on the semigroup %7.

If ¢ is any congruence on the semigroup ¢z then the mapping ¢ — ¢V €, maps the
congruence ¢ onto a group congruence ¢V ¢&,,,, where &,,, is the least group congruence on the
semigroup %z (cf. |17, Section III|). Therefore every homomorphic image of the semigroup
%7 is a homomorphic image of the quotient semigroup %7/€, i.e., it is a homomorphic image
of the additive group of integers Z. This completes the proof of the theorem. O

3 THE SEMIGROUP %7: TOPOLOGIZATIONS AND CLOSURES OF %7 IN TOPOLOGICAL
SEMIGROUPS

Theorem 1. Every Hausdorff topology T on the semigroup ¢y such that (¢z,7) is a semi-
topological semigroup is discrete, and hence %7, is a discrete subspace of any semitopological
semigroup which contains ¢z as a subsemigroup.

Proof. We fix an arbitrary idempotent (a,a) of the semigroup %7 and suppose that (a,a) is
a non-isolated point of the topological space (47, 7). Since the maps A(qq): ¢z — €7z and
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Plaa): €z — ©z defined by the formulae ((z,y)) Aae) = (a,a) - (z,y) and ((2,9)) pa,a) =
(x,y) - (a,a) are continuous retractions we conclude that (a,a)%7z and %6%(a,a) are closed
subsets in the topological space (67, 7). We put

DI—(a,a) [(CL,CL)] = {(Q?,y) € (KZ | (xay> ’ (CL,CL) = (CL,CL)} .
Simple verifications show that
DL(g,a) [(a,a)] = {(z,2) € €z | * < a in Z},

and since right translations are continuous maps in (67, 7) we get that DL(4 4 [(a,a)] is a
closed subset of the topological space (47,7). Then there exists an open neighbourhood
Wia,a) of the point (a,a) in the topological space (67, 7) such that

Wiaa €€\ ((a+1,a+ 1), U%(a+ 1,a+1)UDLg_14-1)(a — 1,a — 1)).

Since (%7, 7) is a semitopological semigroup we conclude that there exists an open neighbour-
hood V{4,4) of the idempotent (a,a) in the topological space (€7, 7) such that the following
conditions hold:

‘/(a,a) g W(a,a)7 (a7 CL) : Vv(a,a) g W(a,a) and ‘/(a,a) : (a, (l) g W(a,a)-
Hence at least one of the following conditions holds:

(a) the neighbourhood V{, 4 contains infinitely many points (x,y) € 6z such that < y < a;
or

(b) the neighbourhood V{, 4 contains infinitely many points (x,y) € €z such that y < = < a.

In case (a) we have that

(CL, a) ’ (l’,y) - (CL,CL + (y - I)) ¢ W(a,a);

because y — x > 1, and in case (b) we have that

(:L‘7y) ) (CL, a) = (a+ (ZL‘ - y)’a) ¢ W(a,a)»

because x —y > 1, a contradiction. The obtained contradiction implies that the set V(g )
is singleton, and hence the idempotent (a,a) is an isolated point of the topological space
(€2, 7).

Let (a,b) be an arbitrary element of the semigroup %7 and suppose that (a,b) is a non-
isolated point of the topological space (67, 7). Since all right translations are continuous
maps in (¢z,7) and every idempotent (a,a) of %7 is an isolated point of the topological
space (éz,7) we conclude that

DLgsa) [(a,a)] = {(z,y) € 6z | (x,y) - (b,a) = (a,a)}
is a closed-and-open subset of the topological space (%7, 7). Simple verifications show that

DL(b,a) [(a,a)] = {(l‘;?ﬁ €EC|r—y=a—0b and z < a}.



ON THE CLOSURE OF THE EXTENDED BICYCLIC SEMIGROUP 137
Then we have that

{(av b)} = DL(b,a) [(a’ a)] \ DL(bfl,afl) [(a —1,a — 1)] ,

and hence (a,b) is an isolated point of the topological space (6%, 7). This completes the
proof of the theorem. O]

Theorem 1 implies the following:

Corollary 3.1. Every Hausdorff semigroup topology T on %7 is discrete, and hence 67 is a
discrete subspace of any topological semigroup which contains 67 as a subsemigroup.

Since every discrete topological space is locally compact, Theorem 1 and Theorem 3.3.9
from [9] imply the following:

Corollary 3.2. Let T be a semitopological semigroup which contains 67 as a subsemigroup.
Then %7 is an open subsemigroup of T'.

Lemma 3.1. Let T be a Hausdorff semitopological semigroup which contains 67 as a dense
subsemigroup. Let f € T \ %7 be an idempotent of the semigroup 1" which satisfies the
property: there exists an idempotent (n,n) € 6z, n € Z, such that (n,n) < f. Then the
following statements hold:

(1) there exists an open neighbourhood U(f) of f in T such that U(f) N6z C E(%z);
(7i) f is the unit of T.

Proof. (i) Let W(f) be an arbitrary open neighbourhood of the idempotent f in 7. We fix
an arbitrary element (n,n) € 6z, n € Z. By Corollary 3.2 the element (n,n) is an isolated
point in 7', and since 7' is a semitopological semigroup we have that there exists an open
neighbourhood U(f) of f in T such that

uncwin),  Ul)-Ann)={mnn)}t  and  {(n,n)}-U(f)={(n,n)}

If the set U(f) contains a non-idempotent element (x,y) € %7, then Proposition 2.1(vi)
implies that (z,y)-(n,n), (n,n)-(x,y) ¢ E(%z), a contradiction. The obtained contradiction
implies the statement of the assertion.

(17) First we show that f - (k,l) = (k,l) - f = (k,[) for every (k,l) € €.

Suppose the contrary: there exists an element (k,1) € 67 such that x = f - (k1) # (k,1)
for some z € T. Let U(z) be an open neighbourhood of x in T  such that (k,1) ¢ U(x). Since
T is a semitopological semigroup we get that there exists an open neighbourhood V(f) of
fin T such that V(f) - {(k,l)} C U(x). Again, since for an arbitrary integer a the maps
Naa): €z — €z and pq): €7 — €7 defined by the formulae ((z,y)) Aae) = (a,a) - (z,y)
and ((«,¥)) pa,a) = (2,9y) - (a,a) are continuous retractions we conclude that statement (i)
implies that there exists an open neighbourhood W (f) of f in T such that W(f) C V(f),
W(f)N %z C E(%7) and the following condition holds:

(p,p) € W(f)N%Ey if and only if p =k
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Then (p,p)-(k,1) = (k,1) ¢ U(x) for every (p,p) € W(f)N%z, a contradiction. The obtained
contradiction implies that f - (k,1) = (k,1) for every (k,l) € €3. Similar arguments show
that (k,1) - f = (k,1) for every (k,l) € €.

Next we show that f-z =x - f =z for every z € T\ 4%. Suppose the contrary: there
exists an element x € T\ 67 such that y = f -2 # x for some y € T. Let U(z) and U(y)
be open neighbourhoods of = and y in 7', respectively, such that U(z) NU(y) = @. Since T
is a semitopological semigroup we get that there exists an open neighbourhood V' (z) of = in
T such that V(z) C U(z) and f-V(z) C U(y). Again, since x € T \ éz we have that the
set V(z) N %z is infinite, and the previous part of the proof of the statement implies that
f-(V(z)N%z) C (V(z) N6z). But we have that V(z) N U(y) = &, a contradiction. The
obtained contradiction implies the equality f-x = x. Similar arguments show that x- f =«
for every x € T'\ 7. O

Remark 3.1. We observe that the assertion (i) of Lemma 3.1 holds for right-topological
and left-topological monoids.

Lemma 3.2. Let T be a Hausdorff topological monoid with the unit 17 which contains 67
as a dense subsemigroup. Then the following assertions hold:

(1) there exists an open neighbourhood U(1r) of the unit 11 in T' such that U(17) N %7 C
E(%2);

and if the group of units H(1r) of T' is non-singleton, then:

(17) for every x € H(17) there exists an open neighbourhood U(x) in T such that a — b =
¢ —d for all (a,b), (¢,d) € U(x) N €y;

(i73) for distinct x,y € H(lr) there exist open neighbourhoods U(zx) and U(y) of x and y
in T, respectively, such that a — b # ¢ — d for every (a,b) € U(x) N 6y and for every
(67 d) S U<y) N CgZ;

the group H(1r) is torsion free;

)

(v) the group of units H(1r) of T is a discrete subgroup in T;
) the group of units H(17) of T is isomorphic to the infinite cyclic group;
)

every non-identity element of the group of units H(1y) in the semigroup T is not
topologically periodic.

Proof. Statement (i) follows from Lemma 3.1(7).

(77) In the case H(1r) = {17} statement (7) implies our assertion. Hence we suppose that
H(1r) # {1r} andlet x € H(17)\{17}. By statement (¢) there exists an open neighbourhood
U(1lr) of the unit 17 in T such that U(ly) N %z C E(%z). Then the continuity of the
semigroup operation in 7 implies that there exist open neighbourhoods U(x) and U(z™!) in
the topological space T of x and the inverse element x=! of x in H(17), respectively, such
that

Ux)-U(x™') CU(17) and Ux™)-U(x) CU(17).
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Since U(17r) N6z C E(%7) we have that Proposition 2.1(vi) implies that a —b+u — v =
c—d+u—v for all (a,b),(c,d) € U(x) N6z and some (u,v) € U(x~') N 6z, and hence
a—b=c—d.

(737) Suppose the contrary: there exist distinct z,y € H(1l7) and for all open neigh-
bourhoods U(x) and U(y) of x and y in T, respectively, there are (a,b) € U(x) N 6z and
(¢,d) € U(y) N6y such that a — b = ¢ — d. The Hausdorffness of 7" implies that without loss
of generality we can assume that U(x) N U(y) = @. Then statement (i) and the continuity
of the semigroup operation in 7" imply that there exist open neighbourhoods V(17), V(z)
and V(y) of 17, x and y in T, respectively, such that

V(1r) Nz C E(€z), V(z) CU(z), V(y) CU(y), V(1lr) - V(z) CU(z)
and V(1r)-V(y) CU(y).

Since by Theorem 1.7 from [6, Vol. 1] the sets (a,a)T and T'(a,a) are closed in T for every
idempotent (a,a) € %7 and both neighbourhoods V' (z) and V(y) contain infinitely many
elements of the semigroup %7 we conclude that for every (p,p) € V(17) N %7 there exist
(k,1) € V(z) N6z and (m,n) € V(y) N %z such that

p>k>m, p>l>n and k—1l=m—n.

Then we get that

(p,p) - (k1) = (p,p+ (I = k)) and (p,p) - (m,n) = (p,p+ (n—m)),

a contradiction. The obtained contradiction implies our assertion.

(iv) Suppose the contrary: there exist z € H(1r) \ {1r} and a positive integer n such
that 2™ = 1p. Then by statement (i) there exists an open neighbourhood U(1r) of the unit
Iy in T such that U(17) N6z C E(%z). The continuity of the semigroup operation in T
and statement (i7) imply that there exists an open neighbourhood V' (z) of x in T such that
a—0b=c—dforall (ab),(c,d) € V(z)N%z and V(z)-...-V(z) € U(ly). We fix an

~
n-times

arbitrary element (a,b) € V(x) N 6z. If (a,b)” = (x,y), then Proposition 2.1(vi) implies
that z —y = n - (a — b) and since = # 1 we get that (z,y) ¢ U(1r), a contradiction. The
obtained contradiction implies statement (iv).

(v) Statement (iv) implies that the group of units H(1r) is infinite.

We fix an arbitrary x € H(1r) and suppose that z is not an isolated point of H(1r).

Then by statement (i) there exists an open neighbourhood U(z) in 7" such that a—b = c—d
for all (a,b), (¢,d) € U(x) N€y. Since the point x is not isolated in H(17) we conclude that
there exists y € H(1r) such that y € U(x). Hence the set U(z) is an open neighbourhood
of y in T. Statement (ii7) implies that there exist open neighbourhoods W (z) C U(x) and
W(y) C U(z) of x and y in T, respectively, such that a—b # c—d for every (a,b) € W (z)Néz
and for every (c¢,d) € W(y) N %6%. This contradicts the choice of the neighbourhood U(z).
The obtained contradiction implies that every x € H(1r) is an isolated point of H(1r).

(vi) Since the group of units H (1) is not trivial, i.e., the group H(17) is non-singleton,
we fix an arbitrary € H(17) \ {17}. Then by statement (iv) we have that 2" # 1 for any
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positive integer n. Statement (i) implies that there exists an open neighbourhood U(x) in
T such that a —b = c—d for all (a,b), (¢,d) € U(x) N6z We define the map ¢: H(lr) — Z
by the following way: (x)p = k if and only if a — b = k for every (a,b) € U(x) N 6. Then
statement (iv) and Proposition 2.1(vi) imply that the map ¢: H(1y) — Z is an injective
homomorphism. Obviously that (H(17)) ¢ is a subgroup in the additive group of integers.
We fix the least positive integer p € (H(17)) ¢. Then the element p generates the subgroup
(H(17)) ¢ in the additive group of integers Z, and hence the group (H(1r)) ¢ is cyclic.
(vii) We fix an arbitrary element « € H(1lr) \ {1r}. Suppose the contrary: z is a
topologically periodic element of S. Then there exist open neighbourhoods U(17) and U (z)
of 17 and z in T, respectively, such that U(1y) N U(x) = &. Statements (¢) and (4i7) imply
that without loss of generality we can assume that U(17)N%z C E(%7), anda—b=c—d #0
for all (a,b), (¢,d) € U(x) N %z. Then the topologically periodicity of = implies that there
exists a positive integer n such that 2™ € U(1ly). Since the semigroup operation in 7' is
continuous we conclude that there exists an open neighbourhood V(x) of x in T such that

V(z)-...-V(x) CU(1lr). We fix an arbitrary element (a,b) € V(2)N%;. Then we have that
n—t;;nes

(a,b)™ € U(1y) N6z and hence n(a — b) = 0, a contradiction. The obtained contradiction

implies assertion (vii). O

Proposition 3.1. Let G be non-trivial subgroup of the additive group of integers Z and
n € Z. Then the subsemigroup H which is generated by the set {n} UG is a cyclic subgroup
of Z.

Proof. Without loss of generality we can assume that n € Z \ G and n > 0.

Since every subgroup of a cyclic group is cyclic (see [14, P. 47]), we have that G is a
cyclic subgroup in Z. We fix a generating element & of G such that £ > 0. Then we have
that

n+--+n)—(k+---+k)+n=0,

e

(k—1)-times n-times

and hence we have that —n € H. Since Z is a commutative group we conclude that H is a

subgroup in Z, which is generated by elements n and k, and hence H is a cyclic subgroup
in Z. [

Proposition 3.2. Let T' be a Hausdorff topological monoid with the unit 17 which contains
%7, as a dense subsemigroup. Then the following assertions hold:

(i) if the set Ly, = {x € T\ 6z | there exists y € ¢z such that x -y € 6z} is non-empty,
then Ly, is a subsemigroup of T', and moreover if a € L,, then there exists an open
neighbourhood U (a) of a in T such that ny —my = ny — my for all (ny,my), (ng, ms) €
Ul(a) N6y;

(17) if the set Ry, = {x € T'\ 67 | there exists y € 67 such that y - v € 67} is non-empty,
then Ry, is a subsemigroup of T', and moreover if a € Ry,, then there exists an open
neighbourhood U (a) of a in T such that ny —my = ny — mq for all (nq,my), (ng, ms) €
Ula) N 6y;
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(i49) if the set Ly, (resp., Rg,) is non-empty, then for every a € Ly, (resp., a € Ry,) there
exist an open neighbourhood U(a) of a in T' and an integer n, such that p < n, and
q < n, for all (p,q) € U(a) N Cy;

(iv) L%JZ = chz;
(v) 167 = 67 U Ly, is a subsemigroup of T' and 67 is a minimal ideal in 167;

(vi) if for an element a € T \ 6 there is an open neighbourhood U(a) of a in T and the
following conditions hold:
(a) m1 —mg =ny —ny for all (my,ny), (ma,n2) € U(a) N 6z; and
(b) there exists an integer n, such that n < n, and m < n, for every (m,n) €
U(a) N (gz,
then a € Ly, ;
(vii) if [ =T \ 16, # O, then [ is an ideal of T;
(viii) the set
Ha,b) = {z €T | z- (b,8) = (a,b)}

={zeT|(a,a) x=(a,b)}
={zeT|(a,a) x-(bb)=(a,b)}

is closed-and-open in T for every (a,b) € €z;
(1z) the set 1(a,b) N Ly, is either singleton or empty;

(x) L, is isomorphic to a submonoid of the additive group of integers Z, and moreover
if a maximal subgroup of Ly, is non-singleton, then L, is isomorphic to the additive
group of integers 7Z;

(xi) 1967 is an open subset in T, and hence if I =T \ 167, # &, then the ideal I is a closed
subset in T’;

(xii) if the semigroup T contains a non-singleton group of units H(1r), then H(ly) =
T\ (¢, UlI).

Proof. (i) We observe that since é7 is an inverse semigroup we conclude that « € Le, if and
only if there exists an idempotent e € %7 such that x - e € 67, for x € T..

We fix an arbitrary © € L¢,. Let (n,n) be an idempotent in %7 such that (a,b) =
x - (n,n) € ¢z. Then by Corollary 3.1 we have that (n,n) and (a,b) are isolated points
in T, and the continuity of the semigroup operation in 7" implies that there exists an open
neighbourhood U(x) of x in T such that

U(z) -{(n,n)} = {(a,b)} € €z
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Then Proposition 2.1(vi) implies that p — g = a — b for all (p,q) € U(x) N éz. Also, since

ean) = { Ptk A )

(p.q), if g=n

we have that ¢ <n =0b.

Suppose that x,y € Le,, and (7,i) and (4, j) are idempotents in %7 such that z - (i,7) =
(k,l) € 67 and y - (4,j) € bz, i,j,k,l € Z. We fix an arbitrary integer d such that
d > max{k,j}. Then we have that

(y-x) - ((i,9) - (I k) - (d,d)) = ,

This implies that L¢, is a subsemigroup of 7" and completes the proof of our assertion.

The proof of assertion (ii) is similar to ().

Statement (i) and formula (2) imply assertion (i7i). In the case a € Ry, the proof is
similar.

(iv) Let be Lg, # @. We fix an arbitrary element a € Lg,. Then there exists an
idempotent (iq,1,) € 67 such that a - (i,,1,) = (i,7) € €7. Assertion (i7i) implies that there
exist an open neighbourhood U(a) of a in T and an integer n, such that n —m = i — j,
n < n, and m < n, for all (n,m) € U(a) N 6z. Without loss of generality we can assume
that 7, > ng,.

We shall show that (i4,i,) - @ € €. Suppose the contrary: (iy,i,)-a =b € T\ %7.
Assertion (7i7) implies that there exist integers

no(a) = max{n | (n,m) € U(a) N 6z} and  mg(a) = max{m | (n,m) € U(a) N6z}
Since i, > n, we have that
(iasia) - (n0(a), mo(a)) = (ia, ta — no(a) + mo(a)).

Let W (b) be an open neighbourhood of b in T" such that (i4,i, — no(a) + me(a)) ¢ W(b).
Then the continuity of the semigroup operation in 7" implies that there exists an open
neighbourhood V' (a) of a in T" such that

V(a) CU(a) and {(iayia)} - V(a) C W(D).
We fix an arbitrary element (n,m) € V(a) N %z. Then we have that
(iaa Z-a) . (n, m) = (iaa Z‘a —-—n+ m) = (iaa Z-a - no(a) + mo(a)),

a contradiction. The obtained contradiction implies that a € R¢,, and hence we have that
Ly, C Re,.
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The proof of the inclusion Ry, C Ly, is similar.

Statement (v) follows from statements (i) — (iv) and Proposition 2.1(v).

(vi) Let U(a) be an open neighbourhood of @ in 7" such that conditions (a) and (b) hold,
and let n, be such integer as in condition (b). Then for all (mq,ny), (ma,ns) € U(a) NEy we
have that

(m17n1> : (naana) = (ml —ny+ na;”a) = (m2 —Ng + naana) = (m27n2) . (naana)a

and hence the continuity of the semigroup operation in 7" implies that a € L.

(vii) Statements (i) and (i7i) imply that a - (m,n) € I and (m,n)-a € I for all a € I
and (m,n) € €.

Fix arbitrary elements a,b € I. We consider the following two cases:

1) a-be %y and 2) a-be€ Lyg,.

In case 1) we put a-b = (m,n) € €z. Then the continuity of the semigroup operation in 7'
implies that there exist open neighbourhoods U(a) and U(b) of a and b in T', respectively,
such that

Ufa) - U(b) = {(m,n)}.

Since a and b are accumulation points of 7 in T', we conclude that there exist (mq,n,) €
U(a) N6y and (mp, ny) € U(b) N 67z. Hence we have that

(Ma;na) - b € {(Ma;na) } - U(b) € Ula) - U(b) = {(m,n)}

and
a- (my,ny) € Ula) - {(mp, )} € Ula) - U(b) = {(m,n)}

This implies that a,b € L¢,, a contradiction.

Suppose case 2) holds and a-b = = € Lg,. Then by statements (i) and (iii) we have that
there exist an open neighbourhood U(z) of x in 7" and an integer n, such that m; —n; =
me — ng, my < n, and ny < n, for all (mqy,ny), (ma, ne) € U(x) N6z. Also, the continuity of
the semigroup operation in 7" implies that there exist open neighbourhoods U(a) and U(b)
of a and b in T', respectively, such that

U(a)-U(b) C U(x).

Since U(a)N%é; # @ and U(b)N%y # @, we can find arbitrary elements (mg, n,) € U(a)N%z
and (my,np) € U(b) N 6z. Then by Proposition 2.1(vi) we have that

To = Yo T Mp —Np =My — N and Mg — Ng + Tp — Yp = M1 — Ny

for all (x,,y.) € U(a) N6z and (z3,y,) € U(b) N 6z. This implies that there exist integers
k., and kj such that
xa_ya:ka and :Eb_yb:kb

for all (z,,y,) € U(a) N6y and (xp,y5) € U(b) N 6;. Then by statement (vi) we have that
a,b € Ly,, a contradiction.
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The obtained contradictions imply that a - b € I, and hence we get that the set I is an
ideal of T
(viit) Proposition 2.1(vi) and assertion (vi) imply the following equalities:

{reT |z (bb)=(a,b)} ={xeT]|(a,a) - x=(a,b)} ={xeT]|(a,a) z-(bb) = (a,b)}.

Since by Corollary 3.1 every element (a,b) of the semigroup %7 is an isolated point in 7', the
continuity of the semigroup operation in 7" implies that 1(a,b) is a closed-and-open subset
in T

(1z) Suppose that the set T(a,b) N Ly, is non-empty. Assuming that the set 1(a,b) N L,
is non-singleton implies that there exist distinct z,y € 1(a,b) N Le,. Then the Hausdorffness
of T implies that there exist disjoint open neighbourhoods U(z) and U(y) of z and y in T,
respectively. By the continuity of the semigroup operation in 7" we can find open neigh-
bourhoods V(17), V(z) and V(y) of 1r, x and y in T, respectively, such that the following
conditions hold:

V() CU(z), V(y) CUy), V(ir) V() CU(x) and V(iz)-V(y) € U(y).
By assertions (i) — (#i7) we can find the integers n,n, ng, m; and ms such that

(n,n) € V(1r), (ni,ng) € V(x), (my,ms) € V(y), ni—mng=mg—my,

n>=n, and n >=m;.
Then we have that
(n,n) - (n1,n2) = (n,n —ny +ng) = (n,n —my +ma) = (n,n) - (my, ma),

and hence (V(1r) -V (z)) - (V(1r)-V(y)) # @, a contradiction. The obtained contradiction
implies that x = y.

() Statement (vii) implies that 7'\ (I U%z) = Le¢,. Let Z be the additive group of
integers. We define a map h: Ly, — Z as follows:

(x)h=n if and only if there exists a neighbourhood U(x) of z in T" such that
a—0b=mn, forall (a,b) € U(x) N %y,

where x € Le,. We observe that assertions (i)—(v) imply that the map b is well defined. Also,
Proposition 2.1 implies that h: Ly, — Z is a monomorphism, and hence L, is a submonoid
of Z. In the case when a maximal subgroup of L, is non-singleton Proposition 3.1 implies
that (L, ) b is a cyclic subgroup of Z. This completes the proof of our assertion.

(xi) Assertion (v) implies that

167 = {x € T | there exists y € 67 such that -y € €} = U T(a,b).
(a,b)E€y

Then assertion (viii) implies that 167 is an open subset in 7" and hence by assertion (vii)
we get that the ideal I is a closed subset of T
Assertion (zii) follows from (x). O
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4 ON A CLOSURE OF THE SEMIGROUP %7 IN A LOCALLY COMPACT TOPOLOGICAL
INVERSE SEMIGROUP

For every non-negative integer k by kZ we denote a subgroup of the additive group of
integers Z which is generated by an element k € Z. We observe if k£ = 0 then the group kZ
is trivial. Also, we denote Gy = Z and G, (k) = kZ for a positive integer k.

The following five examples illustrate distinct structures of a closure of the semigroup 4z
in a locally compact topological inverse semigroup.

Example 1. Let be S; = G1(0)U%,. Then G1(0) is a trivial group and we put {e; } = G1(0).
We extend the semigroup operation from %7 onto S; as follows:

€1'(G,b):(a,b)'€1:<a,b)G%Z and €161 = €1,

i.e., Sy is the semigroup 67 with the adjoined unit e;. We fix an arbitrary decreasing sequence
{m; }ien of negative integers and for every positive integer n we put

Un(el) = {61} U {(mz,mz) S ng | 1 = n}
Then we determine a topology 1 on S; as follows:
1) all elements of the semigroup %7, are isolated points in (Sy,7); and

2) the family %$y(e1) = {U,(e1) | n € N} is a base of the topology T at the point e; €
G1(0) C S5.

Then for every positive integer n we have that
Upn(e1) - Un(er) = Un(er) and (Upn(er)) ™" = Up(er).

Let (m,n) be an arbitrary element of the semigroup ¢7. We fix a positive integer i(y, »y such

that M, S M and M, . S N Then we have that

) )

Uiy (€1) -{(m,n)} ={(m,n)} ~ and — {(m,n)}- Ui, ,(e1) = {(m,n)}.

Hence we get that (S, 1) Is a topological inverse semigroup. Obviously, (S1, ) is a Haus-
dorff locally compact space.

Example 2. Let k and n be any positive integers such that n € {1,...,k} is a divisor of
k and we put k = n - s, where s is some positive integer. We put Sy = G;(k) U ¢7. Later
an element of the group G1(k) = kZ will be denote by ki, where i € Z. We extend the
semigroup operation from %7z onto Sy by the following way:

ki-(a,b) = (—ki+a,b) € €, and (a,b) - ki = (a,b+ ki) € €z,

for arbitrary (a,b) € ¢z and ki € Gy(k). To see that the extended binary operation is
associative we need only check six possibilities, the other being evident.
Then for arbitrary kiy, kis € G1(k) and (a,b), (c,d) € €z we have that:
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1) (kiy - kig) - (a,b) = (kiy + kis)(a,b) = (—kiy — kiz + a,b) = kiy - (—kis + a,b)

2)

(a, b)- (ki1 -kiz) = (a,b)-(kiy+kis) = (a, btkis+kis) = (a, brkir)-kis = ((a,b) - kiy)-kis;
3) (ki

11 - ( )) klg = (—kll + a, b) : /{IZQ = (—kll + Cl,b + k’Zg) = kZl . (a,b + klg)
kiy - ((a,b) - kig);

: . (=kiy+a—b+c,d), if b<c
4 . . = (— . =
) (i (0.0) () = (ki 4 a0 )= { (T P ed B
f kiy-(a=b+cd), if b<c _
_{kil-(a,b—c+d), if b i (ab)-(ed);

- [ (a=b+c,d) ki, if b<g
5) ((a.0) (. d)) k“_{ (@,b—c+d)-kiy, if b>c
_{ (a—b+c,d+kiy), if b<c

(a,b—c+d+kiy), if b>c (a,0) - (e;d + kir) = (a,0) - (¢, d) - kin);

(a —b—kiy+c,d), if b+ki; <

6) ((a’b)"““)'@’d):(“’Hkil)'(c’d):{ (a,b+iky — c+d), if b+kip>c

_{ (a—b—k:z'1+c,d), if b<—k’i1+6;

(ab+kis—c+d), if b> —kiy+c (@O (TRaTad =(ab)-(ki-(cd).

Also simple verifications show that S, is an inverse semigroup.
Let ki be an arbitrary element of the group G1(k). For every positive integer j we denote

Uj (ki) = {ki} U{(-ng, —ng + ki) | ¢ > j,q € N}.
We determine a topology 1o on Sy as follows:
1) all elements of the semigroup %7, are isolated points in (S, 72); and

2) the family % (ki) = {U]”(kz) | j € N} is a base of the topology > at the point ki €
G1(k) C 8.

Then for every positive integer j we have that

-1

U;L(]{?h) : U “S(k’lg) C U (kﬂl + klg) and (U]n(l{fll)) = an(—k'll),

for kil,kiQ € G1<k)
Let (a,b) be an arbitrary element of the semigroup 67 and ki € G1(k). Then we have
that

U (ki) - {(a,0)} = {(a — ki, b)} and {(a,b)} - Uj' (ki) = {(a, b+ ki)},

for every positive integer j such that nj > max{—b;ki — a}.
Therefore (Ss, 2) is a topological inverse semigroup, and moreover the topological space
(S2,72) is Hausdorff and locally compact.
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Example 3. We put S3 = 67U G, and extend the semigroup operation from the semigroup
%7, onto S3 by the following way:

(a,b) -n=n-(a,b)=n+b—ac Gy,

for all (a,b) € €7 and n € Gy. To see that the extended binary operation is associative we
need only check two possibilities, the other being evident.
Then for arbitrary m,n € Gy and (a,b), (¢,d) € 67 we have that:

n-(a—b+ed), ifb<c

1) (n-(a,b)) (c,d) = (n+b—a)-(c,d) :n—i—b—a—i—d—c:{ ne(ab—c+d), ifb>c

=n-((a,b) - (¢, d));
2) (m-n)-(a,b)=m+n+b—a=m-(n+b—a)=m-(n-(a,b)).

This completes the proof of the associativity of such defined binary operation on Ss. Also,
we observe that Sz with such defined semigroup operation is an inverse semigroup.
For every positive integer n and every element k € Gy we put:

{k}u{(a,a+k)|a=nn+1,n+2,...}, ifk >0
{k}u{(a—Ek,a) |la=nn+1,n+2,...}, ifk<0.

(k) = §
We determine a topology 13 on S3 as follows:
1) all elements of the semigroup %7, are isolated points in (S3,73); and
2) the family %3(k)={U,(k)|n € N} is a base of the topology T3 at the point k € Gy C S.
Then for all ki, ky € Gg we have that
Uzn (k1) - Uzn(kz) © Un(k1 + k2),
for every positive integer n > max {|ki|, |k2|}, and
(Ui(k1)) ™" = Ui(=ka),
for every positive integer i. Also, for arbitrary (a,b) € 67 and k € Gy we have that

(a,b) - Uy (k) CU,(k+b—a) and Uan (k) - (a,b) C Uu(k+b—a),

for every positive integer n > max {|a|, |b|, |k|}.
This completes the proof that (Ss,73) Is a topological inverse semigroup. Obviously,
(S5, 13) is a Hausdorff locally compact space.

Example 4. Let be S; = G1(0) U S3, where the group G1(0) and the semigroup Ss are
defined in Example 1 and Example 3, respectively. We extend the semigroup operation from
S3 onto Sy as follows:

e-r=x-€ =2 € Gy and e1- el = ey,
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i.e., Sy is the semigroup S3 with the adjoined unit e.

Let 14 be a topology on S, which is generated by the family 71 U3 (see Examples 1 and
3). Then for every element ky € Gy and every positive integers ny and ny we have that the
following inclusions hold:

Um (61) ’ Un0<k0) - Uno (ko) and Uno (ko) ’ Unl (61) - Uno(k0)7

where Uy, (e1) € PB1(e1) and Uy, (ko) € P3(ko) (see Examples 1 and 3). These inclusions and
Examples 1 and 3 imply that (Sy, 74) is a Hausdorfl topological inverse semigroup. Obviously,
(Sy4,74) is a locally compact space.

Example 5. Let k and n be such positive integers as in Example 2. We put S5 = G1(k) U
¢7, Gy and extend semigroup operation from Sy and Ss onto Sy as follows. Later we denote
elements of groups G1(K) and Gq by (ki)' and (n)°, respectively. We put

(ki)' - (n)° = (n)° - (ki)' = (ki +n)° € Gy,

for all (ki)' € Gi(k) and (n)° € Gy. To see that the extended binary operation is associa-
tive we need only check twelve possibilities, the other either are evident or are proved in
Examples 2 and 3.

Then for arbitrary (kiy)', (kig)' € G1(k), (n1)?; (n2)® € Gy and (a,b) € €z we have that:

1) ((n1)° - (n2)°) - (kiy)' = (nq +n2)° - (ki)' = (ng + no + kiy)? = (n1)° - (ng + kiy)"
= (m)? - ((n2)" - (kir)");

2) ((n1)° - (ki))') - (n2)° = (nq + kiy)° - (n2)° = (nq + kiy +12)° = (n1)° - (kiy + ny)°
= (m)? - ((kir)" - (n2)°);

3) ((n)° - (kiy)Y) - (kix)' = (nq 4 kip)" - (kio)' = (nq + kiy + kio)® = (n1)° - (kiy + kia)'
= (n1)" - (ki)' - (kiz)');

4) ((n1)0 . (]fh)l) . (CL, b) = (n1 + k?il)o . ((l, b) = (m + k’ll + b— CL)O = (n1)0 . (—]{321 + a, b)
= (n1)" - ((kir)" - (a,0));

5) ((n1)° - (a,b)) - (kiy)' = (ny +b—a)®- (ki)' = (ny +b—a+ ki)’ = (n1)°- (a, b + kiy)
= (m)? - ((a,) - (kir)");

6) ((kiy)' - (11)°) - (n2)° = (kiy 4+ n1)" - (n2)° = (kiy + 1y +n2)° = (kiy)' - (ny + ny)°
= (ki)' - ((n1)? - (n2)%);

7) (ki)' - (n1)°) - (kig)! = (kiy 4 n1)" - (kig)' = (kiy + ny 4 kiz)® = (kiy)' - (ny + kis)°
= (ki)' - ()" - (kiz)');

8) (ki)' - (n1)°) - (a,b) = (kiy +m1)" - (a,b) = (kiy +ny +b—a)® = (kiy)" - (n, + b — a)°
= (ki)' - ((n1)° - (a,0));

9) ((kiy)' - (kig)') - (n1)° = (kiy + kig)" - (n1)° = (kiy + kia +11)° = (kiy)' - (kiy 4+ np)°
= (ki1)" - (ki)' - (m)°);
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10) ((kix)' - (a,b)) - (m1)° = (=kiy + a,b) - (n1)° = (kiy +b— a+ny)°
= (ki)' (b= a+m)" = (ki)' ((a,0) - (m)°);

11) ((a,0) - (m)%) - (ki)' = (b—a+m1)° - (ki)' = (b—a+ny + ki)° = (a,b) - (ng + kiy)°
= (a,b) - ((n1)° - (Kir)");

12) ((a,0) - (kin)Y) - (m1)° = (a, b+ kiy)® - (ny)° = (b+ kis —a +n1)° = (a,b) - (kiy +n1)°
= (a,b) - (ki)' - (n1)°).-

This completes the proof of the associativity of such defined binary operation on Ss.
Also, we observe that S5 with such defined semigroup operation is an inverse semigroup.

Let 75 be a topology on S5 which is generated by the family 15 U T3 (see Examples 2 and
3). Also Examples 2 and 3 imply that it is sufficient to show that the semigroup operation
in S is continuous in cases (ki)' - (n)? and (n)° - (ki)!, where (n)° € Gy and (ki)' € Gy(k).
Then for every positive integer p > max {|ki|,|n|} we have that

Uz ((ki)') - Uz ((n)°) € Up((Ki +n)°) and  Usy((n)°) - Usy((ki)') C U, ((ki+n)°).

This completes the proof that (Ss,75) is a topological inverse semigroup. Obviously, (Ss, T5)
is a locally compact space.

Theorem 2. Let T be a Hausdorff topological inverse semigroup. If T contains %7 as a
dense subsemigroup and I =T \ 167 # &, then the following assertions hold:

(1) E(T) is a countable linearly ordered semilattice;
(1) E(T)N (T \1%z) is a singleton set;
(2ii) T'\ 167 is a subgroup in T.

Proof. (i) By Proposition I1.3 from [8] we have that clp(E(%z)) = E(T) and since the
closure of a linearly ordered subsemilattice in a topological semilattice is a linearly ordered
subsemilattice too (see [12, Lemma 1]) we get that F(T') is a linearly ordered semilattice.

Then the semilattice operation in F(T') implies that the sets F(T)\ U leand E(T)\ U Te
e€E(%z) ecE(¢z)
are either singleton or empty. This completes the proof of our assertion.

Assertion (7i) follows from assertion (7).

(737) Since T is an inverse semigroup and € is a minimal idempotent in E(7") we conclude
that the ##-class Hz which contains € coincides with the ideal I = T\ 1%7. Indeed, if there
exist x € I and an J¢-class H, C I in T such that x € H, # Hg, then since T is an inverse
semigroup we have that there exists an idempotent e € T such that either z27! = e € 16,
or 7 tx = e € 16,. If xa~! = e € 167, then we have that * = z27 o = ex € €T, and since
T is an inverse semigroup Theorem 1.17 from [7| implies e € 2T, a contradiction. Similar
arguments show that x='z # e € 14z. Hence assertion (ii) implies that zz™! = z7lx = ¢
and hence r € H, = Hs. O
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The following theorem describes the structure of a closure of the semigroup %7 in a locally
compact topological inverse semigroup 7', i.e., it gives the description of the non-empty ideal
I =T\ 1%7 in the remainder of €7 in T.

Theorem 3. Let T be a Hausdorff locally compact topological inverse semigroup. If T
contains 67 as a dense subsemigroup and I = T\ 16, # &, then the following assertions
hold:

(1) le, is a compact subsemilattice in E(T) for every idempotent e,, = (n,n) € 6z, n € Z;
(13) T\ 167 is isomorphic to the discrete additive group of integers;

(17i) if € is a unit of T'\ 167, then the map b: 67 — T \ 167z which is defined by the formula
((a,b))h = (a,b) - € is the natural homomorphism generated by the minimal group
congruence €,,, on the semigroup 7;

(1v) the subsemigroup S = %7 U I is topologically isomorphic to the topological inverse
semigroup (Ss3,73) from Example 3.

Proof. (i) We show that ley is a compact subset in E(T) for ey = (0,0). By assertion
(77) of Theorem 2 we get that the set E(T) N (T'\ 1%z) is singleton and we put {e} =
E(T)N(T \ 1%%). Then e is a smallest idempotent in E(T"). By Theorem 1.5 from [6, Vol. 1]
we have that E(T) is a closed subset in 7', and hence by Theorem 3.3.9 from [9] we get that
E(T) is a locally compact space. Suppose the contrary: Jeq is not a compact subset in E(T).
Since Corollary 3.1 implies that every element of the semigroup %7 is an isolated point in
T and hence so it is in E(T'), we get that there exists an open neighbourhood U(€) of € in
E(T) such that the set Jeg\ U(€) is an infinite discrete subspace of E(T), U(e) C E(T) \ Teo
and clgr)(U(€)) = U(e) is a compact subset of E(T"). Then for every positive integer i there
exists an integer j > ¢ such that (j,j) ¢ U(e) and (j+1,j+1) € U(e). Then the semigroup
operation in %7 implies that by induction we can construct an infinite subset M C |eg \ {€}
of E(T) such that M C Uf(e) \ {e} and {(0,1)} - M - {(1,0)} C lep \ U(€). Since the set
U(e) is compact and the set M C U(€) \ {€} contains only isolated points from E(%7), we
conclude that € € clp(M). Since leg \ U(€) is a closed subset of E(T) we have that the
continuity of the semigroup operation in 7" and Proposition 1.4.1 from [9] imply that

e e {(0,1)}-clr(M) - {(1,0)} S clr ({(0, 1)} - M- {(1,0)}) € Leo \ U(e),

which contradicts € € U(e). The obtained contradiction implies that the set ley \ U(e)
is finite, and hence the set |ey is compact. Since for every integer n the set le, \ leo is
either finite or empty and e, is an isolated point in F(7T) we conclude that Je, is a compact
subsemilattice of E(T).

(i7) By assertion (z) we have that € is an accumulation point of the subsemigroup éx|0]
in 7. Since by Theorem 3.3.9 from [9] a closed subset of a locally compact space is a locally
compact subspace too, and by Proposition 2.1(viii) the semigroup éy|[0] is isomorphic to
the bicyclic semigroup, Proposition V.3 from [8] implies that the subset clr (4y[0]) \ én[0]



ON THE CLOSURE OF THE EXTENDED BICYCLIC SEMIGROUP 151

is a non-singleton subgroup of 7. By Corollary 3.1 we get that %7 is an open discrete
subsemigroup of 7" and hence we get that cly (4n[0]) \ én[0] C cly (6%) \ €z.

By assertion (7ii) of Theorem 2 we have that I = T\ 1%7 is a non-singleton subgroup in
T'. Since T is a topological inverse semigroup we get that I is a topological group. Then by
Proposition 3.2(zi) we have that I is a closed subset of 7" and hence by Theorem 3.3.9 from
[9] we get that I is a locally compact topological group.

Later we show that (a,b) -& = € - (a,b) for every (a,b) € %7. Suppose the contrary:
there exists (a,b) € %7 such that (a,b) - # €- (a,b). Without loss of generality we can
assume that a < b in Z. Then the Hausdorffness of the space T implies that there exist open
neighbourhoods U((a, b) -€) and U(e- (a,b)) of the points (a,b)-€ and €- (a,b) in T such that
U((a,b)-e)NU(e- (a,b)) = &. Then the continuity of the semigroup operation of 7" implies
that there exists an open neighbourhood V'(€) of € in T" such that the following conditions
hold:

[@b} V@ CU(ab)-e) and V(@) {(ab)}CUE-(a,b).

By assertion (i) we get that without loss of generality we can assume that V(e) N E(T)
is a compact subset in 7' and there exists a positive integer ng > max{a,b} such that
(n,n) € V(e) N E(T) for all integers n > ng. Then for n = 2ny — a and k = 2ny — b we get
that (n,n), (k, k) € V(e) N E(T). But we have

(a,b) - (n,n) = (a,b) - (2ng — a,2n¢ —a) = (2ng —a — b+ a,2ng — a) = (2ng — b, 2ng — a)
and
(k,k) - (a,b) = (2ng — b,2ng — b) - (a,b) = (2ng — b,2n9 — b — a + b) = (2ng — b,2ng — a),

which contradicts U((a,b) -€) NU(e - (a,b)) = @. The obtained contradiction implies that
(a,b) -€ =¢- (a,b) for every (a,b) € €.

Next we show that x - = € - x for every z € T\ 6;. Suppose contrary: there exists
x € T'\ 6z such that - # € - x. Then the Hausdorffness of the space T' implies that there
exist open neighbourhoods U(xz - €) and U(e - z) of the points z - € and € - x in T such that
U(x-e)NnU(e-x) = . The continuity of the semigroup operation of 7" implies that there
exists an open neighbourhood V'(x) of x in T such that the following conditions hold:

V(z)-{e} CU(x-€) and {e}-V(z) CU(e-x).

Since %7 is a dense subsemigroup of 7" we conclude that there exists (a,b) € %7 such that
(a,b) € V(x). Then we get that (a,b)-e =e-(a,b), which contradicts U(x-e)NU(e-x) = &.
The obtained contradiction implies that z-e =¢ - x for every x € T.

We define a map h: T — [ by the formula (z)h = z-€. Since z-e=¢-x forevery x € T
we get that h is a homomorphism. Since %7 is a dense subsemigroup of 7', Proposition 2.2
and assertion (ii7) of Theorem 2 imply that the topological group I contains a dense cyclic
subgroup. Since [ is a locally compact topological group, Pontryagin-Weil Theorem (see [15,
p. 71, Theorem 19]) implies that either I is compact or I is discrete. If I is compact, then
by Proposition 3.2(viii) we get that

S:T\ U T(a7b)

(a,b)¢%n[0]
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is a closed subset in 7. Then by Theorem 3.3.9 from [9] S is a locally compact space.
Obviously, S = %n[0] U I. Since I is a locally compact ideal in 7', Proposition 2.1(vii7)
and Proposition I1.4 from [8] imply that the Rees quotient semigroup S/I with the quotient
topology is locally compact topological inverse semigroup which is isomorphic to the bicyclic
semigroup with an adjoined zero. This contradicts Proposition V.3 from [8]|. The obtained
contradiction implies that the group [ is discrete and hence [ is a discrete additive group of
integers.

(i13) Let (a,b),(c,d) € €7 such that (a,b)€y4(c,d). Then there exists an idempotent
(n,n) € €z such that (a,b) - (n,n) = (¢,d) - (n,n). Since (i,7) - € = € for every idempotent
(1,1) € €z we get that ((a,b))h = ((¢,d))h.

Let (a,b), (¢,d) € 67 such that ((a,b))h = ((c,d))h. Suppose the contrary: (a,b)-(n,n) #
(¢,d) - (n,n) for any idempotent (n,n) € ¢z. If (a,b) - (n1,n1) = (¢,d) - (ng,ny) for some
idempotents (ny,n1), (n2, ng) € €z, then we have that

(a,b) - (n1,m1) - (n2,n2) = (a,b) - (n1,n1) - (n1,n1) - (ng, M2)
= (Ca d) : (n27n2) : (nl,nl) . (n27n2)

= (¢,d) - (n1,m1) - (n2,ng).

Therefore we get that (a,b) - (ny,n1) # (¢,d) - (ng, ny) for all idempotents (nq,n1), (ne,ny) €
%7. Then Proposition 2.1(vi) implies that b — a # d — ¢, and hence by the proof of Propo-
sition 2.2 we get that the congruence on the semigroup %7 which is generated by the ho-
momorphism b distincts from the minimal group congruence €,,, on 67. Then the ideal I
is not isomorphic to the additive group of integers Z and hence by Proposition 2.2 we have
that the ideal I contains a finite cyclic group. This contradicts assertion (ii). The obtained
contradiction implies our assertion.

(iv) Assertions (i7) and (i4i) imply that the subsemigroup S = ¢z UI of T is algebraically
isomorphic to the inverse semigroup S3 from Example 3. We identify the group I with G|
and put € =0 € G.

By 7 we denote the topology of the topological inverse semigroup 7'. Since G| is a discrete
subgroup of T, assertion (7) implies that there exists a compact open neighbourhood U(0)
of 0 in T" with the following property:

U(0) C E(T) and there is a positive integer ng such that ng = max{(n,n) € E(%z) |
(n,n) € U(0)} and (i,7) € U(0) for all integers i > ny.

Hence, we get that %5(0) = {U,(0) | n € N} is a base of the topology of the space T at
the point 0 € Gy C T, where U, (0) = {0} U{(n+i,n+1) | i € N}.

We fix an arbitrary element £ € G,. Without loss of generality we can assume that
k> 0. Then k! = —k € Z = Gy. Since Gy is a discrete subgroup of T', the continuity of
the homomorphism h: T'— Gy: x +— x-€ = z - 0 implies that (k)h~! is an open subset in
T'. We observe that, since the homomorphism § generates the minimal group congruence on
%7, (see assertion (iii)) we get that (k)h™' N6z = {(a,b) € €2 | b— a = k}. Also, since

Ta,0) = {(z,y) € 6z | (x,y) - (b;b) = (a,b)},
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for every (a,b) € €7, Proposition 3.2(viii) implies that 1(a, b) is a closed-and-open subset in
T for every (a,b) € €7. Hence we get that {k} U{(i,i+k) € ¢z |i=1,2,3,...} is an open
subset in T
We fix an arbitrary positive integer . Since (i + k,i) - k = 0 € G, the continuity of
the semigroup operation in 7" implies that for every U;(0) € %5(0) there exists an open
neighbourhood
V() C{k}U{(,i+k)€C|i=1,23,..}

of k in T such that (i + k,7) - V(k) C U;(0). Then the semigroup operation of %7 implies
that V (k) C U;(k) for U;(k) € A3(k).
We observe that for every k € G and for every positive integer ¢ we have that

0-(k+i)=k and  U0)-{(i,i +k)} = Ui(k),

where U;(0) € #3(0) and U;(k) € %$5(k). Then the continuity of the semigroup operation
in 7" implies that for every open neighbourhood W (k) of k in T there exists U;(0) € A3(0)
such that

Ui(0) - {(i,i + k)} = Us(k) € W (k).

This implies that the bases of topologies 7 and 73 at the point £ € T' coincide.
In the case when k < 0 the proof is similar. This completes the proof of our assertion. [

Theorem 3 implies the following:

Corollary 4.1. Let T be a Hausdorff locally compact topological inverse semigroup. If T
contains 67, as a dense subsemigroup such that I = T \ 167 # @ and 1%, = 67, then T is
topologically isomorphic to the topological inverse semigroup (Ss, 73) from Example 3.

Theorem 4. Let (T,7) be a Hausdorff locally compact topological inverse monoid with
unit 1p. If 67 is a dense subsemigroup of T such that 1% = T and the group of units of T
is singleton, then there exists a decreasing sequence of negative integers {m;};en such that
(T, 7) is topologically isomorphic to the semigroup (Si, ) from Example 1.

Proof. By the assumption of the theorem we have that 7'\ 7 = {1r}. Then Lemma 3.2(7)
implies that there exists a base Z(17) of the topology 7 at the unit 17 such that U(1y) C
E(%7) for any U(1r) € A(1r). Also statements (¢) and (d) of Theorem 1.7 from [6, Vol. 1]
imply that we can assume that (n,n) € U(lr) if and only if n is a negative integer. Since
by Corollary 3.1 every element of the semigroup %7 is an isolated point of T', without loss of
generality we can assume that all elements of the base (1) are closed-and-open subsets of
T. Also, the local compactness of T implies that without loss of generality we can assume
that the base (1) consists of compact subsets, and Corollary 3.3.6 from [9] implies that
the base #(1r) is countable.
We suppose that ZB(1r) = {U,(1r) | n=1,2,3,...}. We put

Wl(lT) = U1<1T) and W1<1T) = VVifl(lT) N Ul(lT),

for all i = 2,3,4,.... We observe that B(17) = {W,(17) | n=1,2,3,...} is a base of the
topology 7 at the unit 17 of T such that W, (1) ; W, (17) for every positive integer
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n. Then the compactness of U;(1r), i = 1,2,3,..., and the discreteness of the space &7
imply that the family (1) consists of compact-and-open subsets of 7. Let {m;},. be a

decreasing sequence of negative integers such that U {(ms,m;)} = Wi(1lr) \ {1r}. We put
i=1
Vo = A{1r} U{(m;,m;) € 67 | i = n} for every positive integer n. Since every element of the

family Z(1r) is a compact subset of T', Corollary 3.1 implies that the family
PB(lr)={V,|n=1,2,3 .}
is a base of the topology 7 at 17 of T" and this completes the proof of our theorem. O
Theorems 3 and 4 imply the following:

Corollary 4.2. Let (T, 1) be a Hausdorff locally compact topological inverse semigroup. If
¢7, is a dense subsemigroup of T such that the group of units of T is singleton, then there
exists a decreasing sequence of negative integers {m;};en such that (T, 7) is topologically
isomorphic either to the semigroup (S1,7) from Example 1 or to the semigroup (Sy,74)
from Example 4.

Theorem 5. Let (T, ) be a Hausdorff locally compact topological inverse monoid with unit
17. Suppose that 67 is a dense subsemigroup of T' such that the following conditions hold:

(i) 162 =T;
(13) the group of units H(1r) of T is non-singleton; and

(14i) there exists an integer j such that K = {17} U{(i,i) € €7 | i > j} is a compact subset
of T.

Then there exists a decreasing sequence of negative integers {m; };en such that m;,; = m;—1
for every positive integer i and (T, 7) is topologically isomorphic to the semigroup (Ss, )
for n =1 from Example 2.

Proof. As in the proof of Theorem 4 we construct a decreasing sequence of negative integers
{m; }ien such that the family

B(r) ={U;(17) |i=1,2,3,...}
determines a base of the topology 7 at the point 17 of T', where
Uj(lr) = {1r} U{(mi,mi) € €z | i > j}.

The compactness of the set K implies that we can construct a sequence of negative integers
{m;}ien such that m; 1 = m; — 1 for every positive integer i.

Then for every element = of the group of units H(17) left and right translations A\,: 7" —
T:s—ax-sand p,: T — T : s+ s-x are homeomorphisms of the topological space T' (see
[6, Vol. 1, P. 19]), and hence the following families

Bi(z) ={z - U(lr) | Ui(1r) € B(1r)}
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and
Br(r) ={Ui(1r) - = | Ui(17) € $(1r)}

are bases of the topology 7 at the point 17 of T'. Also, we observe that the family
Bx)={UNV |Ue B(x)and V € %,(x)}

is a base of the topology 7 at the point 17 of T

Then Lemma 3.2 and Proposition 3.2 imply that the group of units H(17) of T is topo-
logically isomorphic to the discrete additive group of integers Z,. Let g be a generator of
Z.. Then by Lemma 3.2(iii) there exist an open neighbourhood U(g) of the point g in T’
and an integer k such that a — b = k for all (a,b) € U(g) N 6z. Without loss of generality
we can assume that g is a positive integer and k£ < 0. Then we have that

9 - Ui(17) = {(mi + k,m;) | (ms, m;) € Us(17)} U {g} (3)

and
Ui(1r) - g = {(mi, mi — k) | (mi,ms) € Ui(17)} U{g} (4)
We shall show that equality (4) holds. Let be (m;, m;) € U;(17). Then we get

(i mq) - g)-((miymi) - g) ™" = (my,mi)-g-g~"+(mi,mi) ™" = (my, my) -1 (mi, my) = (mi, my).
Since (m;, m;)-g € €z and 67 is an inverse semigroup we conclude that (m;, m;)-g = (m;, a)
for some integer a, and by Lemma 3.2(vi) we have that (m;, m;) - g = (m;, m; — k). This
completes the proof of equality (4). The proof of equality (3) is similar. Then Lemma 3.2(vi),
equalities (3) and (4) imply that 7" is topologically isomorphic to the semigroup (Ss, 72) for
n = 1 from Example 2. This completes the proof of the theorem. n

Theorems 3 and 5 imply the following;:

Corollary 4.3. Let (T,7) be a Hausdorff locally compact topological inverse monoid with
unit 17. Suppose that %7 is a dense subsemigroup of T such that the following conditions
hold:

(7) the group of units H(1r) of T is non-singleton; and

(i7) there exists an integer j such that K = {170} U{(i,i) € 67 | i > j} is a compact subset
of T

Then there exists a decreasing sequence of negative integers {m; };en such that m;,; = m;—1
for every positive integer i and (T, T) is topologically isomorphic either to the semigroup
(S2,72) from Example 2 or to the semigroup (Ss,75) from Example 5.
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@iresp I.P., Tyrik O.B. IIpo samukanna poswupenoi biyukaiunoi nanieepynu // Kapnarceki
martemarndui mybaikarii. — 2011. — T.3, Ne2. — C. 131-157.

VY craTTi BUBYAETHCS HALIBIPYIA 67, KA € y3arajbHeHHdIM OinukiivHol Hamisrpymu. Omnu-
CaHO OCHOBHI ajrebpalvHi BJIACTHBOCTI HAIIBIPYNU 67, 30KpeMa JIOBEJIEHO, IO KOXKHA HETPU-
BlajbHa KoHrpyeHiiss € Ha HAmBrpyi %z € rpymnosoio, i Ginabine Toro, dpakTop-HAIIBIPyIIa
%7/C€ izomopdua mukiiuniii rpymi. Ilokazano, mo Ha HamiBrpyni %7z He icHye BiaMiHHUX Bif
JIUCKPETHOI rayciopdOoBUX TOMOJOr 7 Takux, mo (%7, 7) — HaNiBTOLOJIOrIYHA HANIBIPYIIA.
Takok BUBYAETHCs 3aMUKAHHSI HAIIBIPYNU 67 y Tomosioriuniit inBepcuiit Hamisrpymni 7. Ilo-
Ka3aHO, 10 HEeIMOPOXKHIN HapicT HAMBIpyNnu %67 y HamiBrpyti 1’ CKJIaJaeThesd 3 TPYIIH OJUHUID
H(17) namisrpynu T ra nsobiunoro ineany I B T, axmo H(lr) # @ ra I # &. Y Bunajky,
koJin T € JIOKaJIbHO KOMITAKTHOIO TOIOJIOTIIHOKO IHBEPCHOIO HAMBIPyoo Ta [ # &, J0BeJIeHO,
o igeasn I TomosorivHo i3oMoOpdHMI AUCKPETHINH A UTUBHIN TPy IMIINX YUCET Ta OIMCAHO
Tonostorito Ha migHamBrpymi 6z U I. Takox jsoeezneHo, sikmo rpyna omuanns H(lr) B8 T €
HErnopoxkHbo, T0 abo H(lr) € omHoTouYKoBOK MHOXKUHOI, abo rpyna H(lr) Tomosoriuno
izomMopdHA AUCKPETHI a uTUBHII IPyTi MIMX YUCEI.

@uresns N.P., Tytuk O.B. O samvikanuu pacwupennol buyurkauueckot; nosyepynnu // Kap-
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B pabore usyuaercst mosyrpyia %z, Koropas siBjsieTcst 0000IIeHrneM OUIMKIIMIECKOMN TI0JTy-
rpymnbl. Onucanbl OCHOBHBIE ajrebpanvecKue CBOMCTBA MOJIyIPYHIbI 67, B 9aCTHOCTH JOKa-
3aHO, 9TO KaXK/iasi HeTPUBHUAJIbHAs KOHIPysHIust € Ha 67 sABIsieTcs TPYIIOBOi, n Gosee TOro,
dakrop-nosyrpyia /€ uzomopdua nukiudeckoit rpymmne. ITokazaHo, 910 Ha HOJYIPYIIIeE
%7 He cylleTByeT OTJIMYHBIX OT JUCKPETHON TOmoJIoruil 7 Takux, 4ro (%7, 7) — xaycuopdosa
[IOJIy TOIIOJIOTAYeCKasl MOJyTrpymia. Takske M3ydaeTcs 3aMbIKaHWE HOIYIPYLIBI 67 B TOIO-
Jlorudeckoit maBepcHOi nonyrpymie 1. IlokazaHo, 9TO HEycTOil HAPOCT MOJIYIPYIIBLl 67 B
nosyrpynne T cocrour uz rpyuust exunun, H(lr) noxyrpynost T u ugeana I B8 T, xorga
H(lr) # @ u I # @. B cayuae, Korja T’ sBJISeTCS JIOKATHHO KOMIIAKTHON TOIOJIOIMIECKOM
WHBEPCHOIT mostyrpymnmnoit u I # &, roka3aHo, 910 ujgeast I TomoJornaecku n3oMopdeH JuCKpeT-
HOIt & [TATUBHOI I'PYIIIE [EJIbIX YUCEJI, U OMUCAHO TOIOJIOTUIO Ha, ojmnosryrpymne 6zUI. Takxe
nokasano, ecau rpynna exunun, H(17) B T Henycra, To wiu H(1r) siBiAsSieTcs: OMHOTOYETHBIM
MHOXKeCTBOM, uin rpytmna H(17) Tonosorudecku nzoMopdHa JUCKPETHONH JINTUBHOM IpyTIIe
LEJIBIX THCEL.
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