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The properties of a dual space to a space of entire functions of exponential type of many
complex variables, that on the real subspace belongs to L,(R™) (1 < p < oo) are described.
A functional calculus for generators of strongly continuous groups of bounded linear operators
on an arbitrary Banach space in a Fourier-image of such dual space is constructed.

INTRODUCTION

In this paper we consider a space of entire functions of exponential type for which their
restriction onto the real subspace belong to L,(R™) (1 < p < co). This space has a property
to be invariant with respect to the action of partial differential operators. This property al-
lows us to introduce in the dual space of linear continuous functionals (so called exponential
type distributions) a convolution operation and we can consider this space as a convolu-
tion topological algebra. In the Fourier-image of such algebra we construct a functional
calculus for generators of strongly continuous multi-parameter groups on a Banach space.
This functional calculus is a generalization of the well-known Fourier operator transform for
convolution algebras of measures [8],[2] and the calculus for generators of nonquasianalytic
groups in algebras of entire functions of exponential type [12|. This approach gives an effec-
tive method for investigation of differential operators and functions of them. We construct
the functional calculus as generalized functions of generators of Cy—groups. In practice some
generalized functions (d—functions) of concrete operators appear in the Quantum theory [3],
[4].

The existence of the structure of the convolution algebra on the space of exponential type
distributions follows from the invariant properties in this space with respect to differential
operators and plays a crucial role to construct the functional calculus. The invariant proper-
ties of subspaces of exponential type of entire functions in a wide context exponential type
vectors of unbounded linear operators on the Banach spaces are used in the operator calculus
[14], [10], [5], in the theory of Differential equations [14], [6] and in the Approximation theory
in Banach spaces [6], [15].
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1 ALGEBRAS OF EXPONENTIAL TYPE DISTRIBUTIONS
1.1 Spaces of entire functions of exponential type

We define a space of test functions and prove its basic properties. Let L,(R") (1 < p < o0)
be a complex Banach space of functions ¢(t), t = (t1,...,t,) € R, with the norm

lelle, = ( [ tetora) "

We use next notations k = (k1,...,k,) € 77, ]k|—k1+ otk K=Kk,
kr = (kyr, ... kyr) for r € C, D¥ = D} .. Dkn WhereD = —i0/0t; for all j = 1,.

n

The domain of the operator of partial differentiation D is: dom (D k {90 € dom (Dk 71) :
Djp € dom (D } for k; > 1, dom (DY) = L, for ki =0 for all j = 1,...,n. Hence,

dom (D*) = ﬂ dom( ) is the domain of the operator DF.
j=1
1 1
If p € Ly(R") and ¢ € L,(R"), where — + — = 1, then convolution is defined by
p q
(px)(t) == [ p(s)(t—s)ds. For p =1 the space Li(R") is a Banach algebra with respect
Rn
to the convolution.

Let us consider on L,(R™) the following isometric shift group

T, = e7srDitetsnDn) (1) 5 o(t — ), s=(s1,...,5,) € R™,
where Dy = —id/0ty, ..., D, = —id/0t, are the operators of partial differentiation.
For an arbitrary vector v = (v1,...,1,,), ¥; >0 (7 =1,...,n) we define the space
v ||Dk90||L
&) = {gp € ﬂ dom (D*) : lplley = sup ———* < oo},
kezn kezy ¥
where k = (ki,..., k), v =vf* ... -vf DF = DF . DF. From the next inequality

lellz, < [lelley which is true for an arbltrary ¢ € & it follows that the embedding &, C
L,(R™) is continuous.

In the class of entire analytic functions of n complex variables C" > t+it7 — ®(t+i7) €
C we consider a subspace My = M7 (C") of functions ® such that for each fixed vector
T =(m,...,7) € R™ a corresponding function of n real variables R" > t — ®(t + i7)
belongs to the space L,(R") such that the norm

1/p
@[ py = suRp exp( E _Vj|7—j|> {/\@(t—i—hﬂpdt]
TER™
Rn

Jj=1

is finite. It is know [13] that the spaces M consist of the functions of exponential type.
Functions ®(t +47) from the class MY such that each p(t) = ®(t +i0) € L,(R") satisfies
the Bernstein’s inequality ([13], III, 3.2.2) ([1], IV, 8.3) on R™

ID*¢llr, < v*lell, . (1)

where % = v . ke,
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Theorem 1. (i) The mapping My > ®(t +i1) — ¢(t) := ®(t +10) € £} is an isometry of
the normed spaces.

(ii) The embeddings & C L,(R") are isometric.

(iii) The spaces &, are invariant with respect to the action of the group T_,, and the
restriction T_s : £ — &} is an isometry of the normed spaces.

Proof. (i) Let @ € My. A restriction p(t) = @ R" of a functions ®(t +147) € M on the real

subspace R" satisfies the Bernstein’s inequality (1)

ID"llz, < v*llellz, (v € M), (2)

where vF = 4 - .. vE». From (2) we obtain [[¢]ley < [|¢||z,. From the definition of the

norm of the space M it follows [|¢|[z, < [|®|smy (VO € M), ie. M R" © .

, . , . (it)* DFyp
Conversely, let ¢ € £7. Let us consider the power series o(t+ir) = Z - The
|k|=0 ’

following inequalities

s )yl ¢
p(t +iT)[Pdt Z ez, exp ZVHTJ\

|k|=0 j=1

are valid so [|®||my < |l¢[|L,. The series is convergent and the function (¢ +i7) is an entire
function of class M}. Hence & C My IR" and we obtain £ = My IR™

(i) Since [lpllz, < [lelley, then flollz, < [lelley < llellz, < [Pllay < llelle, (Ve € &)
and a necessary isometric isomorphism is &, = M} IR In particular £ C L,(R").

(iii) For all k € Z7% and s € R" next equality ||[T_sD*p| 1, = ||[D*¢||r, is valid. From
the identity D*y(s) = T_,D*¢(s), where ¢ : R" 5 s — T_ p(t), we obtain || D*i(s)]|, =
|D*¢(s)]|1,. Then the inequality (1) has the view || D]l < v*||¢l|.,. From this we obtain

the inequality
1/p n
( |w<t+w>|f’dt) < llolls, exp (me),
R’I’L

J=1

then ¢ € M. m
Theorem 2. & are Banach spaces.

Proof. Each of operators D; on L,(R™) (j = 1,...,n) is a generator of a one-parameter
isometric shift group 9]

Sp(t) _>90(t17-- tj 1, t 53, ]+1a"'7tn)-

We use the inequality ||D*¢l|, < v*[l¢lley, ¢ € & for all k € Z%. If {¢,} is a Cauchy
sequence in &/, then {D¥y,,} is the same sequence in L,(R") for every fixed k. To the
induction (by k) and that D; in L,(R") is closed it follows that there is a function ¢ € L,(R"),
for which

lim | D¥op, — Dz, =0 (3)
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for any k. Then for any € > 0 there is a number m(e) such that

|D*¢om — D*gillr, & € ¢
lem —erlley < | _max — Pto<gtg=¢ (4)

for all m,0 > m(=). Thus [eilley < lomeolley + llome — @illsy < lomeley + = for all
[ > m(e).We take a limit in the last inequality for [ — oo and use the inequality (4), we
obtain [|¢lley < [ome lley +e. Thus, ¢ € £ We take a limit in (4) for [ — co and use (3),
we obtain ||, — ¢lley < e for allm > m(e). The theorem is proved. O

Let
& =) & =limind &

be the union of spaces endowed with a topology of the inductive limit, where the embeddings
&) C & are continuous. The vector p = (11, ..., i) is such that vy < py, .o v, < iy
The locally convex space &, we will call a space of test functions. The space &, belongs to
the domain of differential operators D; and is invariant relatively to their action. From a
property of regular inductive limits (see [10], [14]) it follows that every bounded subset S of
the space &, is bounded in some &

1.2 Distributions of exponential type

We introduce exponential type distributions. We show that the space of exponential type
distributions is a convolution algebra.

By &, we denote a dual space of &, with a weak topology. The duality (£, | £,) can be
determined by a bilinear form (f | ¢) := (f, | ¢), where v is an arbitrary vector such that
¢ €& and f, = fier. Functionals f € £, will be called exponential type distributions.

For any f € £, and ¢ € &, the following relation

(D*f |9y = (=)"(f | D*o) (k€ ZY})
correctly defines an operation of a generalized differentiation of distributions.

Theorem 3. [11] The continuous and dense embeddings &, C L,(R"), L,(R") C &, where

1
— 4+ — =1 are valid.

p q

A convolution of a distribution f € &, and a function ¢ € &, will be defined as the
relation

(FHp)(t) = (f(s) [ ot +5)) = (f(s) | T-sp(t)) = (f(s) | T-sp(s)),

where f(s) denotes an action of a functional f on a function 7" (t) by s.
Let £(&,) be an algebra of linear continuous operators on the space &, with a strong
operator topology.
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Theorem 4. Let f,g € £, and ¢ € &,. The space & is a commutative algebra with respect
to a convolution defined by the relation

(fxg)xp:=f*(gx)
The mapping &, > f — Ky € L(E,), where Kyp := f % ¢, is an algebraic isomorphism on
a commutant of the group 1_; in the algebra L(&,). The convolution has properties
D*(f x @) = f x (D*¢) = (-1)*I(D"f) » ¢,
D*(fxg) = (D*f)xg =[x (D"g)
for any k € 7.

Proof. For ¢ € &, we have ||[Krpllex < [[full IT-s¢lley. From Theorem 1 (iii) [|T-splley =
ng”gg, then Kf € E(g;;), YV v. Thus, Kf € E(gp)

From Theorem 3 there are functions g, € L,(R") such that lim,g, = g in &. The
duality (L,(R™) | L,(R™)) is defined by (g, | ) = an g-(r)p(r) dr, then (g, * ¢)(t) =

J 9,(r)T_¢(r) dr. The function R" 3 r — T_,_4p(r) € & is continuous for fixed ¢. And
RTL

then
£ (g ) = (F(5) | Toslgy % 9)(D) = (£(5) | / o ()T s—iplr) dr) =
[ 90O | Toil)) dr = (500) |{06) | Toamaol)) = 2 (£ )

R
From this f % (g % ¢) = lim, f * (g, x ¢) = lim, g, x (f x ) = g * (f * ¢).

Let us prove an isomorphism of the space &, to a commutant of the group T",. Let f € E
and ¢ € £ From the definition of the convolution and Theorem 1, we obtain [|f * ¢[[ey <
| flley lollz,, where [[f[ley— the norm of restriction of a functional f on &. Then from

k
DF(F > @)(t) = (F() . T DRp(t)) = (£ Drp)(t) it follows | x gl = sup 1= Pln <
[ fllexl[¢lles - The embeddings £ C &, are continuous then F' € L(E)) gnd we have F' €
L(&,). The relation
KfT_SQD = T_stgO (VQO S gp, s € Rn) (5)
follows from the equalities (f * T_s¢)(t) = (f x@)(t + s) = T_s(f * ©)(t).

To prove the converse, let ¢ € &,. The mapping f : ¢ — (F)(0) is a functional f € £
From this we obtain (F'¢)(0) = (f, ¢) = (f x¢)(0). Replacing ¢ by T",¢ and using (5), we
have Ky : £, 2 ¢ — f* .

Now we prove differential properties of the convolution. Obviously, D¥(fx¢)(t) = (f(s) |
T_,D*p(t)) = (f * D*¢)(t). Next relations

(fp)(t) = (f(s) | Top(s)) = (f(s 1 =1) [ (s + 1)) = (T f(=1) [ (r))

are valid. Then we have D*(f x ¢)(t) = (=1)F(T_.(D*f)(—t) | ¢(r)) = (=1)F(D* f x ©)(t)

and D*(fxg)xp =(=1)M(fxg)xD*¢ = (1) fx (g% D*p) = fx(D*gxp) = (fx D*g)x¢.
Using the commutation we obtain D¥(f x g) = D¥(g x f) = g x D*f. O
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Corollary 1.1. For an arbitrary distribution f € &, and a vector v the subspace & is
invariant relatively to Ky and Ky, € L(&))).

1 1
Corollary 1.2. Let f € £ and p € &, ¢ € &, where — + — = 1. Then (fxp)x) = fx(p*1)).
p q

Proof. Since fx ¢ € &, then [(f x @) « ¢](t) = [(f(s) | T_sp(r)T(t)dr = (f(s) |

R

T’San p(r)Tap(t) dr) = [f * (¢ * )] (F). -

1.3 The Fourier transformation

We introduce the Fourier transformation onto the space of exponential type distribution.

~

For p = 1 let us denote & := {gp(f) = [e™p(t)dt : p € Sp}, for 1 < p < o0
]Rn

fp = {(ﬁ(f) =F(p): p€ Ep}, where t - & := 11§ + ... + 1., for any € = (&,...,&,) € R™

~

The Fourier transformation is a linear isomorphism F : &, 3 p(t) — (&) € &,. We
endowed g'p with a topology relatively to the mapping F.

Using the isometry & ~ M7 (C") from Theorem 1 and the fact that Fourier-images of
exponential type functions are finite [13] we can define an inverse transformation by the
formula for p =1

F 85 3(6) — o(t) = / HEB(E) de € &,

Rn

(2m)"

for 1 < p < oo that is an inverse mapping F ! : zSA'p > P(&) — () € &,.
The duality (€] | £,) defines an adjoint mapping to the inverse one

Ft=am(FY B3 f— fek, whee (f]3)=(2n)"(/]¢).

Its image gl’), that generates a duality (éz | éA’p>, we endow with a weak topology that coincides
with an inductive topology relatively to F7#.
We use the symbols ¢_(t) := p(—t).

1 1
Theorem 5. For any f,g € £, ¢ € &,, ¥ € &, where — + — = 1, the Fourier transform
p q

has properties ¢+ = @1, [xp = f-@_, where (f-G_ | ) = (f | §_ - &) and the
space g']’] is a commutative algebra with respect to the multiplication, that is defined by the
relation (g - f] o) = (7| 7 ©). Moreover, the following equalities g*/\f =35 f, Blf\f =
(—OFFf, (Vk € Z,) are valid.

Proof. Using the Corollary 1.1, we have

(Frp | 4) = @m(f e |v) = @o)"[(f
@OMf o) = (Floxd) = (F|¢_-9) = (F-7_ | d).

*
AS)
S~—
*
<
=
S~—
I
o
A
S
—
*
AS)
*
=
I
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The correctness of definition of the multiplication follows from next equalities

(G 1 3) = @mMg* f @) = 2m"(g% f)* 2l(0) = (2m)"[g * (f * )] (0) =

o) | fxe) =G Txo)=@|[-3)=@G T|&).
Since D¥p € &,(R™), then (DFp)(€) = €53(€) € &,(R™). Hence
(DFf | ) = 2m)"(D*f | ) = (2m)"(=1)"(f | D¥g) = (~1)*( | Drg) =
(—DXF 1) = (" F | 8)-

2 FUNCTIONAL CALCULUS
2.1 Finite functions of the generators of Cj-groups

We construct finite functions of generators of strongly continuous groups of bounded
linear operators on an arbitrary Banach space.

Let {X,||-||} be a complex Banach space, £(X') be an algebra of linear bounded operators
on X with a uniform norm || - |[zx) and U : R* 5 t — U, € L(X) be an n-parameter
Co—group on X. For every index j = 1,...,n generators are determined by D;Uix;—y =
—Ajz, where x € D(A;). Let the operators A; : D(A;) C X — X be closed and densy
determined. We denote A := (Ay,...,A,). An example: if Uy = T and X = L,(R") then
D;Typ = —0/0t;Typ for p € L,(R").

Let us assume

/a

Uil = ( / ||Utx||th) Wl =it e Ul < clall, @€ XY,

1 1
where — + — = 1. Let the group satisfies the condition
p q

1Uzllg < |Ullglll] (v € X). (6)

In the case p = 1 the condition (6) is equivalent to a uniform bound of the group. For
example, the condition (6) is true for the shift group U; =T, on X = L,(R").

Theorem 6. Let ¢ € &, and the group U satisty the condition (6). Then the operators that
are defined by the formula

P i= [ Uiple) a
Rn
belong to the Banach algebra L(X) and satisfies the relation (D] )(A) =
1,...,n). If p =1 and the group U; is uniformly bounded then (cp P)(A) =
(V@,0 € Ey).
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Proof. Let ¢ € &. By Theorem 1 and condition (6), we have
1P(A)z]| < / 1Ol lp(@)] dt < ([Uszlly l[olley < [Ullgllelleyllzll (Vo e X). (7)
R

It is know (|13],II1,3.2.5) that functions ¢ € &, have the property tlim ©(t) = 0. Then
—00
integrating by parts and using the property, that a generator of group is closed, we obtain

D)) = [ UiDs)0yde =~ [ DUiele) de = A5(4).

Rn

For p = 1 we determine convolution of functions and next equalities

2 0) = [y [vats)as] = [ o] [Uinsts) s ar -

R™ R R R

[ oste=spwas]ar = [v.] [ etr=sotsyas] ar = o)
are valid. 0

2.2 Functional calculus in algebras of exponential type distributions

We construct the functional calculus as generalized functions for generators of Cy-groups.
Let X®L,(R™) be a completion of a projective tensor product of X and L,(R"). In the
case p = 1, as it is known ([16], III, 3.2.5), we have the isometric representation Ly (R™; X) ~
X®L;(R"), where L;(R"™; X) is a Banach space of all X-valued functions R* >t — z(t) €

X with the norm ||z, (x) := [ ||=(¢)]] dt.
R”
Using the isometric embedding £ (R™) C L,(R") for every vector v we can determine the

subspace £¥(R"; X) := X®EY(R") C X®L,(R"). The embeddings £*(R™; X) C EX(R"; X)
(ry < py ...,V < py,) are continuous, then on a union of all these spaces we can define a
structure of an inductive limit space

&R X) = &R X) = lim ind &/ (R"; X) C X@L,(R").

A convolution of an arbitrary distribution f € & (R") and a vector-valued function z(t) €
EH(R™; X)) is used to define by (fxz)(t) := (I ® Ky)z(t), where I is the identity operator in
X.

The topological isomorphism lim ind £/(R"; X) ~ X®limind £4(R") = X®E,(R™) is
valid. This assertion is a corollary of z: known property of the in(li/uctive limit and a projective
tensor products |7]. From this assertion and known Grothendieck’s representation ([16], III,
§6) it follows that for every function z(t) € &£,(R™; X) there is a vector v such that x(t)
belongs to the space &£ (R™; X) and is represented in the form of the absolute convergent
series

z(t) = ij ®¢;(t), where z; € X, ;(t) € EL(R"). (8)



EXPONENTIAL TYPE DISTRIBUTIONS AND A GENERALIZED FUNCTIONAL CALCULUS 81

Using this representation for any distribution f € &(R") and a vector-valued function

x(t) € E,(R™ X), we obtain (f xx)(t ij ® (f > p;)(1).

Lemma 2.1. The convolution has properties
(fxg)xz=fr(g*z),

DM(f xx) = f*(D"z) = (=1)*(D* f) » =
for any f,g € E(R"), v = x(t) € E/(R™; X) and k € Z7}.

Proof. From the definition of the convolution and by Theorem 4 next equalities follow

(f*9) *x—Zx] fxg)*xp;= f*z% ® (g* ;) = f*(g*x),

DF(f % x) = Zx]@)Dkf*go] Zx ® (1) Dkf)*cpj:(—l)‘k‘(Dkf)*a:

Lemma 2.2. Let the group U satisfies the condition (6). Then each of the subspaces
g]’;(X) = {f: /(Ut®l)x(t)dt: x(t) € 5;(R”;X)}
R”
is a Banach space respectively to the norm induced by the mapping
E/(R" X) 3 a(t) — 7 € £/(X).

Proof. Let us show that the mapping &(R"; X) > x(t) — 7 € X is continuous. From (8)
we obtain

:U_/[ZU#%@% )] dt = Z/Ut%wﬂ t)dt = Z%

R J= ]-Rn

From this and using the estimate (7), we have
o0
[z]l < Z 251 1Z5(A) 2y < UMl Y sl s ey
j=1

Using the arbitrary presentation x(t) by absolute convergent series we obtain
1ZI] < [[Ulg ll(8)lley @nix)

and the continuity is proved. A kernel of the continuous mapping &, (R"; X) — X is closed
then a corresponding factor-space in this kernel is a Banach space. By the definition of the
norm in the space £/(X), it is isometric to the constructed factor-space. ]
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Lemma 2.3. Let the group U satisfies the condition (6). Then each of the subspaces é;’D’(X)
is invariant respectively to the operator

Ry 8/(X)57 — Ry7 = /(Ut @ K, )a(t) dt.
Proof. Taking into account (8) for elements x(t) € £/(R™; X) for any f € £ (R") we obtain

I @ Kpa@)l < Y llall I K roslley < IElleey D el lesle
=1 =1
or (1@ Kp)z(t)|| < | K¢lleer@ny [|2(8)]|ley®n,x)- Thus the space &' (R"; X) is invariant with
respect to the acting operator I ® K.

Since Uy ® Ky = (U; @ IN(I ® Ky)and I @ Ky : E/(R™ X) — &/(R™; X) then by
Lemma 2.2 for any vector-valued function z(t) € &£/(R"; X) we have K;z € £/(X). Then
Ky : E/(X) — &£/(X). The lemma is proved. O

The embeddings £/(R"; X') C EX(R™; X) are continuous. From this it follows that the
next embeddings éA’I’,’ (X) C c‘,A’I’,‘(X ) are also continuous. Then a union of these spaces can be
represented as an inductive limit

EX) =J&x) = lim ind E(X).

Let us define by E(f?p(X )) an algebra of all linear continuous operators on éA’p(X ) with a
strong operator topology.

Theorem 7. Let the group U satisfies the condition (6). Then the mapping E;)(R") E) ]?—>

~ ~ ~

f(A) € L(E,)(X)), where the linear operator f(A) is defined by the relation

-~

Fla): (X) 37— JF = [ (U@ Kpjale) dt € §,(X),

R

is a continuous homomorphism of the algebra of symbols @(R”) onto a subalgebra of algebra
ﬁ(é’;,(X)) of operators

where the operator K € L(E,(R")) belongs to the commutant of the group Ts. And we have

— ~

(D;f)(A) = A;f(A) (G =1,....n).
Proof. From Theorem 4 and Corollary 1.1 any operator, that belongs to a commutant of
group Ty, has the form Ky, where f € £ (R"). From Lemma 2.3 and the definition of the

space g;; (X) it follows that K o EN(X) — EA'}’; (X) for every v. From the definition of the
norm in é’;’,j(X) we have 7, — 7 if and only if x,,(t) — x(t) in the space £/ (R"; X). If
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T (t) = 2(t) then from continuity of K it follows, that (I ® Kj)z,,(t) = (I ® Ky)z(t) in
the space £/(R"; X). From this by the definition of the norm in the space EV(X ”( ) we obtain
({RK¢)xy(t) = (I&Kf)x(t). Thus, IA(f € E(f”( X)) for any v and therefore Kf € E(E (X )) :

From the equality K., = K - K, for arbitrary f,g € £ (R") it follows Kf*g = Kf K
Thus, the functional calculus is an algebraic homomorphism from the convolution algebra
of distribution onto an algebra of continuous operators on the space E/ZJ(X ).

We now prove a continuity of the functional calculus. As in the space %(R”) a topology
is inducted from & (R"), and the space & (R") is given a weak topology, then it is enough
to show a continuity of the mapping & (R") > f — (AT € £,(X) for every 7 € é’;’,j(X).
The continuity of £(R") > f — K; € L(£/(R")) we obtain from || f x ¢llex < [ £ [¢llex,
where f, is a restricted functional on the subspace £/(R"). Then it will be continuous the
mapping &, (R") > f — (I ® Ky)z(t) € £/ (R"; X) for every x(t) € £/(R™; X). Let fo, — f
in the space £ (R"). Then (I ® Ky, )x(t) — (I ® Kf) (t) in the space SV(R” X). By the
definition of the norm in gz';(X), we have Kf T — Kfa: in the space 5”( ). Thus, the
mapping & (R") > f — K (T € £,(X) is continuous.

The rest assertions of the theorem follow from Lemmas 2.1, 2.3 and Theorem 6. The
theorem is proved. O

Thus, we found the integral image of the Fourier operator transform in a case of the
algebra of linear continuous functionals on a space of entire function of exponential type,
that on the real subspace belongs to L,(R") (1 < p < 00). We also established its multiplicate
properties relatively to the convolution and described its image by way of commutant of the
scalar many-parameter shift group.
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Jlosunceka B.4. Posnodiau excnonenyianvhozo muny i y3aeasvHene GyHKUTOHANOHE YUCAEHHA
das eenepamopis Co-epyn // Kapnarceki maremarnani nybaikanii. — 2011. — T.3, Nel. — C.
73-84.

OmnmcaHo BJIACTUBOCTI TPOCTOPY CIIPSI2KEHOTO JI0 IIPOCTOPY IINX (DYHKIN €KCIIOHEHIIAb-
HOT'O TUITy 6araTboxX KOMIUIEKCHIX 3MIHHEX, IO Ha MIHCHOMY mimmpocTopi HamexaTs 10 L, (R™)
(1 <p< ). VY Oyp’e—06pasi 1poro mpocropy modyI0BaHO (YHKIIOHAIbHE YUCIEHHS Il
reHepaToOPiB CUILHO HEIIEPEPBHUX Py OOMEXKEeHUX JIHIHHUX OTlepaTopiB, MO JII0Th HA JTOBLIb-
HOMY OaHAXOBOMY IIPOCTOPI.

Jlosunckast B.9l. Pacnpedenerus sxcnonenyuasvrozo muna u obobuenmnoe GynryuonasbHoe
ucwucaenue das eenepamopos Co-epynn // Kapuarckue maremarudeckue mwy6mkanun. — 2011.
— T.3, Nel. — C. 73-84.

OrnucaHbl CBOWCTBA COMPSI?KEHHOTO MMPOCTPAHCTBA K IPOCTPAHCTBY TEJIBIX (DYHKIMHA SKCIIO-
HEHIUaJIbHOT'O TUIla MHOI'MX KOMIIJIEKCHBIX II€pEMEHHBIX, KOTOPbIE Ha ‘ZLeI‘/JICBI/ITeJ'H)HOl\l IIOIIPO-
crpancrse npunagiexkar K L,(R") (1 < p < o0). B ®@ypbe-o6pasze 3T0ro npocTpaHCTBa II0-
CcTpoeHO (DYHKIIMOHAJIBHOE MCUYHUCIEHNE JJIsi TEHEPATOPOB CUJIBHO HENPEPBIBHBIX I'PYIl OIPDAHU-
YEHHBIX JIMHEHHBIX OIMIEPATOPOB, KOTOPbIE JEHCTBYIOT HA MPOU3BOJBHOM OAHAXOBOM ITPOCTPAH-
CTBe.



