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The properties of a dual space to a space of entire functions of exponential type of many

complex variables, that on the real subspace belongs to Lp(Rn) (1 ≤ p < ∞) are described.

A functional calculus for generators of strongly continuous groups of bounded linear operators

on an arbitrary Banach space in a Fourier-image of such dual space is constructed.

Introduction

In this paper we consider a space of entire functions of exponential type for which their
restriction onto the real subspace belong to Lp(Rn) (1 ≤ p <∞). This space has a property
to be invariant with respect to the action of partial differential operators. This property al-
lows us to introduce in the dual space of linear continuous functionals (so called exponential
type distributions) a convolution operation and we can consider this space as a convolu-
tion topological algebra. In the Fourier-image of such algebra we construct a functional
calculus for generators of strongly continuous multi-parameter groups on a Banach space.
This functional calculus is a generalization of the well-known Fourier operator transform for
convolution algebras of measures [8],[2] and the calculus for generators of nonquasianalytic
groups in algebras of entire functions of exponential type [12]. This approach gives an effec-
tive method for investigation of differential operators and functions of them. We construct
the functional calculus as generalized functions of generators of C0–groups. In practice some
generalized functions (δ–functions) of concrete operators appear in the Quantum theory [3],
[4].

The existence of the structure of the convolution algebra on the space of exponential type
distributions follows from the invariant properties in this space with respect to differential
operators and plays a crucial role to construct the functional calculus. The invariant proper-
ties of subspaces of exponential type of entire functions in a wide context exponential type
vectors of unbounded linear operators on the Banach spaces are used in the operator calculus
[14], [10], [5], in the theory of Differential equations [14], [6] and in the Approximation theory
in Banach spaces [6], [15].
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1 Algebras of exponential type distributions

1.1 Spaces of entire functions of exponential type

We define a space of test functions and prove its basic properties. Let Lp(Rn) (1 ≤ p <∞)

be a complex Banach space of functions ϕ(t), t = (t1, . . . , tn) ∈ Rn, with the norm

‖ϕ‖Lp :=

(∫
Rn

|ϕ(t)|p dt
)1/p

.

We use next notations k = (k1 , . . . , kn) ∈ Zn
+, |k| = k1 + . . . + kn, k! = k1! · . . . · kn!,

kr = (k1r , . . . , knr) for r ∈ C, Dk = Dk1
1 . . . Dkn

n , where Dj = −i∂/∂tj for all j = 1, . . . , n.
The domain of the operator of partial differentiationDkj

j is: dom (D
kj
j ) ≡

{
ϕ ∈ dom (D

kj−1
j ) :

Djϕ ∈ dom (D
kj−1
j )

}
for kj ≥ 1, dom (D0

j ) = Lp for kj = 0 for all j = 1, . . . , n. Hence,

dom (Dk) =
n⋂

j=1

dom (D
kj
j ) is the domain of the operator Dk.

If ϕ ∈ Lp(Rn) and ψ ∈ Lq(Rn), where
1

p
+

1

q
= 1, then convolution is defined by

(ϕ∗ψ)(t) :=
∫
Rn

ϕ(s)ψ(t− s) ds. For p = 1 the space L1(Rn) is a Banach algebra with respect

to the convolution.
Let us consider on Lp(Rn) the following isometric shift group

Ts = e−i(s1D1+...+snDn) : ϕ(t) −→ ϕ(t− s), s = (s1, . . . , sn) ∈ Rn,

where D1 = −i∂/∂t1, . . . , Dn = −i∂/∂tn are the operators of partial differentiation.
For an arbitrary vector ν = (ν1, . . . , νn), νj > 0 (j = 1, . . . , n) we define the space

Eν
p :=

{
ϕ ∈

⋂
k∈Zn

+

dom (Dk) : ‖ϕ‖Eν
p
= sup

k∈Zn
+

‖Dkϕ‖Lp

νk
<∞

}
,

where k = (k1, . . . , kn), νk = νk11 · . . . · νknn , Dk = Dk1
1 . . . Dkn

n . From the next inequality
‖ϕ‖Lp ≤ ‖ϕ‖Eν

p
which is true for an arbitrary ϕ ∈ Eν

p it follows that the embedding Eν
p ⊂

Lp(Rn) is continuous.
In the class of entire analytic functions of n complex variables Cn 3 t+ iτ −→ Φ(t+ iτ) ∈

C we consider a subspace Mν
p = Mν

p(Cn) of functions Φ such that for each fixed vector
τ = (τ1, . . . , τn) ∈ Rn a corresponding function of n real variables Rn 3 t −→ Φ(t + iτ)

belongs to the space Lp(Rn) such that the norm

‖Φ‖Mν
p
= sup

τ∈Rn

exp
( n∑

j=1

−νj|τj|
)[∫

Rn

|Φ(t+ iτ)|pdt
]1/p

is finite. It is know [13] that the spaces Mν
p consist of the functions of exponential type.

Functions Φ(t+ iτ) from the class Mν
p such that each ϕ(t) = Φ(t+ i0) ∈ Lp(Rn) satisfies

the Bernstein’s inequality ([13], III, 3.2.2) ([1], IV, 8.3) on Rn:

‖Dkϕ‖Lp ≤ νk ‖ϕ‖Lp , (1)

where νk = νk11 · . . . · νknn .
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Theorem 1. (i) The mapping Mν
p 3 Φ(t+ iτ) −→ ϕ(t) := Φ(t+ i0) ∈ Eν

p is an isometry of
the normed spaces.

(ii) The embeddings Eν
p ⊂ Lp(Rn) are isometric.

(iii) The spaces Eν
p are invariant with respect to the action of the group T−s, and the

restriction T−s : Eν
p −→ Eν

p is an isometry of the normed spaces.

Proof. (i) Let Φ ∈ Mν
p. A restriction ϕ(t) = Φ |Rn of a functions Φ(t+ iτ) ∈ Mν

p on the real
subspace Rn satisfies the Bernstein’s inequality (1)

‖Dkϕ‖Lp ≤ νk‖ϕ‖Lp (∀Φ ∈ Mν
p), (2)

where νk ≡ νk11 · . . . · νknn . From (2) we obtain ‖ϕ‖Eν
p
≤ ‖ϕ‖Lp . From the definition of the

norm of the space Mν
p it follows ‖ϕ‖Lp ≤ ‖Φ‖Mν

p
(∀Φ ∈ Mν

p), i.e. Mν
p |Rn ⊂ Eν

p .

Conversely, let ϕ ∈ Eν
p . Let us consider the power series ϕ(t+ iτ) =

∞∑
|k|=0

(iτ)kDkϕ

k!
. The

following inequalities(∫
Rn

|ϕ(t+ iτ)|pdt
)1/p

≤
∞∑

|k|=0

|τ k| ‖Dkϕ‖Lp

k!
≤ ‖ϕ‖Lp exp

( n∑
j=1

νj|τj|
)

are valid so ‖Φ‖Mν
p
≤ ‖ϕ‖Lp . The series is convergent and the function ϕ(t+ iτ) is an entire

function of class Mν
p. Hence Eν

p ⊂ Mν
p |Rn and we obtain Eν

p = Mν
p |Rn .

(ii) Since ‖ϕ‖Lp ≤ ‖ϕ‖Eν
p
, then ‖ϕ‖Lp ≤ ‖ϕ‖Eν

p
≤ ‖ϕ‖Lp ≤ ‖Φ‖Mν

p
≤ ‖ϕ‖Lp (∀ϕ ∈ Eν

p )

and a necessary isometric isomorphism is Eν
p = Mν

p |Rn . In particular Eν
p ⊂ Lp(Rn).

(iii) For all k ∈ Zn
+ and s ∈ Rn next equality ‖T−sD

kϕ‖Lp = ‖Dkϕ‖Lp is valid. From
the identity Dkψ(s) = T−tD

kϕ(s), where ψ : Rn 3 s → T−sϕ(t), we obtain ‖Dkψ(s)‖Lp =

‖Dkϕ(s)‖Lp . Then the inequality (1) has the view ‖Dkψ‖Lp ≤ νk ‖ϕ‖Lp . From this we obtain
the inequality (∫

Rn

|ψ(t+ iτ)|pdt
)1/p

≤ ‖ϕ‖Lp exp
( n∑

j=1

νj|τj|
)
,

then ψ ∈ Mν
p.

Theorem 2. Eν
p are Banach spaces.

Proof. Each of operators Dj on Lp(Rn) (j = 1, . . . , n) is a generator of a one-parameter
isometric shift group [9]

ϕ(t) −→ ϕ(t1, . . . , tj−1, tj − ξj, tj+1, . . . , tn).

We use the inequality ‖Dkϕ‖Lp ≤ νk‖ϕ‖Eν
p
, ϕ ∈ Eν

p for all k ∈ Zn
+. If {ϕm} is a Cauchy

sequence in Eν
p , then {Dkϕm} is the same sequence in Lp(Rn) for every fixed k. To the

induction (by k) and thatDj in Lp(Rn) is closed it follows that there is a function ϕ ∈ Lp(Rn),
for which

lim
m→∞

‖Dkϕm −Dkϕ‖Lp = 0 (3)
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for any k. Then for any ε > 0 there is a number m(ε) such that

‖ϕm − ϕl‖Eν
p
< max

0≤|k|≤m(ε)

‖Dkϕm −Dkϕl‖Lp

νk
+
ε

2
<
ε

2
+
ε

2
= ε (4)

for all m, l ≥ m(ε). Thus ‖ϕl‖Eν
p
≤ ‖ϕm(ε)‖Eν

p
+ ‖ϕm(ε) − ϕl‖Eν

p
< ‖ϕm(ε)‖Eν

p
+ ε for all

l ≥ m(ε).We take a limit in the last inequality for l → ∞ and use the inequality (4), we
obtain ‖ϕ‖Eν

p
≤ ‖ϕm(ε)‖Eν

p
+ ε. Thus, ϕ ∈ Eν

p . We take a limit in (4) for l → ∞ and use (3),
we obtain ‖ϕm − ϕ‖Eν

p
≤ ε for allm ≥ m(ε). The theorem is proved.

Let
Ep :=

⋃
ν
Eν
p = lim ind

ν
Eν
p

be the union of spaces endowed with a topology of the inductive limit, where the embeddings
Eν
p ⊂ Eµ

p are continuous. The vector µ = (µ1, . . . , µn) is such that ν1 ≤ µ1, . . . , νn ≤ µn.

The locally convex space Ep we will call a space of test functions. The space Ep belongs to
the domain of differential operators Dj and is invariant relatively to their action. From a
property of regular inductive limits (see [10], [14]) it follows that every bounded subset S of
the space Ep is bounded in some Eν

p .

1.2 Distributions of exponential type

We introduce exponential type distributions. We show that the space of exponential type
distributions is a convolution algebra.

By E ′
p we denote a dual space of Ep with a weak topology. The duality 〈E ′

p | Ep〉 can be
determined by a bilinear form 〈f | ϕ〉 := 〈fν | ϕ〉, where ν is an arbitrary vector such that
ϕ ∈ Eν

p and fν := f|Eν
p
. Functionals f ∈ E ′

p will be called exponential type distributions.
For any f ∈ E ′

p and ϕ ∈ Ep the following relation

〈Dkf | ϕ〉 = (−1)|k|〈f | Dkϕ〉 (k ∈ Zn
+)

correctly defines an operation of a generalized differentiation of distributions.

Theorem 3. [11] The continuous and dense embeddings Ep ⊂ Lp(Rn), Lp(Rn) ⊂ E ′
q, where

1

p
+

1

q
= 1 are valid.

A convolution of a distribution f ∈ E ′
p and a function ϕ ∈ Ep will be defined as the

relation

(f ? ϕ)(t) := 〈f(s) | ϕ(t+ s)〉 = 〈f(s) | T−sϕ(t)〉 = 〈f(s) | T−tϕ(s)〉,

where f(s) denotes an action of a functional f on a function T−s ϕ(t) by s.
Let L(Ep) be an algebra of linear continuous operators on the space Ep with a strong

operator topology.
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Theorem 4. Let f, g ∈ E ′
p and ϕ ∈ Ep. The space E ′

p is a commutative algebra with respect
to a convolution defined by the relation

(f ∗ g) ? ϕ := f ? (g ? ϕ).

The mapping E ′
p 3 f −→ Kf ∈ L(Ep), where Kfϕ := f ? ϕ, is an algebraic isomorphism on

a commutant of the group T−s in the algebra L(Ep). The convolution has properties

Dk(f ? ϕ) = f ? (Dkϕ) = (−1)|k|(Dkf) ? ϕ,

Dk(f ∗ g) = (Dkf) ∗ g = f ∗ (Dkg)

for any k ∈ Zn
+.

Proof. For ϕ ∈ Eν
p we have ‖Kfϕ‖Eν

p
≤ ‖fν‖ ‖T−sϕ‖Eν

p
. From Theorem 1 (iii) ‖T−sϕ‖Eν

p
=

‖ϕ‖Eν
p
, then Kf ∈ L(Eν

p ), ∀ ν. Thus, Kf ∈ L(Ep).
From Theorem 3 there are functions gγ ∈ Lq(Rn) such that limγ gγ = g in E ′

p. The
duality 〈Lq(Rn) | Lp(Rn)〉 is defined by 〈gγ | ϕ〉 =

∫
Rn

gγ(r)ϕ(r) dr, then (gγ ? ϕ)(t) =∫
Rn

gγ(r)T−tϕ(r) dr. The function Rn 3 r −→ T−s−tϕ(r) ∈ Eν
p is continuous for fixed t. And

then
f ? (gγ ? ϕ) =

〈
f(s) | T−s(gγ ? ϕ)(t)

〉
=
〈
f(s) |

∫
Rn

gγ(r)T−s−tϕ(r) dr
〉
=

∫
Rn

gγ(r)〈f(s) | T−s−tϕ(r)〉 dr =
〈
gγ(r) | 〈f(s) | T−s−tϕ(r)〉

〉
= gγ ? (f ? ϕ).

From this f ? (g ? ϕ) = limγ f ? (gγ ? ϕ) = limγ gγ ? (f ? ϕ) = g ? (f ? ϕ).

Let us prove an isomorphism of the space E ′
p to a commutant of the group T−s. Let f ∈ E ′

p

and ϕ ∈ Eν
p . From the definition of the convolution and Theorem 1, we obtain ‖f ? ϕ‖Eν

p
≤

‖f‖Eν
p
‖ϕ‖Lp , where ‖f‖Eν

p
– the norm of restriction of a functional f on Eν

p . Then from

Dk(f ?ϕ)(t) =
〈
f(s) , T−sD

kϕ(t)
〉
= (f ?Dkϕ)(t) it follows ‖f ?ϕ‖Eν

p
= sup

k

‖f ? Dkϕ‖Lp

νk
≤

‖f‖Eν
p
‖ϕ‖Eν

p
. The embeddings Eν

p ⊂ Ep are continuous then F ∈ L(Eν
p ) and we have F ∈

L(Ep). The relation
KfT−sϕ = T−sKfϕ (∀ϕ ∈ Ep, s ∈ Rn) (5)

follows from the equalities (f ? T−sϕ)(t) = (f ? ϕ)(t+ s) = T−s(f ? ϕ)(t).

To prove the converse, let ϕ ∈ Ep. The mapping f : ϕ→ (Fϕ)(0) is a functional f ∈ E ′
p.

From this we obtain (Fϕ)(0) = 〈f , ϕ〉 = (f ? ϕ)(0). Replacing ϕ by T−tϕ and using (5), we
have Kf : Ep 3 ϕ −→ f ? ϕ .

Now we prove differential properties of the convolution. Obviously, Dk(f ?ϕ)(t) =
〈
f(s) |

T−sD
kϕ(t)

〉
= (f ? Dkϕ)(t). Next relations

(f ? ϕ)(t) = 〈f(s) | T−tϕ(s)〉 = 〈f(s+ t− t) | ϕ(s+ t)〉 = 〈T−rf(−t) | ϕ(r)〉

are valid. Then we have Dk(f ? ϕ)(t) = (−1)|k|
〈
T−r(D

kf)(−t) | ϕ(r)
〉
= (−1)|k|(Dkf ? ϕ)(t)

and Dk(f ∗g)?ϕ =(−1)|k|(f ∗g)?Dkϕ =(−1)|k|f ? (g ?Dkϕ) = f ? (Dkg ?ϕ) = (f ∗Dkg)?ϕ.

Using the commutation we obtain Dk(f ∗ g) = Dk(g ∗ f) = g ∗Dkf.
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Corollary 1.1. For an arbitrary distribution f ∈ E ′
p and a vector ν the subspace Eν

p is
invariant relatively to Kf and Kfν ∈ L(Eν

p ).

Corollary 1.2. Let f ∈ E ′
p and ϕ ∈ Ep, ψ ∈ Eq, where

1

p
+

1

q
= 1. Then (f?ϕ)∗ψ = f?(ϕ∗ψ).

Proof. Since f ? ϕ ∈ Ep then [(f ? ϕ) ∗ ψ](t) =
∫
Rn

〈f(s) | T−sϕ(r)〉Trψ(t) dr = 〈f(s) |

T−s

∫
Rn

ϕ(r)Trψ(t) dr〉 = [f ? (ϕ ∗ ψ)](t).

1.3 The Fourier transformation

We introduce the Fourier transformation onto the space of exponential type distribution.

For p = 1 let us denote Ê1 :=

{
ϕ̂(ξ) =

∫
Rn

e−it·ξϕ(t) dt : ϕ ∈ Ep

}
, for 1 < p < ∞

Êp :=
{
ϕ̂(ξ) = F(ϕ) : ϕ ∈ Ep

}
, where t · ξ := t1ξ1 + . . .+ tnξn for any ξ = (ξ1, . . . , ξn) ∈ Rn.

The Fourier transformation is a linear isomorphism F : Ep 3 ϕ(t) −→ ϕ̂(ξ) ∈ Êp. We
endowed Êp with a topology relatively to the mapping F .

Using the isometry Eν
p ' Mν

p(Cn) from Theorem 1 and the fact that Fourier-images of
exponential type functions are finite [13] we can define an inverse transformation by the
formula for p = 1

F−1 : Ê1 3 ϕ̂(ξ) −→ ϕ(t) =
1

(2π)n

∫
Rn

eit·ξϕ̂(ξ) dξ ∈ E1,

for 1 < p <∞ that is an inverse mapping F−1 : Êp 3 ϕ̂(ξ) −→ ϕ(t) ∈ Ep.
The duality 〈E ′

p | Ep〉 defines an adjoint mapping to the inverse one

F# := 2π(F−1)′ : E ′
p 3 f −→ f̂ ∈ Ê ′

p, where 〈f̂ | ϕ̂〉 := (2π)n〈f | ϕ〉.

Its image Ê ′
p, that generates a duality 〈Ê ′

p | Êp〉, we endow with a weak topology that coincides
with an inductive topology relatively to F#.

We use the symbols ϕ−(t) := ϕ(−t).

Theorem 5. For any f, g ∈ E ′
p, ϕ ∈ Ep, ψ ∈ Eq, where

1

p
+

1

q
= 1, the Fourier transform

has properties ϕ̂ ∗ ψ = ϕ̂ · ψ̂, f̂ ? ϕ = f̂ · ϕ̂−, where 〈f̂ · ϕ̂− | ψ̂〉 = 〈f̂ | ϕ̂− · ψ̂〉 and the
space Ê ′

p is a commutative algebra with respect to the multiplication, that is defined by the
relation 〈ĝ · f̂ | ϕ̂〉 = 〈ĝ | f̂ · ϕ̂〉. Moreover, the following equalities ĝ ∗ f = ĝ · f̂ , D̂kf =

(−ξ)kf̂ , (∀ k ∈ Z+) are valid.

Proof. Using the Corollary 1.1, we have

〈f̂ ? ϕ | ψ̂〉 = (2π)n〈f ? ϕ | ψ〉 = (2π)n[(f ? ϕ) ? ψ](0) = (2π)n[f ? (ϕ ? ψ)](0) =

(2π)n〈f | ϕ ? ψ〉 = 〈f̂ | ϕ̂ ? ψ〉 = 〈f̂ | ϕ̂− · ψ̂〉 = 〈f̂ · ϕ̂− | ψ̂〉.
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The correctness of definition of the multiplication follows from next equalities

〈ĝ ? f | ϕ̂〉 = (2π)n〈g ? f | ϕ〉 = (2π)n[(g ? f) ? ϕ](0) = (2π)n[g ? (f ? ϕ)](0) =

(2π)n〈g | f ? ϕ〉 = 〈ĝ | f̂ ? ϕ〉 = 〈ĝ | f̂ · ϕ̂−〉 = 〈ĝ · f̂ | ϕ̂−〉.

Since Dkϕ ∈ Ep(Rn), then (̂Dkϕ)(ξ) = ξkϕ̂(ξ) ∈ Êp(Rn). Hence

〈D̂kf | ϕ̂〉 = (2π)n〈Dkf | ϕ〉 = (2π)n(−1)k〈f | Dkϕ〉 = (−1)k〈f̂ | D̂kϕ〉 =

(−1)k〈f̂ | ξkϕ̂〉 = 〈(−ξ)kf̂ | ϕ̂〉.

2 Functional calculus

2.1 Finite functions of the generators of C0-groups

We construct finite functions of generators of strongly continuous groups of bounded
linear operators on an arbitrary Banach space.

Let {X, ‖·‖} be a complex Banach space, L(X) be an algebra of linear bounded operators
on X with a uniform norm ‖ · ‖L(X) and U : Rn 3 t −→ Ut ∈ L(X) be an n-parameter
C0–group on X. For every index j = 1, . . . , n generators are determined by DjUtx|t=0 =

−Ajx, where x ∈ D(Aj). Let the operators Aj : D(Aj) ⊂ X −→ X be closed and densy
determined. We denote A := (A1, . . . , An). An example: if Ut = Tt and X = Lp(Rn) then
DjTtϕ = −∂/∂tjTtϕ for ϕ ∈ Lp(Rn).

Let us assume

‖Utx‖q :=

(∫
Rn

‖Utx‖q dt

)1/q

, ‖U‖q := inf
{
c : ‖Utx‖q ≤ c ‖x‖, x ∈ X

}
,

where
1

p
+

1

q
= 1. Let the group satisfies the condition

‖Utx‖q ≤ ‖U‖q‖x‖ (∀x ∈ X). (6)

In the case p = 1 the condition (6) is equivalent to a uniform bound of the group. For
example, the condition (6) is true for the shift group Ut = Tt on X = Lp(Rn).

Theorem 6. Let ϕ ∈ Ep and the group U satisfy the condition (6). Then the operators that
are defined by the formula

ϕ̂(A) :=

∫
Rn

Utϕ(t) dt

belong to the Banach algebra L(X) and satisfies the relation (̂Djϕ)(A) = Ajϕ̂(A) (j =

1, . . . , n). If p = 1 and the group Ut is uniformly bounded then ̂(ϕ ∗ ψ)(A) = ϕ̂(A) · ψ̂(A)(
∀ ϕ̂, ψ̂ ∈ Ê1

)
.
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Proof. Let ϕ ∈ Eν
p . By Theorem 1 and condition (6), we have

‖ϕ̂(A)x‖ ≤
∫
Rn

‖Utx‖ |ϕ(t)| dt ≤ ‖Utx‖q ‖ϕ‖Eν
p
≤ ‖U‖q‖ϕ‖Eν

p
‖x‖ (∀x ∈ X). (7)

It is know ([13],III,3.2.5) that functions ϕ ∈ Ep have the property lim
t→∞

ϕ(t) = 0. Then
integrating by parts and using the property, that a generator of group is closed, we obtain

(̂Djϕ)(A) =

∫
Rn

Ut(Djϕ)(t) dt = −
∫
Rn

DjUtϕ(t) dt = Ajϕ̂(A).

For p = 1 we determine convolution of functions and next equalities

ϕ̂(A) · ψ̂(A) =
∫
Rn

Utϕ(t) dt
[ ∫
Rn

Usψ(s) ds
]
=

∫
Rn

ϕ(t)
[ ∫
Rn

Us+tψ(s) ds
]
dt =

∫
Rn

[ ∫
Rn

Urϕ(r − s)ψ(s) ds
]
dr =

∫
Rn

Ur

[ ∫
Rn

ϕ(r − s)ψ(s) ds
]
dr = ̂(ϕ ∗ ψ)(A)

are valid.

2.2 Functional calculus in algebras of exponential type distributions

We construct the functional calculus as generalized functions for generators of C0-groups.
Let X⊗̃Lp(Rn) be a completion of a projective tensor product of X and Lp(Rn). In the

case p = 1, as it is known ([16], III, 3.2.5), we have the isometric representation L1(Rn;X) '
X⊗̃L1(Rn), where L1(Rn;X) is a Banach space of all X–valued functions Rn 3 t −→ x(t) ∈
X with the norm ‖x‖L1(X) :=

∫
Rn

‖x(t)‖ dt.

Using the isometric embedding Eν
p (Rn) ⊂ Lp(Rn) for every vector ν we can determine the

subspace Eν
p (Rn;X) := X⊗̃Eν

p (Rn) ⊂ X⊗̃Lp(Rn). The embeddings Eν
p (Rn;X) ⊂ Eµ

p (Rn;X)

(ν1 ≤ µ1, . . . , νn ≤ µn) are continuous, then on a union of all these spaces we can define a
structure of an inductive limit space

Ep(Rn;X) :=
⋃
ν

Eν
p (Rn;X) = lim ind

ν
Eν
p (Rn;X) ⊂ X⊗̃Lp(Rn).

A convolution of an arbitrary distribution f ∈ E ′
p(Rn) and a vector-valued function x(t) ∈

Ep(Rn;X) is used to define by (f ? x)(t) := (I ⊗Kf )x(t), where I is the identity operator in
X.

The topological isomorphism lim ind
ν

Eν
p (Rn;X) ' X⊗̃ lim ind

ν
Eν
p (Rn) = X⊗̃Ep(Rn) is

valid. This assertion is a corollary of a known property of the inductive limit and a projective
tensor products [7]. From this assertion and known Grothendieck’s representation ([16], III,
§6) it follows that for every function x(t) ∈ Ep(Rn;X) there is a vector ν such that x(t)
belongs to the space Eν

p (Rn;X) and is represented in the form of the absolute convergent
series

x(t) =
∞∑
j=1

xj ⊗ ϕj(t), where xj ∈ X, ϕj(t) ∈ Eν
p (Rn). (8)
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Using this representation for any distribution f ∈ E ′
p(Rn) and a vector-valued function

x(t) ∈ Ep(Rn;X), we obtain (f ? x)(t) =
∞∑
j=1

xj ⊗ (f ? ϕj)(t).

Lemma 2.1. The convolution has properties

(f ∗ g) ? x = f ? (g ? x),

Dk(f ? x) = f ? (Dkx) = (−1)|k|(Dkf) ? x

for any f, g ∈ E ′
p(Rn), x = x(t) ∈ Eν

p (Rn;X) and k ∈ Zn
+.

Proof. From the definition of the convolution and by Theorem 4 next equalities follow

(f ∗ g) ? x =
∞∑
j=1

xj ⊗ (f ∗ g) ? ϕj = f ?

∞∑
j=1

xj ⊗ (g ? ϕj) = f ? (g ? x),

Dk(f ? x) =
∞∑
j=1

xj ⊗Dk(f ? ϕj) =
∞∑
j=1

xj ⊗ (−1)|k|(Dkf) ? ϕj = (−1)|k|(Dkf) ? x.

Lemma 2.2. Let the group U satisfies the condition (6). Then each of the subspaces

Êν
p (X) :=

{
x̂ =

∫
Rn

(Ut ⊗ I)x(t) dt : x(t) ∈ Eν
p (Rn;X)

}

is a Banach space respectively to the norm induced by the mapping

Eν
p (Rn;X) 3 x(t) −→ x̂ ∈ Êν

p (X).

Proof. Let us show that the mapping Eν
p (Rn;X) 3 x(t) −→ x̂ ∈ X is continuous. From (8)

we obtain

x̂ =

∫
Rn

[ ∞∑
j=1

Utxj ⊗ ϕj(t)
]
dt =

∞∑
j=1

∫
Rn

Utxj ⊗ ϕj(t) dt =
∞∑
j=1

ϕ̂j(A)xj.

From this and using the estimate (7), we have

‖x̂‖ ≤
∞∑
j=1

‖xj‖ ‖ϕ̂j(A)‖L(X ) ≤ ‖U‖q
∞∑
j=1

‖xj‖ ‖ϕj‖Eν
p
.

Using the arbitrary presentation x(t) by absolute convergent series we obtain

‖x̂‖ ≤ ‖U‖q ‖x(t)‖Eν
p (Rn;X)

and the continuity is proved. A kernel of the continuous mapping Eν
p (Rn;X) −→ X is closed

then a corresponding factor-space in this kernel is a Banach space. By the definition of the
norm in the space Êν

p (X), it is isometric to the constructed factor-space.
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Lemma 2.3. Let the group U satisfies the condition (6). Then each of the subspaces Êν
p (X)

is invariant respectively to the operator

K̂f : Êν
p (X) 3 x̂ −→ K̂f x̂ :=

∫
Rn

(Ut ⊗Kf )x(t) dt.

Proof. Taking into account (8) for elements x(t) ∈ Eν
p (Rn;X) for any f ∈ E ′

p(Rn) we obtain

‖(I ⊗Kf )x(t)‖ ≤
∞∑
j=1

‖xj‖ ‖Kfϕj‖Eν
p
≤ ‖Kf‖L(Eν

p )

∞∑
j=1

‖xj‖ ‖ϕj‖Eν
p

or ‖(I⊗Kf )x(t)‖ ≤ ‖Kf‖L(Eν
p (Rn)) ‖x(t)‖Eν

p (Rn;X). Thus the space Eν
p (Rn;X) is invariant with

respect to the acting operator I ⊗Kf .

Since Ut ⊗ Kf = (Ut ⊗ I)(I ⊗ Kf ) and I ⊗ Kf : Eν
p (Rn;X) −→ Eν

p (Rn;X) then by
Lemma 2.2 for any vector-valued function x(t) ∈ Eν

p (Rn;X) we have K̂f x̂ ∈ Êν
p (X). Then

K̂f : Êν
p (X) −→ Êν

p (X). The lemma is proved.

The embeddings Eν
p (Rn;X) ⊂ Eµ

p (Rn;X) are continuous. From this it follows that the
next embeddings Êν

p (X) ⊂ Êµ
p (X) are also continuous. Then a union of these spaces can be

represented as an inductive limit

Êp(X) :=
⋃
ν

Êν
p (X) = lim ind

ν
Êν
p (X).

Let us define by L(Êp(X)) an algebra of all linear continuous operators on Êp(X) with a
strong operator topology.

Theorem 7. Let the group U satisfies the condition (6). Then the mapping Ê ′
p(Rn) 3 f̂ −→

f̂(A) ∈ L(Êp(X)), where the linear operator f̂(A) is defined by the relation

f̂(A) : Êp(X) 3 x̂ −→ f̂(A)x̂ :=

∫
Rn

(Ut ⊗Kf )x(t) dt ∈ Êp(X),

is a continuous homomorphism of the algebra of symbols Ê ′
p(Rn) onto a subalgebra of algebra

L(Êp(X)) of operators

K̂ : Êp(X) 3 x̂ −→ K̂x̂ :=

∫
Rn

(Ut ⊗K)x(t) dt ,

where the operator K ∈ L(Ep(Rn)) belongs to the commutant of the group Ts. And we have
(̂Djf)(A) = Aj f̂(A) (j = 1, . . . , n).

Proof. From Theorem 4 and Corollary 1.1 any operator, that belongs to a commutant of
group Ts, has the form Kf , where f ∈ E ′

p(Rn). From Lemma 2.3 and the definition of the
space Êν

p (X) it follows that K̂f : Êν
p (X) −→ Êν

p (X) for every ν. From the definition of the
norm in Êν

p (X) we have x̂m → x̂ if and only if xm(t) → x(t) in the space Eν
p (Rn;X). If
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xm(t) → x(t) then from continuity of Kf it follows, that (I ⊗Kf )xm(t) → (I ⊗Kf )x(t) in
the space Eν

p (Rn;X). From this by the definition of the norm in the space Êν
p (X) we obtain

(I⊗Kf )xm(t) → (I⊗Kf )x(t). Thus, K̂f ∈ L(Êν
p (X)) for any ν and therefore K̂f ∈ L(Êp(X)) .

From the equality Kf∗g = Kf ·Kg for arbitrary f, g ∈ E ′
p(Rn) it follows K̂f∗g = K̂f · K̂g.

Thus, the functional calculus is an algebraic homomorphism from the convolution algebra
of distribution onto an algebra of continuous operators on the space Êp(X).

We now prove a continuity of the functional calculus. As in the space Ê ′
p(Rn) a topology

is inducted from E ′
p(Rn), and the space E ′

p(Rn) is given a weak topology, then it is enough
to show a continuity of the mapping E ′

p(Rn) 3 f −→ f̂(A)x̂ ∈ Êp(X) for every x̂ ∈ Êν
p (X).

The continuity of E ′
p(Rn) 3 f −→ Kf ∈ L(Eν

p (Rn)) we obtain from ‖f ? ϕ‖Eν
p
≤ ‖fν‖ ‖ϕ‖Eν

p
,

where fν is a restricted functional on the subspace Eν
p (Rn). Then it will be continuous the

mapping E ′
p(Rn) 3 f −→ (I ⊗Kf )x(t) ∈ Eν

p (Rn;X) for every x(t) ∈ Eν
p (Rn;X). Let fm → f

in the space E ′
p(Rn). Then (I ⊗ Kfm)x(t) → (I ⊗ Kf )x(t) in the space Eν

p (Rn;X). By the
definition of the norm in Êν

p (X), we have K̂fmx̂ → K̂f x̂ in the space Êν
p (X). Thus, the

mapping E ′
p(Rn) 3 f −→ K̂f x̂ ∈ Êp(X) is continuous.

The rest assertions of the theorem follow from Lemmas 2.1, 2.3 and Theorem 6. The
theorem is proved.

Thus, we found the integral image of the Fourier operator transform in a case of the
algebra of linear continuous functionals on a space of entire function of exponential type,
that on the real subspace belongs to Lp(Rn) (1 ≤ p <∞). We also established its multiplicate
properties relatively to the convolution and described its image by way of commutant of the
scalar many-parameter shift group.
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Лозинська В.Я. Розподiли експоненцiального типу i узагальнене функцiональне числення
для генераторiв C0-груп // Карпатськi математичнi публiкацiї. — 2011. — Т.3, №1. — C.
73–84.

Описано властивостi простору спряженого до простору цiлих функцiй експоненцiаль-
ного типу багатьох комплексних змiнних, що на дiйсному пiдпросторi належать до Lp(Rn)

(1 ≤ p < ∞). У Фур’є–образi цього простору побудовано функцiональне числення для
генераторiв сильно неперервних груп обмежених лiнiйних операторiв, що дiють на довiль-
ному банаховому просторi.

Лозинская В.Я. Распределения экспоненциального типа и обобщенное функциональное
исчисление для генераторов C0-групп // Карпатские математические публикации. — 2011.
— Т.3, №1. — C. 73–84.

Описаны свойства сопряженного пространства к пространству целых функций экспо-
ненциального типа многих комплексных переменных, которые на дейсвительном подпро-
странстве принадлежат к Lp(Rn) (1 ≤ p < ∞). В Фурье–образе этого пространства по-
строено функциональное исчисление для генераторов сильно непрерывных груп ограни-
ченных линейных операторов, которые действуют на произвольном банаховом простран-
стве.


