Карпатські матем. публ. 2013, Т.5, №1, С.44-46

HETMAN I.

THE COMPLETENESS OF A NORMED SPACE IS EQUIVALENT TO THE HOMOGENEITY OF ITS SPACE OF CLOSED BOUNDED CONVEX SETS

We prove that an infinite-dimensional normed space X is complete if and only if the space $\mathsf{BConv}_H(X)$ of all non-empty bounded closed convex subsets of X is topologically homogeneous. *Key words and phrases:* completeness, normed spaces, topological homogeneity, closed convex sets.

Ivan Franko National University, 1 Universytetska str., 79000, Lviv, Ukraine E-mail: ihromant@gmail.com

INTRODUCTION

In this paper we shall prove that the completeness of an infinite-dimensional normed space X is equivalent to the topological homogeneity of its hyperspace $BConv_H(X)$ of all non-empty bounded closed convex sets. The space $BConv_H(X)$ is endowed with the Hausdorff metric

$$d_H(A,B) = \max \big\{ \sup_{a \in A} \inf_{b \in B} \|a - b\|, \sup_{b \in B} \inf_{a \in A} \|a - b\| \big\}, \quad A,B \in \mathrm{BConv}_H(X).$$

Due to results of [5], [6], [2], the topological structure of the hyperspace $BConv_H(X)$ is well-understood for each Banach space X. To formulate a classification result for the hyperspace $BConv_H(X)$ we need to recall some notations.

All linear spaces considered in this paper are over the field of real numbers \mathbb{R} . For a linear topological space X its dimension $\dim(X)$ is defined as the smallest cardinality |B| of a subset $B \subset X$ having dense linear hull in X. For a cardinal κ by $l_2(\kappa) = \{x \in \mathbb{R}^\kappa \colon \sum_{\alpha \in \kappa} |x(\alpha)|^2 < \infty\}$ we denote the Hilbert space having an orthonormal base of cardinality κ . By ω we denote the smallest infinite cardinal. By \mathbb{R}_+ and \mathbb{I} we denote the closed half-line $[0,\infty)$ and the closed unit interval [0,1], respectively.

The following classification theorem can be derived from [5], [6], [2].

Theorem 1. For each Banach space X the hyperspace $BConv_H(X)$ is homeomorphic to:

- 1) $\{0\}$ iff $\dim(X) = 0$;
- 2) $\bar{\mathbb{R}}_+ \times \mathbb{R}$ iff $\dim(X) = 1$;
- 3) $\mathbb{I}^{\omega} \times \bar{\mathbb{R}}_+ iff 1 < \dim(X) < \omega$;
- 4) $l_2(2^{\dim(X)})$ iff $\dim(X) \ge \omega$.

УДК 515.12+512.58

2010 Mathematics Subject Classification: 18B30, 54B30.

In this paper we shall study the hyperspace $BConv_H(X)$ for non-complete normed spaces X. In this case we shall show that $BConv_H(X)$ has rather bad topological properties. In particular, it is neither topologically homogeneous nor even weakly homogeneous.

1 Main result

A topological space *X* is defined to be

- *topologically homogeneous* if for any two points $x,y \in X$ there is a homeomorphism $h: X \to X$ such that h(x) = y;
- *weakly homogeneous* if for each non-empty open dense subset $U \subset X$ and each point $x \in X$ there is a homeomorphism $h: X \to X$ such that $h(x) \in U$.

It is clear that each topologically homogeneous space is weakly homogeneous.

The main result of this note is the following theorem.

Theorem 2. For an infinite-dimensional normed space *X* the following conditions are equivalent:

- (1) X is complete;
- (2) $BConv_H(X)$ is topologically homogeneous;
- (3) $BConv_H(X)$ is weakly homogeneous;
- (4) BConv_H(X) is homeomorphic to $l_2(2^{\dim(X)})$.

Proof. We shall prove the following implications. $(1)\Rightarrow(4)\Rightarrow(2)\Rightarrow(3)\Rightarrow(1)$. The implication $(1)\Rightarrow(4)$ follows from Theorem 1 while $(4)\Rightarrow(2)\Rightarrow(3)$ are trivial. So, it remains to prove $(3)\Rightarrow(1)$.

In the space $BConv_H(X)$ consider the open dense subspace

$$BCb_H(X) = \{A \in BConv_H(X) : Int(A) \neq \emptyset\}$$

consisting of bounded convex bodies (i.e., bounded convex sets with non-empty interior). Let \bar{X} be the completion of the normed space X and $BCb_H(\bar{X})$ be the space of bounded convex bodies in the Banach space \bar{X} . Observe that the map

cl:
$$BCb_H(X) \longrightarrow BCb_H(\bar{X}),$$

 $B \longmapsto \bar{B},$

is an isometric bijection. The space $BCb_H(\bar{X})$, being open in the complete metric space $BConv_H(\bar{X})$, is Čech-complete and so is its isometric copy $BCb_H(X)$. Assuming that the space $BConv_H(X)$ is weakly homogeneous, and taking into account that $BCb_H(X)$ is an open dense Čech-complete subspace of $BConv_H(X)$, we conclude that each point of the space $BConv_H(X)$ has an open Čech-complete neighborhood. By a result of Arhangelski [1] and Frolik [4] (see also [3, 5.5.8(c)]), the space $BConv_H(X)$, being locally Čech-complete and paracompact, is Čech-complete, and so is its closed subspace X. Being Čech-complete, the space X is a G_{δ} -set in its completion \bar{X} . Assuming that $X \neq \bar{X}$, we can find a point $x \in \bar{X} \setminus X$ and conclude that X and X + x are two disjoint dense G_{δ} -subsets of Banach space \bar{X} , which is impossible according to the Baire Theorem. Consequently, $X = \bar{X}$ is a Banach space.

46 Hetman I.

2 ACKNOWLEDGEMENT

The author would like to express his thanks to Ostap Chervak and Taras Banakh for fruitful ideas and interesting discussion about this paper.

REFERENCES

- [1] Arhangel'skii A.V. *On topological spaces which are complete in the sense of Čech*. Vestnik Moskov. Univ. Ser. I. Mat. Meh. 1961, **2**, 37–40. (in Russian)
- [2] Banakh T., Hetman I., Sakai K. *Recognizing the topology of the space of closed convex subsets of a Banach space*. Preprint (http://arxiv.org/abs/1112.6374).
- [3] Engelking R. General topology. Heldermann Verlag, Berlin, 1989.
- [4] Frolík Z. Locally complete topological spaces. Dokl. Akad. Nauk SSSR 1961, 137, 790–792 (in Russian); English translation: Soviet Math. Dokl. 1961, 2, 355–357.
- [5] Nadler S., Quinn J., Stavrakas N.M. Hyperspaces of compact convex sets. Pacific J. Math. 1979, 83, 441-462.
- [6] Sakai K. *The spaces of compact convex sets and bounded closed convex sets in a Banach space*. Houston J. Math. 2008, **34** (1), 289–300.

Received 26.12.2012

Гетьман I. Еквівалентність повноти нормованого простору гомогенності гіперпростору його замкнених обмежених опуклих множин // Карпатські математичні публікації. — 2013. — Т.5, \mathbb{N}^2 1. — С. 44–46.

Ми доводимо, що нескінченновимірний нормований простір X ϵ повним тоді і лише тоді, коли гіперпростір $\mathsf{BConv}_H(X)$ усіх непорожніх замкнених опуклих підмножин простору X ϵ топологічно гомогенним.

Ключові слова і фрази: повнота, нормовані простори, топологічна гомогенність, замкнені опуклі множини.

Гетьман И. Эквивалентность полноты нормированного пространства гомогенности гиперпространства его замкнутых выпуклых множеств // Карпатские математические публикации. — 2013. - T.5, $\mathbb{N}^{2}1. - C.44-46$.

Мы доказываем, что бесконечномерное нормированное пространство X полно тогда и только тогда, когда гиперпространство $\mathrm{BConv}_H(X)$, состоящее из всех непустых замкнутых выпуклых подмножеств пространства X, топологически гомогенно.

Ключевые слова и фразы: полнота, нормированные пространства, топологическая гомогенность, замкнутые выпуклые множества.