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In the classical Gaussian analysis the Clark-Ocone formula allows to reconstruct an inte-

grand if we know the Itô stochastic integral. This formula can be written in the form

F = EF +

∫
E
{
∂tF |Ft

}
dWt,

where a function (a random variable) F is square integrable with respect to the Gaussian mea-

sure and differentiable by Hida; E — the expectation; E
{
◦ |Ft

}
— the conditional expectation

with respect to a full σ-algebra Ft that is generated by the Wiener process W up to the point

of time t; ∂·F — the Hida derivative of F ;
∫
◦(t)dWt — the Itô stochastic integral with respect

to the Wiener process.

In this paper we explain how to reconstruct an integrand in the case when instead of the

Gaussian measure one considers the so-called generalized Meixner measure µ (depending on pa-

rameters, µ can be the Gaussian, Poissonian, Gamma measure etc.) and obtain corresponding

Clark-Ocone type formulas.

Introduction

Denote by D the Schwartz space of infinite-differentiable real-valued functions on R+ :=

[0,+∞) with compact supports; by D′ the distribution space that is dual of D; by 〈·, ·〉 the
pairing between elements of D′ and D, this pairing is generated by the scalar product in the
space of square integrable with respect to the Lebesgue measure functions on R+; by the
subindex C complexifications of spaces. The notation 〈·, ·〉 will be preserved for pairing in
tensor powers and complexifications of spaces.

Let µ be the standard Gaussian measure on (D′, C(D′)) (here and below C(D′) is the
σ-algebra on D′ that is generated by cylindrical sets), i.e., a probability measure with the
Laplace transform

lµ(λ) =

∫
D′

e〈x,λ〉µ(dx) = e〈λ,λ〉/2, λ ∈ DC.
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As it is well known (e.g., [6, 25, 21]), any square integrable with respect to µ and differentiable
by Hida complex-valued function F on D′ can be presented in the form

F = EF +

∫
E
{
∂tF |Ft

}
dWt, (1)

where E is the expectation and E
{
◦ |Ft

}
is the conditional expectation with respect to a

full σ-algebra Ft that is generated by the Wiener process W up to the point of time t, i.e.,
Ft = σ(Ws : s ≤ t); ∂·F — the Hida derivative of F and

∫
◦(t)dWt — the Itô stochastic

integral with respect to W (usually for stochastic integrals on R+ we do not write limits of
integration for simplification of notations). Formula (1) is called the Clark-Ocone formula.
As we can see, this formula allows us to reconstruct a version of the integrand (this integrand
is not unique, generally speaking) if we know the result of stochastic integration.

As it is known (e.g., [8, 30]), formula (1) holds true (up to clear modifications) if instead
of the Gaussian measure one considers the Poissonian one. Moreover, one can easily avoid
a restrictive assumption that F must be differentiable by Hida: it is sufficient to generalize
the Clark-Ocone formula to spaces of generalized functions (see, e.g., [7, 9]).

Clark-Ocone formulas and their generalizations (in this paper they will be called Clark-
Ocone type formulas) have applications in the stochastic analysis and in the financial mathe-
matics, see, e.g., [18, 4, 9, 23, 10, 26, 22, 12, 8, 30] and references therein. In order to satisfy
demands of applications (for example, in some problems it is necessary to reconstruct an
integrand by the result of integration, in another problems it is necessary to recontsruct a
random variable by the family of conditional expectations of its stochastic derivative, etc.),
different variants of such formulas on various spaces, with different stochastic derivatives
and with stochastic integrals with respect to various random processes and measures were
obtained, see, in particular, [19, 21, 4, 7, 5, 20, 9, 22, 30, 8]. For example, in [21, 20] a
Clark-Ocone type formula that is connected with Lévy processes was obtained, this formula
contains stochastic integrals with respect to a Wiener process and with respect to a com-
pensated Poissonian random measure. In [9] an another way of construction of Clark-Ocone
type formulas that are connected with Lévy processes was offered, this way is based on the
Nualart-Schoutens representation for a square integrable random variable [24, 28]; now the
Clark-Ocone type formulas contain integrals with respect to special random processes. More-
over, these formulas were obtained in [9] not only for square integrable random variables,
but also for generalized ones.

In this paper we obtain Clark-Ocone type formulas in the so-called Meixner white noise
analysis. This analysis is connected with the generalized Meixner measure µ [27] (see also
Subsection 1.1) which, depending on parameters, can be the Gaussian, Poissonian, Gamma
measure etc., and with the corresponding Meixner random process M (the derivative of which
is the Meixner white noise that is connected with µ). Note that under some assumptions (see
Subsection 1.3) M is a Lévy process. Nevertheless, our constructions essentially differ from
the constructions of [21, 20] and [9]: we try to preserve a “classical” form of Clark-Ocone
type formulas and therefore exploit a Hida stochastic derivative and stochastic integrals with
respect to M only. Of course, in the particular cases when µ is the Gaussian or Poissonian
measure, our formulas reduce to the corresponding classical Clark-Ocone formulas.
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The paper is organized in the following manner. In the first section we recall necessary
definitions and results (the generalized Meixner measure, properties of the corresponding
space of square integrable functions, the extended (Skorohod) stochastic integral, the Hida
stochastic derivative, properties of these operators). In the second section we deal with
Clark-Ocone type formulas and related matters. Note that here we obtain these formulas
on the space of square integrable with respect to the generalized Meixner measure functions
only, the case of spaces of generalized functions will be considered in another paper.

1 Preliminaries

1.1 The generalized Meixner measure

Let us define the generalized Meixner measure (see [27] for more details and explanations).
Let ρ, ν : R+ → C be smooth functions such that

θ
def
= ρ− ν : R+ → R, η

def
= ρν : R+ → R+ (2)

and, moreover, θ and η are bounded on R+. Further, for each t ∈ R+ let vρ(t),ν(t)(ds) be a
probability measure on (R,B(R)) (here B(R) is the Borel σ-algebra on R) which is defined
by its Fourier transform∫

R
eiζsvρ(t),ν(t)(ds) = exp

{
− iζ

(
ρ(t) + ν(t)

)
+

2
∞∑

m=1

(
ρ(t)ν(t)

)m
m

[ ∞∑
n=2

(−iζ)n

n!

(
νn−2(t) + νn−3(t)ρ(t) + · · ·+ ρn−2(t)

)]m}
.

Definition. A probability measure µ on the measurable space (D′, C(D′)) with the Fourier
transform ∫

D′
ei〈x,ξ〉µ(dx) = exp

{∫
R+

dt

∫
R
vρ(t),ν(t)(ds)

1

s2
(
eisξ(t) − 1− isξ(t)

)}
is called the generalized Meixner measure.

Depending on parameters ρ and ν, µ we can get, in particular, the Gaussian, Poissonian,
Pascal, Meixner or Gamma measure.

It was proved in [27] that the generalized Meixner measure µ is the measure of a gen-
eralized random process [11] with independent values; and the Laplace transform lµ(·) =∫
D′ exp{〈x, ·〉}µ(dx) of µ is a holomorphic at 0 ∈ DC function.

1.2 The space of square integrable functions

Let (L2) := L2(D′, µ) be the space of complex-valued square integrable with respect to
the generalized Meixner measure µ functions on D′. We construct now a natural orthogonal
basis in (L2). For n ∈ N denote by Pn the closure in (L2) of the set of all continuous
polynomials on D′ of degree ≤ n, P0 := C. Denote also (L2

n) := Pn 	Pn−1 (the orthogonal
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complemention in (L2)), (L2
0) := C. Since µ has a holomorphic at zero Laplace transform,

the set of continuous polynomials on D′ is dense in (L2) [29], therefore (L2) =
∞
⊕
n=0

(L2
n).

Denote by ⊗̂ a symmetric tensor product. For each f (n) ∈ D⊗̂n
C , n ∈ Z+ (D⊗̂0

C := C), we
define :〈x⊗n, f (n)〉 : as the orthogonal projection of 〈x⊗n, f (n)〉 onto (L2

n), x ∈ D′. It follows
from results of [27] that :〈x⊗n, f (n)〉 : = 〈Pn(x), f

(n)〉, where Pn(x) ∈ D′⊗̂n are the kernels of
(generalized Appell) polynomials with a generating function γ(λ) exp{〈x, α(λ)〉}, λ ∈ DC,
i.e.,

γ(λ) exp{〈x, α(λ)〉} =
∞∑
n=0

1

n!
〈Pn(x), λ

⊗n〉,

where α(λ) = λ+
∞∑
n=2

λn

n
(ρn−1 + ρn−2ν + · · ·+ νn−1) and

γ(λ) =
1

lµ(α(λ))
=

exp

{
−
∫
R+

(λ2(t)

2
+

∞∑
n=3

λn(t)

n

(
ρn−2(t) + ρn−3(t)ν(t) + · · ·+ νn−2(t)

))
dt

}
.

Let us define (real, i.e., bilinear) scalar products 〈·, ·〉ext on D⊗̂n
C , n ∈ Z+, by setting for

f (n), g(n) ∈ D⊗̂n
C

〈f (n), g(n)〉ext :=
1

n!

∫
D′
〈Pn(x), f

(n)〉〈Pn(x), g
(n)〉µ(dx).

It follows from results of [27] that

〈f (n), g(n)〉ext =
∑

k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk,
l1s1+···+lksk=n

n!

ls11 . . . lskk s1! . . . sk!
×

∫
Rs1+···+sk
+

f (n)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1 , . . . , ts1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk , . . . , ts1+···+sk︸ ︷︷ ︸
lk

)×

g(n)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1 , . . . , ts1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk , . . . , ts1+···+sk︸ ︷︷ ︸
lk

)ηl1−1(t1) . . . η
l1−1(ts1)×

ηl2−1(ts1+1) . . . η
l2−1(ts1+s2) . . . η

lk−1(ts1+···+sk−1+1) . . . η
lk−1(ts1+···+sk) dt1 . . . dts1+···+sk .

(3)

So, for example, for n = 1 〈f (1), g(1)〉ext = 〈f (1), g(1)〉 =
∫
R+

f (1)(t)g(1)(t)dt, for n = 2

〈f (2), g(2)〉ext = 〈f (2), g(2)〉+
∫
R+

f (2)(t, t)g(2)(t, t)η(t)dt. If (see (2)) η = 0 (the case of Gaus-
sian or Poissonian µ) then 〈f (n), g(n)〉ext = 〈f (n), g(n)〉, in the general case 〈f (n), g(n)〉ext =
〈f (n), g(n)〉+ . . . .

Let | · |ext denotes the norm which is generated by the scalar product 〈·, ·〉ext, i.e., for

n ∈ Z+ |f (n)|ext :=
√

〈f (n), f (n)〉ext. Denote by H(n)
ext the Hilbert space which is the closure

of D⊗̂n
C with respect to | · |ext (in particular, H(0)

ext = C).
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Let H := L2(R+) be the space of complex-valued square integrable with respect to the
Lebesgue measure functions on R+. It is clear that H(1)

ext = H. For n ∈ N\{1} the space H(n)
ext

can be understood as an extension of H⊗̂n in a generalized sense: let F (n) ∈ H⊗̂n, f (n) ∈ F (n)

be a representative (a function) from the equivalence class F (n) with a “zero diagonal”, i.e.,
f (n)(t1, . . . , tn) = 0 if there exist i, j ∈ {1, . . . , n} such that i 6= j but ti = tj. It is easy
to show ([16]), that the function f (n) generates an equivalence class in H(n)

ext which can be
identified with F (n).

Note that, of course, the space H(n)
ext depends on the parametric function η, see (2) (for

example, if η = 0 then H(n)
ext = H⊗̂n), but we do not use η in the designation of this space for

simplification of notation.
For F (n) ∈ H(n)

ext, n ∈ Z+, we define a polynomial 〈Pn, F
(n)〉 ∈ (L2) as

〈Pn, F
(n)〉 := (L2)−lim

k→∞
〈Pn, f

(n)
k 〉,

where D⊗̂n
C 3 f

(n)
k → F (n) in H(n)

ext as k → ∞ (this difinition is well-posed, as is easy to verify).
The forthcoming statement easily follows from the construction of polynomials 〈Pn, F

(n)〉 (see
also [27]).

Theorem. A function F ∈ (L2) if and only if there exists a sequence of kernels(
F (n) ∈ H(n)

ext

)∞
n=0

such that F can be presented in the form

F =
∞∑
n=0

〈Pn, F
(n)〉, (4)

where the series converges in (L2), i.e., the (L2)-norm of F

‖F‖2(L2) =
∞∑
n=0

n!|F (n)|2ext < ∞. (5)

Moreover, the system
{
〈Pn, F

(n)〉, F (n) ∈ H(n)
ext, n ∈ Z+

}
is an orthogonal basis in (L2) in the

sense that for F,G ∈ (L2) of form (4) the (real) scalar product in (L2)

(F,G)(L2) =
∞∑
n=0

n!〈F (n), G(n)〉ext.

1.3 The extended stochastic integral

By analogy with the Gaussian analysis, on the probability triplet (D′, C(D′), µ) we define
the Meixner random process M by setting for each t ∈ R+ Mt := 〈P1, 1[0,t)〉 ∈ (L2), here and
below 1B(y) is the indicator of the event {y ∈ B}.

Remark. If the parametric functions ρ and ν (see Subsection 1.1) are constants then M is a
Lévy process; but, in general, it is not the case (M can be a not time-homogeneous process).
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Using results of [27] one can show that M is a locally square integrable normal martingale
(with respect to the generated by M flow of full σ-algebras) with orthogonal independent
increments, therefore one can consider the Itô stochastic integral with respect to M .

Let us recall the construction of the extended (Skorohod) stochastic integral with respect
to M (see [16] for details). Let G ∈ (L2) ⊗ H. It follows from above-posed results that G

can be presented in the form

G(·) =
∞∑
n=0

〈Pn, G
(n)
· 〉, (6)

G
(n)
· ∈ H(n)

ext ⊗H, with ‖G‖2(L2)⊗H =
∞∑
n=0

n!|G(n)
· |2

H(n)
ext⊗H

< ∞.

If in addition G is such that the kernels G
(n)
· belong to H⊗̂n ⊗ H ⊂ H(n)

ext ⊗ H (the
embedding in the generalized sense described above) then one can show [16] that F can be
presented in the form

G(·) =
∞∑
n=0

n!

∫ ∞

0

∫ tn

0

. . .

∫ t2

0

G(n)
· (t1, . . . , tn)dMt1 . . . dMtn , (7)

i.e., as a series of repeated Itô stochastic integrals with respect to the Meixner process. In
this case one can define the extended stochastic integral of G with respect to M as∫

G(t)d̂Mt :=
∞∑
n=0

(n+ 1)!

∫ ∞

0

∫ t

0

∫ tn

0

. . .

∫ t2

0

Ĝ(n)(t1, . . . , tn, t)dMt1 . . . dMtndMt =

∞∑
n=0

〈Pn+1, Ĝ
(n)〉 ∈ (L2)

(8)

(cf. [2, 3, 1]), where Ĝ(n) ∈ H⊗̂n+1 ⊂ H(n+1)
ext are the projections of G(n)

· onto H⊗̂n+1, if this
series converges in (L2). Note that if in addition G is integrable by Itô then series (8) is the
result of term by term integration of series (7), the convergence of (8) in (L2) follows in this
case from the condition G ∈ (L2)⊗H.

For a general G ∈ (L2)⊗H the above mentioned definition cannot be accepted because
it is impossible to project elements of H(n)

ext ⊗ H onto H(n+1)
ext , generally speaking. Never-

theless, the following natural generalization is possible. Let G
(n)
· ∈ H(n)

ext ⊗ H. We select a
representative (a function) g

(n)
· ∈ G

(n)
· with the property g

(n)
t (t1, . . . , tn) = 0 if there exists

j ∈ {1, . . . , n} such that tj = t. Let us define the element Ĝ(n) ∈ H(n+1)
ext as the equivalence

class in H(n+1)
ext that is generated by the symmetrization of g(n)· with respect to n+1 variables

(note that for n = 0 we have H(0)
ext ⊗ H = H 3 G

(0)
· = Ĝ(0) ∈ H = H(1)

ext). It was proved in
[16] that Ĝ(n) is well-defined and |Ĝ(n)|ext ≤ |G(n)

· |H(n)
ext⊗H.

Definition. Let G ∈ (L2)⊗H and be such that
∞∑
n=0

(n+1)!|Ĝ(n)|2ext < ∞, where the elements

Ĝ(n) ∈ H(n+1)
ext were constructed above by the kernels G

(n)
· ∈ H(n)

ext ⊗ H from decomposition
(6) for G. We define the extended stochastic integral with respect to M

∫
G(t)d̂Mt ∈ (L2)

by setting ∫
G(t)d̂Mt :=

∞∑
n=0

〈Pn+1, Ĝ
(n)〉.
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In particular cases, when the generalized Meixner measure µ is the Gaussian or Poissonian
one, the operator

∫
◦(t)d̂Mt is the classical extended Skorohod stochastic integral [2, 3, 1].

The forthcoming statement explains why we preserve this term in a general case.

Theorem. ([16]) Let G ∈ (L2) ⊗ H and be integrable by Itô with respect to M (i.e., be
adapted with respect to the generated by M flow of σ-algebras). Then G is integrable in the
extended sense, and

∫
G(t)d̂Mt =

∫
G(t)dMt (the last integral is the Itô one).

1.4 The Hida stochastic derivative

Finally, let us recall the notion of the Hida stochastic derivative in the Meixner white
noise analysis (see [14, 15] for more details). First we note that, as it was proved in [16], any
F (n) ∈ H(n)

ext, n ∈ N, can be considered as an element F (n)(·) of the space H(n−1)
ext ⊗ H, and

|F (n)(·)|H(n−1)
ext ⊗H ≤ |F (n)|ext.

Definition. Let F ∈ (L2) and be such that

∞∑
n=1

n!n|F (n)(·)|2
H(n−1)

ext ⊗H
< ∞, (9)

where F (n)(·) are the kernels from decomposition (4) for F , in point as elements of H(n−1)
ext ⊗H.

We define the Hida stochastic derivative ∂·F ∈ (L2)⊗H by setting

∂·F :=
∞∑
n=1

n〈Pn−1, F
(n)(·)〉.

Theorem. ([16]) The extended stochastic integral
∫
◦(t)d̂Mt : (L2) ⊗ H → (L2) and the

Hida stochastic derivative ∂· : (L2) → (L2)⊗H are adjoint one to another, and, in particular,
are closed operators.

2 Clark-Ocone type formulas and related matters

2.1 A Clark-Ocone formula in the simplest particular case and problems of the
general case

Let µ be the generalized Meixner measure on (D′, C(D′)). In the case when µ is not the
Gaussian or Poissonian measure (η 6= 0, see (2)), but F ∈ (L2) is differentiable by Hida and
is such that all kernels F (n) from decomposition (4) belong to H⊗̂n (now we consider H⊗̂n

as a subspace of H(n)
ext in the generalized sense described in Subsection 1.2), the analog of

classical Clark-Ocone formula (1) has a form

F = EF +

∫
E
{
∂tF |Ft

}
dMt, (10)

where the notation as in (1) up to obvious modifications (for example, Ft = σ(Ms : s ≤ t)).
Using the definitions of the Hida stochastic derivative, of the extended stochastic integral
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and the fact that for an integrable by Itô integrand this integral coincides with the Itô one,
of the expectation (EF =

∫
D′ F (x)µ(dx)), and the fact that for F ∈ (L2) of form (4)

E
{
F |Ft

}
= 〈P0, F

(0)〉+
∞∑
n=1

〈Pn, F
(n)1[0,t)n〉 (11)

[17], one can conclude that (10) is valid if for any n ∈ N\{1} and for each F (n) ∈ H⊗̂n

nPr
(
F (n)(·1, . . . , ·n−1, ·n)1[0,·n)n−1(·1, . . . , ·n−1)

)
= F (n)

in H⊗̂n, here and below Pr denotes a symmetrization with respect to all variables. But this
equality is fulfilled in H⊗̂n = L2(R+,m)⊗̂n (m is the Lebesgue measure on R+) because if
t1, . . . , tn are mutually different then Pr1[0,tn)n−1(t1, . . . , tn−1) = 1

n
, and m⊗n

(
{t1, . . . , tn} :

∃i, j ∈ {1, . . . , n} : i 6= j, ti = tj
)
= 0. Note that one can prove (1) and its Poissonian

counterpart by the same way.
In the general case not each F ∈ (L2) can be presented even in the form

F = EF +

∫
G(t)d̂Mt, (12)

G ∈ (L2)⊗H (see Proposition 2.1 below for details). But even if F ∈ (L2) is representable
in form (12), formula (10) can be not valid. For example, let F = 〈P3, F

(3)〉, F (3) ∈ H(3)
ext.

Then EF = 0 and it is not difficult to calculate that∫
E
{
∂tF |Ft

}
dMt = 〈P3, F

(3)(·1, ·2, ·3)
(
1[0,·3)2(·1, ·2) + 1[0,·2)2(·3, ·1) + 1[0,·1)2(·2, ·3)

)
〉,

therefore using (5) and (3) we obtain

‖F −
∫

E
{
∂tF |Ft

}
dMt‖2(L2) = 6|F (3)

(
1− [1[0,·3)2(·1, ·2) + 1[0,·2)2(·3, ·1) + 1[0,·1)2(·2, ·3)]

)
|2ext =

18

∫
R2
+

|F (3)(t1, t1, t2)|21{t1≥t2}η(t1)dt1dt2 + 12

∫
R+

|F (3)(t1, t1, t1)|2η2(t1)dt1.

If F (3) is such that
∫
R+

|F (3)(t1, t1, t1)|2η2(t1)dt1 = 0 then 〈P3, F
(3)〉 can be presented in form

(12) (see Poposition 2.1 below), but, as we can see from the calculation above, even under
this condition it is possible that F 6=

∫
E
{
∂tF |Ft

}
dMt.

Remark 2.1. It is easy to understand intuitively why Clark-Ocone formula (10) is not valid
in the general case: in order to calculate the norms in H(n)

ext, n > 2, one has to use nonsym-
metrical functions, e.g., Q(t1, t2) := F (3)(t1, t1, t2); but applying the conditional expectation
we “cut off” such functions and therefore lose an information.

In what follows, we clarify a condition of representability of F ∈ (L2) in form (12), and
explain how to reconstruct an integrand G.
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2.2 A belonging of square integrable functions to the range of values of the
extended stochastic integral

We begin from a simple example. Let F = 〈P2, F
(2)〉, F (2) ∈ H(2)

ext. It is clear that if F
is representable in form (12) then G(·) = 〈P1, G

(1)
· 〉, G(1)

· ∈ H(1)
ext ⊗H, and F (2) = Ĝ(1) (see

Subsection 1.3). But since by construction Ĝ(1) contains a representative ĝ(1) such that for
each t ∈ R+ ĝ(1)(t, t) = 0, we have a necessary condition of representability of 〈P2, F

(2)〉 in
form (12): F (2) must contain a representative f (2) such that for each t ∈ R+ f (2)(t, t) = 0.
Moreover, it is easy to see that this condition is sufficient: one can set G

(1)
· := F (2)(·) (i.e.,

we consider F (2) as an element of H(1)
ext ⊗H).

In a general case the situation is quite similar. Namely, we have the following statement.

Proposition 2.1. Let F ∈ (L2). The following statements are equivalent:

(1) F can be presented in form (12) with an integrand G ∈ (L2)⊗H;

(2) for each n ∈ N\{1} the kernel F (n) ∈ H(n)
ext from decomposition (4) for F has a rep-

resentative f (n) such that f (n)(t1, . . . , tn) = 0 if for each i ∈ {1, . . . , n} there exists
j ∈ {1, . . . , n} such that i 6= j, but ti = tj.

Remark 2.2. If, for example, η = 0 (see (2)) then for each F ∈ (L2) the condition of
statement (2) is automatically fulfilled. In fact, it follows from (3) that considering properties
of representatives of F (n) ∈ H(n)

ext, n ∈ N\{1}, one can ignore families of arguments {t1, . . . , tn}
for which there exist i, j ∈ {1, . . . , n} such that i 6= j, ti = tj, η(ti) = 0 (i.e., one can redefine
these representatives on described families of arguments in compliance with necessity).

Proof. First we prove this proposition for F = 〈Pn, F
(n)〉, F (n) ∈ H(n)

ext, n ∈ N\{1}.
1) (“(2)⇒(1)”) Let f (n) be a representative of F (n) that is described in the condition of

statement (2). Without loss of generality one can assume that f (n) is a symmetric function.
We set

hn(t1, . . . , tn) = Pr1{t1 6=tn,t2 6=tn,...,tn−1 6=tn} =

1

n

[
1{t1 6=tn,t2 6=tn,...,tn−1 6=tn} + 1{tn 6=tn−1,t1 6=tn−1,...,tn−2 6=tn−1} + · · ·+ 1{t2 6=t1,t3 6=t1,...,tn 6=t1}

] (13)

(1B is the indicator of the event B),

g
(n−1)
t (t1, . . . , tn−1) :=

{
f (n)(t1,...,tn−1,t)
hn(t1,...,tn−1,t)

, if hn(t1, . . . , tn−1, t) 6= 0

0, if hn(t1, . . . , tn−1, t) = 0
(14)

(note that if hn(t1, . . . , tn−1, t) = 0 then f (n)(t1, . . . , tn−1, t) = 0 by the condition of state-
ment (2)). Using (3), nonatomicity of the Lebesgue measure, the equality

hn(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk , . . . , ts1+···+sk︸ ︷︷ ︸
lk

, t) =
1

n
1{lk>1} +

sk + 1

n
1{lk=1}
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for different t1, . . . , ts1+···+sk , t (here k, l·, s· ∈ N, l1 > · · · > lk, l1s1 + · · ·+ lksk = n− 1), and
the condition from statement (2) (in the last inequality of the forthcoming calculation), we
obtain

|g(n−1)
· |2

H(n−1)
ext ⊗H

=
∑

k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk,
l1s1+···+lksk=n−1

(n− 1)!

ls11 . . . lskk s1! . . . sk!
×

∫
Rs1+···+sk+1
+

|g(n−1)
t (t1, . . . , t1︸ ︷︷ ︸

l1

, . . . , ts1+···+sk , . . . , ts1+···+sk︸ ︷︷ ︸
lk

)|2×

ηl1−1(t1) . . . η
lk−1(ts1+···+sk)dt1 . . . dts1+···+skdt =

n
∑

k,lj ,sj∈N: j=1,...,k, l1>···>lk>1,
l1s1+···+lksk+1=n

n!

ls11 . . . lskk s1! . . . sk!
×

∫
Rs1+···+sk+1
+

|f (n)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk , . . . , ts1+···+sk︸ ︷︷ ︸
lk

, t)|2×

ηl1−1(t1) . . . η
lk−1(ts1+···+sk)dt1 . . . dts1+···+skdt+

n
∑

k,lj ,sj∈N: j=1,...,k, l1>···>lk=1,
l1s1+···+lk−1sk−1+sk+1=n

n!

ls11 . . . l
sk−1

k−1 s1! . . . (sk + 1)!(sk + 1)
×

∫
Rs1+···+sk+1
+

|f (n)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk−1+1, . . . , ts1+···+sk , t)|2×

ηl1−1(t1) . . . η
lk−1−1(ts1+···+sk−1

)dt1 . . . dts1+···+skdt ≤ n|F (n)|2ext < ∞.

Therefore the function g
(n−1)
· generates an element (an equivalence class) G(n−1)

· ∈ H(n−1)
ext ⊗H.

It is easy to see that Ĝ(n−1) = F (n) (see Subsection 1.3): for the representative g
(n−1)
· ∈

G
(n−1)
· which is defined by (14) ĝ(n−1)(·1, . . . , ·n) = g

(n−1)
·n (·1, . . . , ·n−1) · hn(·1, . . . , ·n) =

f (n)(·1, . . . , ·n) ∈ F (n) because f (n) is a symmetric function described in the condition of
statement (2). Set G(·) := 〈Pn−1, G

(n−1)
· 〉. Now F =

∫
G(t)d̂Mt, so, the condition of state-

ment (1) is fulfilled.
2) (“(1)⇒(2)”) Let the condition of statement (1) be fulfilled, i.e.,

〈Pn, F
(n)〉 =

∫
〈Pn−1, G

(n−1)
t 〉d̂Mt, G(n−1)

· ∈ H(n−1)
ext ⊗H.

By definition of the extended stochastic integral it means that F (n) = Ĝ(n−1), but an element
Ĝ(n−1) ∈ H(n)

ext satisfies the condition from statement (2) by construction.
The carryover of the result to the general case is trivial; we note only that if F ∈ (L2) and

satisfies the condition of statement (2) then the formally constructed integrand G belongs
to (L2)⊗H because for each n ∈ N we have |G(n−1)

· |2
H(n−1)

ext ⊗H
≤ n|F (n)|2ext (for n = 1, G

(0)
· =

F (1) ∈ H = H(1)
ext), therefore ‖G‖2(L2)⊗H =

∑∞
n=1(n−1)!|G(n−1)

· |2
H(n−1)

ext ⊗H
≤

∑∞
n=1 n!|F (n)|2ext ≤

‖F‖2(L2) < ∞.
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Remark 2.3. Let F ∈ (L2) and be presentable in the form F = EF +
∫
G(t)d̂Mt, where

G(·) =
∑∞

n=1〈Pn−1,G(n−1)
· 〉, G(n−1)

· ∈ H(n−1)
ext ⊗ H, is a formal series (i.e., this series can

diverge in (L2) ⊗ H) and
∫
G(t)d̂Mt is a formal stochastic integral, i.e.,

∫
G(t)d̂Mt =∑∞

n=1〈Pn, Ĝ(n−1)〉. As is easy to see, now for each n ∈ N F (n) = Ĝ(n−1) in H(n)
ext, there-

fore F satisfies the condition of statement (2) of Proposition 2.1 whence it follows that F

can be presented in form (12) with an integrand G ∈ (L2)⊗H (note that G 6= G, generally
speaking). So, in what follows, in corresponding places we will write “F can be presented in
form (12)” without the reminder that G ∈ (L2)⊗H.

Remark 2.4. If F = 〈Pn, F
(n)〉, n ∈ N\{1}, cannot be presented in form (12), one still can

define the function g
(n−1)
· by (14) and construct the corresponding element Ĝ(n−1) ∈ H(n)

ext.
But now F (n) 6= Ĝ(n−1) in H(n)

ext and |Ĝ(n−1)|ext < |F (n)|ext (the norm |F (n)−Ĝ(n−1)|ext contains
integrals by families of arguments for which hn is equal to zero).

Corollary. If F ∈ (L2) and is presentable in form (12) then the kernels G(n−1)
· ∈ H(n−1)

ext ⊗H
from decomposition (6) of an integrand can be constructed by representatives (14).

2.3 Clark-Ocone type formulas

It is described above how for a representable in form (12) random variable F ∈ (L2) to
reconstruct a corresponding integrand G ∈ (L2)⊗H. But such a description is not convenient
for applications. In this subsection we prove statements, in which an integrand G for a given
F is presented in a more convenient for applications form.

We begin from some preparation. For n ∈ N\{1} and t1, . . . , tn ∈ R+ set ~n(t1, . . . , tn) :=
nhn(t1, . . . , tn), where the functions hn are defined in (13); set also ~1 ≡ 1. Further, for
G

(n)
· ∈ H(n)

ext ⊗H, n ∈ Z+, set

G̃(n)
· (·1, . . . , ·n) :=

{
G

(n)
· (·1,...,·n)

~n+1(·1,...,·n,·) , if ~n+1(·1, . . . , ·n, ·) 6= 0

0, if ~n+1(·1, . . . , ·n, ·) = 0.

It is easy to see that G̃
(n)
· ∈ H(n)

ext ⊗H and

|G̃(n)
· |H(n)

ext⊗H ≤ |G(n)
· |H(n)

ext⊗H. (15)

For G ∈ (L2)⊗H we define

(AG)(·) :=
∞∑
n=0

〈Pn, G̃
(n)
· 〉,

where the kernels G̃(n)
· are constructed by the kernels G(n)

· from decomposition (6) for G. It
follows from estimate (15) that A is a linear continuous operator in (L2)⊗H.

Theorem 1. Let F ∈ (L2), be presentable in form (12) (see Proposition 2.1) and belongs
to the domain of the Hida stochastic derivative (see (9)). Then the representation

F = EF +

∫
A∂tF d̂Mt (16)

is valid, where
∫
A∂tF d̂Mt :=

∫
(A∂·F )(t)d̂Mt.
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Remark 2.5. In the classical Gaussian (and Poissonian) analysis one can reconstruct F−EF

for differentiable by Hida F ∈ (L2) by using of the Clark-Ocone formula if ∂·F is known.
But in the Meixner white noise analysis it is not the case: now it is impossible to reconstruct
even 〈Pn, F

(n)〉 (n ∈ N\{1}) if ∂·〈Pn, F
(n)〉 is known, generally speaking, because different

F (n) ∈ H(n)
ext can coincide as elements of H(n−1)

ext ⊗ H. Nevertheless, for F satisfying the
conditions of Theorem 1 F − EF can be reconstructed if ∂·F is known. But for such a
reconstruction one has to use the extended stochastic integral in Clark-Ocone type formula
(16) because A∂·F can be nonintegrable by Itô.

Proof. It is sufficient to prove the theorem for F = 〈Pn, F
(n)〉, F (n) ∈ H(n)

ext, n ∈ N\{1} (the
cases n = 0 and n = 1 are trivial). Let us accept by definition 0

0
:= 0. Using the definitions

of the Hida stochastic derivative and of the operator A, we can write

A∂·F = n〈Pn−1, F̃
(n)(·)〉 = n

〈
Pn−1,

f (n)(·1, . . . , ·n−1, ·)
~n(·1, . . . , ·n−1, ·)

〉
=

〈
Pn−1,

f (n)(·1, . . . , ·n−1, ·)
hn(·1, . . . , ·n−1, ·)

〉
,

where f (n) ∈ F (n) ∈ H(n)
ext is a symmetric function described in statement (2) of Proposi-

tion 2.1 (note that if for a family of arguments t1, . . . , tn−1, t ∈ R+ hn(t1, . . . , tn−1, t) = 0 then
f (n)(t1, . . . , tn−1, t) = 0). But by construction of the kernels of the extended stochastic inte-

gral (see Subsection 1.3) we have now f̂ (n)

hn
= f (n) ∈ F (n), whence

∫
(A∂·〈Pn, F

(n)〉)(t)d̂Mt =

〈Pn, F
(n)〉, which is what had to be proved.

Corollary. If F ∈ (L2), can be presented in form (12) and belongs to the domain of the
Hida stochastic derivative then an integrand G from (12) can be presented in the form

G(·) = A∂·F.

Formula (16) can be interpreted as a Clark-Ocone type formula in the Meixner white noise
analysis, but this formula is not a direct analog of classical Clark-Ocone formula (1). In fact,
if µ is the Gaussian or Poissonian measure then, as is easily seen, for G ∈ (L2)⊗H we have
(AG)(·) =

∑∞
n=0〈Pn,

G
(n)
·

n+1
〉, where G

(n)
· ∈ H⊗̂n ⊗ H are the kernels from decomposition (6)

for G. On the other hand, one can understand G as the family of functions gα : R+ → (L2)

(‖gα‖(L2)⊗H < ∞, α ∈ Θ—some set of indexes) that is defined by an arbitrary representative
gα ∈ G and is such that for arbitrary α1, α2 ∈ Θ ‖gα1 − gα2‖(L2)⊗H = 0. In this case
E
{
G(·)|F·

}
∈ (L2) ⊗ H is an equivalense class in (L2) ⊗ H that contains the family of

functions R+ 3 t 7→ E
{
gα(t)|Ft

}
, α ∈ Θ, and even for G of form G(·) = ∂·F , F ∈ (L2), we

have E
{
G(·)|F·

}
=

∑∞
n=0〈Pn, G

(n)
· 1[0,·)n〉 6= (AG)(·), generally speaking.

Let us obtain a direct analog of formula (1) in the Meixner white noise analysis. For
n ∈ N and t1, . . . , tn, t ∈ R+ set

χn,t(t1, . . . , tn) :=

{
1, if ∀i ∈ {1, . . . , n} :

(
∀j ∈ {1, . . . , n}\{i} ti 6= tj

)
ti < t,

0, in other cases,

i.e., χn,t(t1, . . . , tn) = 1 if all ti of the multiplicity one are smaller than t. For example,
χ3,5(6, 6, 4) = 1 (4 < 5, 6 has the multiplicity two), but χ3,5(6, 4, 4) = 0 (6 > 5, 6 has
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the multiplicity one). Set also χ0,· ≡ 1. For F ∈ (L2) and t ∈ R+ define an operator
Ẽ
{
F |Ft

}
∈ (L2) by setting

Ẽ
{
F |Ft

}
:=

∞∑
n=0

〈Pn, F
(n)χn,t〉, (17)

where F (n) ∈ H(n)
ext are the kernels from decomposition (4) for F . As is easily seen, we have

|F (n)χn,t|ext ≤ |F (n)|ext, therefore Ẽ
{
◦ |Ft

}
is a linear continuous operator in (L2).

Remark 2.6. We use for the operator Ẽ
{
◦|Ft

}
the notation that is similar to the designation

of a conditional expectation because these operators are similar in a sense: cf. (17) and
(11). Moreover, it is easy to see that in the Gaussian and Poissonian cases Ẽ

{
◦ |Ft

}
=

E
{
◦ |Ft

}
because for n ∈ N χn,t = 1[0,t)n in H⊗̂n (i.e., these two functions belong to the same

equivalence class in this space).

Theorem 2. Let F ∈ (L2), be presentable in form (12) (see Proposition 2.1) and belong to
the domain of the Hida stochastic derivative (see (9)). Then the representation

F = EF +

∫
Ẽ
{
∂tF |Ft

}
d̂Mt (18)

is valid.

Remark 2.7. If the kernels F (n) from decomposition (4) for F can be considered as elements
of H⊗̂n (see Subsection 1.2) then formula (18) reduces to (10).

Proof. It is sufficient to prove the theorem for F = 〈Pn, F
(n)〉, F (n) ∈ H(n)

ext, n ∈ N\{1} (the
cases n = 0 and n = 1 are trivial). Let f (n) ∈ F (n) and be a symmetric function described in
statment (2) of Proposition 2.1. Then for almost all (with respect to the Lebesgue measure)
t ∈ R+ ∂t〈Pn, f

(n)〉 = n〈Pn−1, f
(n)(t)〉, Ẽ

{
∂t〈Pn, f

(n)〉|Ft

}
= n〈Pn−1, f

(n)(t)χn−1,t〉, and∫
Ẽ
{
∂t〈Pn, F

(n)〉|Ft

}
d̂Mt =

∫
Ẽ
{
∂t〈Pn, f

(n)〉|Ft

}
d̂Mt = n〈Pn, ̂f (n)(·)χn−1,·〉.

Therefore we have to show that n ̂f (n)(·)χn−1,· ∈ F (n) in H(n)
ext. Using the construction of

̂f (n)(·)χn−1,·, (3), nonatomicity of the Lebesgue measure and the fact that f (n) is a symmetric
function satisfying the condition from statement (2) of Proposition 2.1, we obtain∣∣F (n) − n ̂f (n)(·)χn−1,·

∣∣2
ext

=
∣∣f (n) − n ̂f (n)(·)χn−1,·

∣∣2
ext

=∑
k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk=1,

l1s1+···+lk−1sk−1+sk=n

n!

ls11 . . . l
sk−1

k−1 s1! . . . sk!
×

∫
Rs1+···+sk
+

∣∣∣f (n)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk−1
, . . . , ts1+···+sk−1︸ ︷︷ ︸
lk−1

, ts1+···+sk−1+1, . . . , ts1+···+sk)×

[
1− 1{ts1+···+sk−1+1<ts1+···+sk

,ts1+···+sk−1+2<ts1+···+sk
,...,ts1+···+sk−1<ts1+···+sk

}−

1{ts1+···+sk
<ts1+···+sk−1,ts1+···+sk−1+1<ts1+···+sk−1,...,ts1+···+sk−2<ts1+···+sk−1} − · · ·−

1{ts1+···+sk−1+2<ts1+···+sk−1+1,ts1+···+sk−1+3<ts1+···+sk−1+1,...,ts1+···+sk
<ts1+···+sk−1+1}

]∣∣∣2×
ηl1−1(t1) . . . η

lk−1−1(ts1+···+sk−1
)dt1 . . . dts1+···+sk = 0
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(for different ts1+···+sk−1+1, . . . , ts1+···+sk one and only one indicator in this calculation is equal
to one; other cases can be ignored because

m⊗sk
(
{ts1+···+sk−1+1, . . . , ts1+···+sk} :

∃i, j ∈ {s1 + · · ·+ sk−1 + 1, . . . , s1 + · · ·+ sk} : i 6= j, ti = tj
)
= 0,

where m is the Lebesgue measure on R+).

Remark 2.8. One can introduce a linear continuous operator Ẽ
{
◦ (·)|F·

}
in (L2) ⊗H by

setting (cf. (17))

Ẽ
{
G(·)|F·

}
:=

∞∑
n=0

〈Pn, G
(n)
· χn,·〉, (19)

where G(n)
· ∈ H(n)

ext⊗H are the kernels from decomposition (6) for G. In this case formula (18)
holds true if we accept by definition

∫
Ẽ
{
∂tF |Ft

}
d̂Mt :=

∫
Ẽ
{
∂·F |F·

}
(t)d̂Mt (cf. Theorem 1).

Note that if G ∈ (L2) ⊗H and g ∈ G is a representative of G then the function R+ 3 t 7→
Ẽ
{
g(t)|Ft

}
∈ (L2) (see (17)) generates the equivalence class in (L2)⊗H that coincides with

Ẽ
{
G(·)|F·

}
(see (19)).

Remark 2.9. Clark-Ocone type formulas (16) and (18) were proved under a very restrictive
assumption that a random variable F ∈ (L2) is differentiable by Hida. But one can easily
avoid this restriction considering ∂· as a linear continuous operator acting from (L2) to
(L2)0−1 ⊗ H, where (L2)0−1 is the so-called parametrized Kondratiev-type space of regular
generalized functions [13], and introducing A and Ẽ

{
◦ |Ft

}
as linear continuous operators in

(L2)0−1 ⊗H and (L2)0−1 correspondingly by analogy with definitions given above.

As we can see, the use of the extended stochastic integral and of special operators in
Clark-Ocone type formulas is stipulated by properties of the generalized Meixner measure.
Nevertheless, in some particular cases one can use the Itô stochastic integral and the condi-
tional expectation. Let us consider the question about this possibility in more details.

Theorem 3. Let F ∈ (L2) and belong to the domain of the Hida stochastic derivative (see
(9)). Then the following statements are equivalent:

(1) F can be presented in form (10);

(2) for each n ∈ N\{1} the kernel F (n) ∈ H(n)
ext from decomposition (4) for F has a repre-

sentative f (n) ∈ F (n) such that f (n)(t1, . . . , tn) = 0 if there exist i, j ∈ {1, . . . , n}, i 6= j,
such that max{t1, . . . , tn} = ti = tj (i.e., if the multiplicity of maximal t· ∈ {t1, . . . , tn}
is greater than one).

Remark 2.10. It is easy to see, if for some F ∈ (L2) the condition of statement (2) of this
theorem is fulfilled (for example, it is so in the case η = 0 (see (2))) then the condition of
statement (2) of Proposition 2.1 is fulfilled too.
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Proof. It is sufficient to prove the theorem for F = 〈Pn, F
(n)〉, F (n) ∈ H(n)

ext, n ∈ N\{1}.
1) ("(2)⇒(1)") Let f (n) be a representative of F (n) that is described in the condition of

statement (2). Without loss of generality one can assume that f (n) is a symmetric function.
Using (11), properties of the extended stochastic integral (see Subsection 1.3), and the
fact that if Pr1[0,tn)n−1(t1, . . . , tn−1) = 0 then f (n)(t1, . . . , tn) = 0 by the condition from
statement (2) (because Pr1[0,tn)n−1(t1, . . . , tn−1) = 0 if and only if the multiplicity of maximal
t· ∈ {t1, . . . , tn} is greater than one), we obtain∫

E
{
∂tF |Ft

}
d̂Mt =

∫
E
{
∂t〈Pn, f

(n)〉|Ft

}
d̂Mt =

∫
n〈Pn−1, f

(n)(t)1[0,t)n−1〉d̂Mt =

〈Pn, nf
(n)Pr1[0,·n)n−1(·1, . . . , ·n−1)〉 = 〈Pn, f

(n)〉 = F.

2) ("(1)⇒(2)") If F = 〈Pn, F
(n)〉 can be presented in form (10) then, as is easy to cal-

culate, n ̂F (n)(·)1[0,·)n−1 = F (n). But by construction the equivalence class n ̂F (n)(·)1[0,·)n−1 ∈
H(n)

ext contains a function f (n) that satisfies the condition from statement (2): one can consider
a symmetric function f̃ (n) ∈ F (n) in H(n)

ext and set

f (n)(t1, . . . , tn) :=

{
f̃ (n)(t1, . . . , tn), if Pr1[0,tn)n−1(t1, . . . , tn−1) 6= 0

0, if Pr1[0,tn)n−1(t1, . . . , tn−1) = 0.

Proposition 2.2. Let F ∈ (L2), belong to the domain of the Hida stochastic derivative
(see (9)) and be presentable in form (10) (see Theorem 3). Then Ẽ

{
∂·F |F·

}
= E

{
∂·F |F·

}
in (L2)⊗H (see Remark 2.8).

Proof. It is sufficient to prove the statement for F = 〈Pn, F
(n)〉, F (n) ∈ H(n)

ext, n ∈ N\{1}
(the cases n = 0 and n = 1 are trivial). Let f (n) be a representative of F (n) that is described
in the condition of statement (2) of Theorem 3. It is sufficient to show that f (n)(·)χn−1,· =

f (n)(·)1[0,·)n−1 in H(n−1)
ext ⊗ H. Let t1, . . . , tn−1, t ∈ R+ and be such that f (n)(t1, . . . , tn−1, t)

is well-defined. As is easy to see, if χn−1,t(t1, . . . , tn−1) − 1[0,t)n−1(t1, . . . , tn−1) 6= 0 tnen the
multiplicity of max{t1, . . . , tn−1, t} is greater then one, but in this case f (n)(t1, . . . , tn−1, t) =

0. So, in any case f (n)(t1, . . . , tn−1, t)[χn−1,t(t1, . . . , tn−1) − 1[0,t)n−1(t1, . . . , tn−1)] = 0 and
therefore |f (n)(·)[χn−1,· − 1[0,·)n−1 ]|H(n−1)

ext ⊗H = 0, which is what had to be proved.
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Качановський М.О. Формули типу Кларка-Окона у майкснерiвському аналiзi бiлого шу-
му // Карпатськi математичнi публiкацiї. — 2011. — Т.3, №1. — C. 56–72.

У класичному гауссiвському аналiзi формула Кларка-Окона дозволяє вiдтворити пiд-
iнтегральну функцiю, якщо вiдомий стохастичний iнтеграл Iто. Цю формулу можна за-
писати у виглядi

F = EF +

∫
E
{
∂tF |Ft

}
dWt,

де функцiя (випадкова величина) F є квадратично iнтегровною за гауссiвською мiрою та
диференцiйовною за Хiдою; E — математичне сподiвання; E

{
◦|Ft

}
— умовне математичне

сподiвання вiдносно повної σ-алгебри Ft, породженої вiнерiвським процесом W до момен-
ту часу t; ∂·F — похiдна Хiди F ;

∫
◦(t)dWt — стохастичний iнтеграл Iто за вiнерiвським

процесом.
У цiй статтi ми пояснюємо як вiдтворити пiдiнтегральну функцiю у випадку, коли

замiсть гауссiвської мiри розглядається так звана узагальнена мiра Майкснера µ (в залеж-
ностi вiд параметрiв µ може бути гауссiвською, пуассонiвською, гамма мiрою та iн.), та
отримуємо вiдповiднi формули типу Кларка-Окона.

Качановский Н.А. Формулы типа Кларка-Окона в майкснеровском анализе белого шума
// Карпатские математические публикации. — 2011. — Т.3, №1. — C. 56–72.

В классическом гауссовском анализе формула Кларка-Окона позволяет восстановить
подынтегральную функцию, если известен стохастический интеграл Ито. Эту формулу
можно записать в виде

F = EF +

∫
E
{
∂tF |Ft

}
dWt,

где функция (случайная величина) F квадратично интегрируема по гауссовской мере и
дифференцируема по Хиде; E — математическое ожидание; E

{
◦ |Ft

}
— условное мате-

матическое ожидание относительно полной σ-алгебры Ft, порожденной винеровским про-
цессом W до момента времени t; ∂·F — производная Хиды F ;

∫
◦(t)dWt — стохастический

интеграл Ито по винеровскому процессу.
В этой статье мы объясняем как восстановить подынтегральную функцию в случае,

когда вместо гауссовской меры рассматривается так называемая обобщенная мера Майкс-
нера µ (в зависимости от параметров µ может быть гауссовской, пуассоновской, гамма
мерой и др.), и получаем соответствующие формулы типа Кларка-Окона.


