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ANALOGUES OF THE NEWTON FORMULAS FOR THE BLOCK-SYMMETRIC
POLYNOMIALS ON /,(C¥)

The classical Newton formulas gives recurrent relations between algebraic bases of symmetric
polynomials. They are true, of course, for symmetric polynomials on infinite-dimensional Banach
sequence spaces.

In this paper, we consider block-symmetric polynomials (or MacMahon symmetric polynomials)
on Banach spaces ¢ » (C%),1 < p < oo. We prove an analogue of the Newton formula for the block-
symmetric polynomials for the case p = 1. In the case 1 < p we have no classical elementary
block-symmetric polynomials. However, we extend the obtained Newton type formula for ¢1(C®)
to the case of EP(CS), 1 < p £ oo, and in this way we found a natural definition of elementary
block-symmetric polynomials on £, (C*).

Key words and phrases: symmetric polynomials, block-symmetric polynomials, algebraic basis,
Newton’s formula.
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1 INTRODUCTION

Let X be a Banach space, and let P(X) be the algebra of all continuous polynomials de-
fined on X. Let Py(X) be a subalgebra of P(X). A sequence (Q;); of polynomials is called an
algebraic basis of Py(X) if for every P € Py(X) there is a unique polynomial 4 € P(C")
for some n such that P(x) = g(Qi(x),...,Qu(x)). In other words, if Q is mapping x €
X ~» (Q1(x),...,Qu(x)) € C", then P = go Q and this representation is unique. Subalge-
bras of polynomials with countable algebraic bases were considered by many authors (see e.
g.[4,8,9,11,12]). Typical examples of such kind of algebras are algebras of polynomials which
are invariant with respect to a (semi)group S of operators on X. If X has an unconditional basis
(en), we can consider the group S = S of all permutations of natural numbers IN acting on
X by

(0] (0]
g. X = Z Xn€y ~ Z xo—(n)En.
n=1 n=1

Seo-invariant polynomials on X are called symmetric. Symmetric polynomials and analytic
functions on £, were investigated in [1-3, 5, 6,8]. Linear bases of symmetric polynomials on ¢;
were considered in [7].

Let Ps(£,) be the algebra of all symmetric polynomials on /5. In [10], it is proved that poly-

nomials
(o]
k
Fe=)_xj,
=1
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k > [p] form an algebraic basis in Ps(£,), where [p] is the smallest integer, greater than p.
Polynomials F; are called power symmetric polynomials. In the case p = 1 we can consider
another natural algebraic basis in Ps(¢1), which is called the basis of elementary symmetric poly-
nomials, { G }32 4,

Gk: ‘ Z ‘ xilxiz...xik, (1)

11 <1<...<lp

The relation between power symmetric polynomials and elementary symmetric polynomials
can be given by the well-known Newton formulas (see, e.g., [17]):

In the case p > 1 we have no elementary symmetric polynomials, because the series (1) does
not converge for any k. But putting in the Newton formulas F; = 0 for k < p, we can define
elementary symmetric polynomials on £, by

p
G = Y. (1) 'FG,y.

It is easy to check that the sequence {G,(f ) }n>p forms an algebraic basis in Ps(£)).

There are other natural representations of S, in Banach spaces with bases. For example, if
X is a directs sum of infinite many of “blocks” which are copies of a Banach space X, then S,
acts permutating the “blocks”. For this case we can consider the algebra of block-symmetric
analytic functions consisting of invariants of this group. Note that this algebra is much more
complicated and in the finitely-dimensional case has no algebraic basis (see, e.g., [15,19]).

A generalization of the Newton formula for block-symmetric polynomials on ¢1(C?) was
proved in [13]. In this paper we propose a generalization of this formula for block-symmetric
polynomials on £, (C?).

2 MAIN RESULT
Let us denote by Zp(CS), 1 < p < oo, the vector space of all sequences
X = (X1,%X0, ., Xpm,--.),

(n]”

X
]

where x; = (x}l), . (S)) € C?® for j € N, such that the series OZO‘, i

j=1r=1
1/p
1= (E£47)
j=1r=

is a Banach space. A polynomial P on the space £,(C*) is called block-symmetric (or vector-

is convergent. The

space ,(C®) with norm

symmetric) if
P(x1,x2, N TR ) = P(xg(l),xg(z), .. .,xg(m), .. )

for every permutation o € Se, where x; € C° for all j € IN. Let us denote by Pys(£,(C°)) the
algebra of all block-symmetric polynomials on £,(C*).
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The algebra Pys(¢,(C®)) was considered in [14,16]. Note that in Combinatorics, block-
symmetric polynomials on finite-dimension spaces are called MacMahon symmetric polynomials
(see [18]).

For a multi-index k = (k1,ky, ... ki) € Z° letm = |k| =k + ko + ... + k.

In [14] it was proved that polynomials

S

Hiy(x) = Hy' %) = o TT (7)) @
j=1 r=1
k[=[pl
form an algebraic basis in Pys(£,(C°)), 1 < p < oo, where x = (x1,...,Xp,...) € £,(C°),
x]- = (XO), .. .,x](s)) e C.
In the case of the space ¢1(C?) there are elementary block-symmetric polynomials

VI

K () — RK1k2Ks () v 1) 1),.(2) (2) (s) (s)

RS (x) = Ry (x) = i<2<i Xjy oo Xy X Xy XX
1< <y
j1<---<jk2 (3)
Zl<"'<lks

lep kg 7o 7 ke

where (xl(l),xi(z), . .,xfs)) e C°.
Combining (2) and (3), we can get an analog of Newton’s formula for block-symmetric

polynomials on ¢; (C?).

Theorem 1. The following formula is true for the algebraic bases of symmetric polynomials

on (1(C?).
anl,kz,...,ks _ Z qur‘h,...,%Rkl7‘71*2*@2,...,]{57%
n — ] ki
lq|=1
kr>q,
2! H‘h/‘h,-..,% Rk1*q1/k2*q2,...,ksf%
g gt R L
ql=
kr>q, (4)
+ (—1)"72 Z @Hﬂlﬂz,...,qukl—%,kz—qz,___,ks_qs
|q|=n-1 ‘71!172!..,%! n—1 1
k"qu
'
_ I’l*l# k1,ko,... ks
+( ! kl!kz!...kS!Hn ,
i gy ) Rgllkzm"ks = 1 and if k, < g, for somer = 1,...,s, then

R]‘:V} —q1.k2—q2,....ks—qs =0.

Proof. Let us consider the polynomial P(t;x(") + t,x(?) 4 ... + t;x()), which is symmetric on
the space /1 with respect to simultaneously permutations of tlel) + tzxfz) +... 4+ tsxfs), i>1.
Let us denote by tx = t;x(1) 4 t,x(?) 4 ... + t,x(5). For the algebraic bases Fy(tx) and Gy (tx) of
this polynomial the Newton formula holds

Gy () = Fi(Fx)Gy_1(Fx) — B> (fx)Gy_a(Fx)

o i n—2 £ £ n—1 £ (5)
+ F3(£)Gps(Fx) — ...+ (=1)"2F,_1 () Gy (Fx) + (—1)" 1y (x).
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Each of Eolynomials Fu(tx) and G,,(fx) can be represented as a linear combination of polyno-
mials Hy %% (x) and REF2Ks (x) respectively. Indeed,
Gn(ix) = Gu(tixM + tx® 4+ 4 £x®))

= ) (flx(1)+fzx()+ At () @ 4 1x ),
i1<...<ip (6)
=Y R PRI (x)
p1t+p2+..tps=n
and

(M 4 x4 )y

1
o n! k1 k2 kS k1/k2/~~~/ks (7)
ky+ko+...Aks=n "1° 2!

Fy(fx) = Fy (e + 12 + . 4+ 1)) =

e

1

So each term of equality (5) can be represented by polynomials ny}’kz"“’ks and RP"P2P* Then
we obtain

i3] (&)Gn—l (tNx) =

1! ks ks prkuke.ks
mt ts? ... te Hy (x)

(k1+k2+...+k5—1

X ( Z tfltgz .. tstzl”iZ""'ps(x)>

p1t+p2t+..+ps=n—1

1! ky+py
1TP1 2+I72 k +p. kl,kz,...,ks P1,P2s--P
t ot HY (X)R,V727 (x),

| |
ky+ky+...4+ks=1 kilka!. . ks

p1t+p2t+..+ps=n—1

7!
tkl tkz tI;stlszf---,ks (x)>

F(£x)Gnr(tx) = AT

<k1+k2+...+k5—1’

X ( ) A tstzl’lzz""’ps(x)>

p1+p2+...+ps=n—r

r!
— Z T k 'tk1+P1tk2+P2 ) t§S+psHk1 ko, .. ( )RperZ/ /Pc( )
kitkot..tks=r 1020

p1tp2+...+ps=n—r
If we substitute this equalities and equalities (6), (7) into (5) and equate multipliers at the

all powers of t;,i =1, ...,s we obtain the required formula. O

Note that equation (4) is invertible and so we have

k. ks n—1 k1—q1,...ks—as
D M e
1....5. ‘q|n1q1 q

kr>q;'

n 1 Z th quh q1 ks—qs
lq]= z”“ - 4s!
kr>q,

Z ch, s gk 1q1,...,ks—qs+ (_1)n+1anél,...,ks.

n!
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Let us rewrite formula (4) using multi-index notations. We denote by k! = kylky!... k!
andby k —q = (ky — g1, k2 — q2, .. . ks — gs). Also, we say that k > q if and only if ky > ¢4,
ky > g2, ..., ks > gs. Then (4) can be expressed by

k _ q pk—q lq]! qpk—q -2 Iq]! q k—q
nRy = ), HIR, ' — ) = HIR '+ + (1) Y __TEQAJRl

I Ve
>q >q >q
(8)
| n ‘ |
+ (—1)”_1%H5 = X:(—l)]_1 &H?Rl;]_q, where n = |k|.
! = 1
k>q

Comparing formula (8) with the classical Newton formula we can see that their are coincide
ifs =1.

Let us turn out to the space ¢,(C®). Taking into account formula (2) we can see that by
definition, HX = 0 in Pys(¢,(C?)) if [k | < [p]. So, using (8), we can define elementary block-
symmetric polynomials on £,(C®) by

n—[pl , |
nRX = Yo (-1t |q—!'H]9Rln(]-q, where n=|k|> [p]. )
j=Trl ja= 1

Theorem 2. Elementary block-symmetric polynomials on £,(C®) defined by (9) form an alge-
braic basis of n-homogeneous polynomialsn > [p] in Pys(£,(C?)).

Proof. It is easy to see that equation (9) is invertible. So we have a bijection between polynomi-
als Hy! and R;!. Since {H, Fn=[p) is an algebraic basis in Pys(£,(C?)), so the set {R} buz[p 18
an algebraic basis in Pys(£,(C?)) too. O
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Kaacrnuni dpopmyan HeloToHa 3apae peKypeHTHI CITiBBIAHOITIEHHST MiX aaTebpaiurmmm 6asuca-
MU CMMEeTPWIHIMX TTOATHOMIB. Lli popMyAM 3aAMIIAIOTHCS TPABUABHMMI i AASI CMMETPUIHIX TTOAI-
HOMiB Ha HeCKiHUeHHOBMMIipHIX 6aHaXOBMX IPOCTOPaxX MOCAIAOBHOCTEIL.

B @it cTaTTi MM PO3TASIAAEMO GAOUHO-CMMETPWUHI oAiHOMY (abo cuMmeTpyuHi ToAiHOMa Mak-
MaxoHa) Ha 6aHaxoBux mpoctopax £,(C%), 1 < p < co. Mu aoBoammMo araror dpopmyan HeroToHa
AAST DAOUHO-CYIMETPUYHMX TTIOAHOMIB y BumaaKy p = 1. Y Bumaaky 1 < p HeMae KAaCHIHMX eAe-
MEHTapHMX OAOUHO-CMMETPUYHNMX IOAIHOMIB. ITpoTe MM IPOAOBXMAM OTpUMAHY (POPMYAY THITY
Hetorona ans /1 (C®) Ha Brmaaok £,(C*), 1 < p < oo, i, B TaKmif CII0Ci6, 3aTIpOMOHYBaAM TIPUPOAHE
O3HaUEHHS eAeMeHTAPHUX OAOYHO-CHMEeTPUYHIMX MOAiHOMIB Ha £, (C*).

Kontouosi cnosa i ppasu: CUMeTpUUHI MOAIHOMY, ODAOYHO-CHMETPUYHI MOAIHOMY, aArebpaidHt
6asnc, dpopmyaa Herorona.



