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NONLOCAL INVERSE BOUNDARY-VALUE PROBLEM FOR A 2D PARABOLIC
EQUATION WITH INTEGRAL OVERDETERMINATION CONDITION

This article studies a nonlocal inverse boundary-value problem for a two-dimensional second-
order parabolic equation in a rectangular domain. The purpose of the article is to determine the
unknown coefficient and the solution of the considered problem. To investigate the solvability of
the inverse problem, we transform the original problem into some auxiliary problem with trivial
boundary conditions. Using the contraction mappings principle, existence and uniqueness of the
solution of an equivalent problem are proved. Further, using the equivalency, the existence and
uniqueness theorem of the classical solution of the original problem is obtained.
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1 INTRODUCTION AND FORMULATION OF THE INVERSE PROBLEM

In the present paper, we consider an inverse boundary-value problem for a two-dimen-
sional parabolic equation in a rectangular domain. The main goal of this article is to prove the
existence and uniqueness of a classical solution of an inverse boundary-value problem.

The inverse problems arise in many different areas of mathematical modeling types, such as
mineral exploration, biology, medicine, seismology, desalination of seawater, movement of lig-
uid in a porous medium, financial market behavior, etc. Fundamentals of the theory and prac-
tice of research of inverse problems were established and developed in the pioneering works
of Tikhonov [18], Lavrent’ev [15], Ivanov [10], Romanov [17], Denisov [3,4]. Recently, there
have been many studies of inverse problems for 1D parabolic and other types of equations. A
more detailed bibliography and a classification of problems may be found in [1,2,6,7,11,12].

Problems of the solvability of inverse problems for a two-dimensional heat equation is ex-
tensively studied by many authors, see, for example, Ismailov [5], Ivanchov [8,9], Kabanikhin
[13], Kinash [14], Zaynullov [19], and others. But the statement of the problem and the proof
techniques used in this study are different from representations in these papers.

Motivated by these works, we study in this paper the existence and uniqueness of a classical
solution for the following inverse problem: in the domain Dt = Q_xy x [0, T], where Qxy =
{(x,y) :0 < x<1,0<y <1}, consider a two-dimensional parabolic equation

(%, ) — o(8) (e (%,,8) + 11y (x,,8)) = a(Ou(x,,8) + F(x,y,1), (x,y,8) € Dr, (1
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with the nonlocal condition

u(x,y,0) +ou(x,y, T) = ¢(x,y),  (x,y) € Quy, )

the boundary conditions

u(0,y,t) =ux(1,y,t) =0, 0<y<1,0<t<T, 3)
uy(x,0,t) = u(x,1,t) = 0<x<1,0<t<T, (4)

and the overdetermination condition
11
u(xo, Yo, t) + //K(x,y)u(x,y,t)dxdy = h(t), 0<t<T, 0<uxpys<l, (5)
00

where § > 0 is known number, (xo, o) € Qxy is some fixed point, 0 < c(t), f(x,y,t), ¢(x,y),
h(t) are given functions, u(x,y,t) and a(t) are unknown functions.

Definition 1. The pair {u(x,y,t),a(t)} is said to be a classical solution of the problem (1)—~5),
if the functions u(x,y,t) € C>*!(Dr) and a(t) € C[0, T] satisfy equation (1) in D, and the
conditions (2)—(5) in the classical (usual) sense.

To investigate the existence and uniqueness of the classical solution of problem (1)—(5), we
prove the following theorem.

Theorem 1. Suppose that 6 > 0, f(x,y,t) € C(Dr), ¢(x,y) € C(Qxy), K(x,y) € L1(Qxy),
h(t) € C0,T], h(t) # 0,0 < t < T and the compatibility condition

11
olxo,y0) + [ / K(x,y)g(x,y) dx dy = h(0) + 6h(T), 6)
0

holds true. Then the problem of finding a classical solution of (1)«5) is equivalent to the
problem of determining the functions u(x,y,t) € C>*'(Dr) and a(t) € C[0, T), satisfying
(1)<(4), and the condition

1 1
W(t) —c(t) (uxx(xo,yo,t) + uyy (X0, Yo, ) +//K(x,y)(uxx(x,y,t) +uyy(x,y,t)) dx dy)
1 1 0o (7)
— a(Oh(t) + f(x0, o, t) + / / K(x,y)f(x,y,)dxdy, 0<t<T.
0 0

Proof. Let {u(x,y,t),a(t)} be the classical solution of problem (1)—(5). Then from equation (1),
we have

11

d

7 (u(xo,yo,t) —i—//K(x,y)u(x,y,t) dx dy)
00

11
—c(t) (uxx(xo,yo,t) + 1yy (X0, Yo, t) —|—//K(x,y)(uxx(x,y,t) + uyy(x,y,t)) dx dy)
0 0



INVERSE BOUNDARY-VALUE PROBLEM FOR A 2D PARABOLIC EQUATION 25

11
=a(t) (u(xo,yo,t) —{—//K(x,y)u(x,y, t)dx dy)
00

(8)
—i—f(xo,yo,t)—i—//K(x,y)f(x,y,t)dxdy, 0<t<T.
Differentiating both sides of (6) with respect to t gives
J 11
7 (M(xofyolt) + //K(x,y)u(x,y,t) dx dy) =H(t), 0<t<T. )
00

From (8), taking into account (5) and (9), we arrive at (7).
Now, assume that {u(x,y,t),a(t)} is a solution to the problem (1)-(4), (7). Then from (7)
and (8), we get

11
ti(ﬁm#mﬂ+//K@#WW#JWMWh@)
00

- (10)
=a(t) (u(xo,yo,t) + //K(x,y)u(x,y,t) dx dy — h(t)) , 0<t<T.
00
Using (2) and the compatibility condition (6), we obtain the following relation
11
u(xo,40,0) + / / K(x,y)u(x,y,0)dx dy — h(0)
00
11
+9 (u(xo,yo, T) + //K(x,y)u(x,y, T)dxdy — h(T))
00
- (11)
= u(xo,Y0,0) + du(xo,yo, T —l—//K (x,y,0) +u(x,y,T))dxdy
00
11
— (1(0) +8h(T)) = g(x0,y0) + [ [ K(x,1)e(x,y) dxdy = (1(0) +h(T)) = 0.
00
It is clear that the general solution of equation (10) has the form
1 [t‘u(r)d"r
u(xo,yo, t) + //K(x, y)u(x,y, t)dxdy — h(t) = ce? , (12)
00

where c is an arbitrary constant.
Hence, using (11), we find

( - _}a(r)di’)
c|l1+de 0 =0. (13)



26 Az1zBAYOV E.I., MEHRALIYEV Y.T.

By virtue of 6 > 0, from (13), we obtain that c = 0. Setting ¢ = 0 in (12), we conclude that

11
u(xo, Yo, t) +//K(x,y)u(x,y,t) dxdy —h(t) =0, 0<t<T.
00

Hence, the condition (5) is satisfied. The proof is complete.

O
2 SOLVABILITY OF THE INVERSE BOUNDARY-VALUE PROBLEM
We seek the first component u(x,y, t) of classical solution {u(x,y,t),a(t)} of the problem
(1)-(4), (7) in the form
(x,y,t) Z Z ug () sin Agx cos vy,
k=1n= (14)
A = g(zk—l), w = §(2n 1), kn=12,...,
where
11
ugn(t) =4 / / u(x,y, t)sin Agx cos yny dx dy.
00
Applying the formal scheme of the Fourier method, from (1) and (2), we have
e (£) + (AR +70)e(BDun(t) = Feu(tina),  0<t<T, (15)
Ui (0) + 0uy  (T) = Qs k,n=1,2,..., (16)

where

Fk,n(t; u,a) = fk,n(t) =+ a(t)uk,n(t>/

ffy%nc(s)ds ¢ t
’ Hic ,C(8)ds
TR L
- yinc(s)ds 0
1+ 5eT (17)
— [ 12 c(s)ds t
ge 0" — [ g c(s)
— - /Pkn T;u,a)e © dr,
— [ 12 c(s)ds
1+de 0 - 0

where
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Substituting the expressions uy ,(t) (k,n = 1,2,...) described by (17) into (14), to determine
the first component of the solution (1)-(4), (7), we obtain

-/ yinc(s)ds ¢ t

0 00 0 _ 2 d
u(ryt) =y Yo P T /Fk,n(T; u,a)e { o)l g
k=1n=1 —[ud c(s)ds
1+ de '
, (18)
_ 42 d
s 37 e |
— - /Pk,n(r; uae dt » sin Agx cos yny.
— [ ug c(s)ds
1+6e 0" 0
Further from (7), taking into account h(t) # 0, we get
11
o(t) = 0] {1 0) = (7, ) + [ [xpreunas i)
0 (19)

0§ £ st

k=1n=1

=
=

where
11
Pin = V%,n <sin AkXo €os Ynlo + / / K(x,y) sin Agx cos yny dx dy) .
0

0
Next, substituting the expressions uy ,(t) (k,n = 1,2,...) represented by (17) into (19), to
find the second component of the solution (1)—(4), (7), we have
1

1
a(t) = (1)) {h’(t) - (f(xo,yo,t> [ [ Ky oyt ax dy)
00

¢
Ofy% 1C(s)ds ¢ t

® - yznc(s)ds
—c(t) ) ) Prn - +/Fk,n(r;u,a)e T[ b dt

k=1n=1 e 5 (20)

1+de ©

T 2
PR [ 12,c(s)d
— T /FknruaeT at| pin
#i ,C(s)ds
14de 0" 0

Thus, the solution of problem (1)—(4), (7) was reduced to the solution by systems (18), (20)
with respect to unknown functions u(x, y,t) and a(t).

Proceeding from the definition of the solution of the problem (1)-(4), (7) the following
statement is proved.

Lemma 1. If {u(x,y,t),a(t)} is any solution of (1)—(4), (7) then the functions
11

U ( 4//u X, Y, t) sin Agx cos yuy dx dy, kn=12,...,
0
th

satisfy the system (17) on the interval [0, T].
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Proof. Let {u(x,y,t),a(t)} be any solution of problem (1)-(4), (7). Multiplying both sides of
the equation (1) by function 4sin Ayx cos v,y (k,n = 1,2,...) and integrating both sides with
respect to x and y from 0 to 1, and using relationships

1

1 11
4//ut X, Y, t) sin Agx cos vy dx dy = E<4//u (x,y,t)sin Agx cos vy dx dy) = u;(,n(t),
00 00

11
4// U (%, Y, £) + 1y (x,y, 1)) sin Agx cos v,y dx dy
00

11
— (A2 4+92) <4//u X, Yy, t sm)thcos'ynydxdy> — (A + 2 ua(t), kn=12...,
00

we get that the equation (15) is satisfied.

Similarly, from (2) we obtain that condition (16) is satisfied. Thus, uy ,(t), k,n = 1,2,...,1s
a solution to the problem (15), (16). Hence, it straightforward follows that the functions uy ,(t),
k,n=1,2,...,satisfy on [0, T] system (17). Thus the lemma is proved. O

Obviously, if

11
U (f) = 4//u(x,y, t) sin Agx cos yny dx dy, kn=1,2,...,
00

is a solution to system (17), then the functions

(x,y,t) Z Z Uy (1) sin Agx cos vy,

and a(t) is a solution of system (18), (20).
From Lemma 1 it follows the next assertion.

Corollary 1. Suppose that system (18), (20) has a unique solution. Then the problem (1)—(4),
(7), couldn’t have more than one solution, in other words, if problem (1)—4), (7) has a solution,
then it is a unique.

In order to study the problem (1)—(4), (7), we consider the following spaces. Let B%,T denote
the set of all functions of the form

u(x,y,t) ZZukn ) sin Agx cos Yy, Akzg(Zk—l), 'ynzg(Zn—l), kn=1,2,...,

considered in domain Dr, where the functions uy ,(t), k,n = 1,2,..., are continuous on [0, T],
and satisfy the condition

1
00 2
{Z Z (Pli,n ””k,n(t)l‘c[o,ﬂ)z} < 0.

k=1n=1
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The norm in the space BS’,T is defined as follows
1

)) 2
|lu(x,y,t ||B3 Z{ZZ<P‘kn||”kn ||COT>} :

We denote by E3 the topological product of leT x C[0, T]. The norm of the element z =
{u,a} is determined by the formula
lelley = 1u(x 9 D)llag, + 2@ leor-
It is known [16] that the spaces BS’,T and E3 are Banach spaces.
Now, consider the operator
®(u,a) = {P1(u,a), Dy(u,a)}

in the space E3., where
Dy (u,a) =1(x,y,t) Z Z il (1) sin Agx cos vy,

<I>2(u,a) = a(t),
and the functions i ,(t), k,n = 1,2,..., d(t) are equal to the right-hand sides of (17), (20)

respectively.

It is easy to see that
[ AgB(s)ds

1+4de o >,
13 < A2+ 9D (Ak+7n) = A3+ Afyn + VA + 73,

1

T T 1
/|fk,n(r>|dr < VT (/ fk,n(r)zdr) ,
' 11 !

|Picnl = (1+// K(x,y)] dxdy) Hen = Pl

00
Taking into consideration these relations, we have

1

{i Y (12 601 cm)z}% <3 (i > (4 |<ok,n|)2>2

n=1k=1 n=1k=1
+3( Y Y (Avaloral) > +3 (Z Y (Mevi | prnl) > +3 (Z Y (v l@nl) >
n=1k=1 n=1k=1 n=1k=1
2
+3(1+9) (O/nX:lkX:l )‘k |fkn dT) =+ (O/nX:lkzl( kTn |fkn( )|> T) (21)

T o o % . o %
+ (/ Z Z (Ak')’n | fen(T) ) + (/ Z Z ’Yn fkn(T))sz)
’ 0

n=1k=1

%
+ T la(t)[lcpo,m (ZZ :ukn [[ttien (£ ||COT>2> ]'

k 1
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13t || cjo,m

11
< U’l“ﬂl)qo,ﬂ{ (D) - (f<xo,yo,t>+ /] K(x,y>f<x,y,t>dxdy) N
clo,T

+plle®llciom (ZZV;f) [(Zl (A7 l@inl) > <Z (A2 | @knl) )

—1i—1 —1 n=1k=1

=

1

+ (f:lkio: Ak')’n’q)kn‘ > (i i(')’?z‘gok,n‘)2>

n=1k=1

T o T o
+(1+ VT (/Z Y. (A% fin(T 2dT> + (/Z Y (Afvn | fin(T )ZdT)
0 0

n=1k=1

(22)

2

+ (/Ti i (Akvi | fion (T )ZdT)Z + (/Ti i (V3 | fion (T dT)Z

0 n=1k=1 0 n=1k=1

+(1+5)T” ”C[OT] (ZZ ]’lkn”ukn HCOT)2> ]}

Assume that the data for the problem (1)—(4), (7) satisfy the following conditions:

(A) @(x,y), ox(x,Y), Pxx(x,Y), qu(x,y), Goxy(xz]/)/ G"yy(x/y) € C(Q_xy)z
Goxxy(xry)r Goxyy(xry)r Prxx (X, ), Goyyy(xrw S LZ(Qxy)r
9(0,y) = ¢x(Ly) = ¢xx(0,y) =0, 0 <y <1,
Py(x,0) = o(x,1) = @yy(x,1) =0, 0<x < 1;

B) f(xy,t), fr(x 1), fux(xyt), fy(xyt), fry(x,yt), fry(x,y,t) € C(Dr),
fexy (XY, t), fayy(x,9,1), frox(X,y,t), fyyy(x,y,t) € Lo(Dr),
fOyt) =fx(Lyt) = fux(Oy,t) =0,0<y <1, 0<t<T,
fy(x,0,t) = f(x,1,t) = fry(x,1,) =0,0<x <1, 0<t < T;

(C) 6 >0, K(x,y) € L1(Qxy), 0 < c(t) € C[0,T], h(t) € CH0,T], h(t) #0,0<t < T.
Then, from (21) and (22), respectively, we obtain
ey, Dllgs, < A1(T) + Ba(T) [a(t)llcior (v, )53, (23)

() llcjo,ry < A2(T) + Ba(T) [lat) [ cjo,ry llee(x, v, )13, » (24)
where
A1(T) =3 ||@xxx(x,y) HLZ(Qxy) +3 Hq’xyy(xrw HLZ(Qxy) +3 H(Pxxy(X,y) HLZ(QX]/)

+3 oy (x ¥ 1,0, T 1+ 5>\/?3< | foexx (x5, 9 D) |1, )
+3 || fayy (5 ¥, )|y oy + 3 ey (2w, Dy 0y

30 e (6, )Ly + 3 Lo 69D o) )-
Bi(T) = 3(1+ )T,
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aa(1) = |10 o, { 00 = (P30 + [ [ Koy i)
00

C[0,T]
1

00 00 2
+plle®)llcpor <k21k21 y,f) [quxxx(x, Dz + ey @),

+ | @xxy (6 DIy 0, F 1 @wy (5 W0, + 1+ 5)\/f< | faxx (%, ¥, ) 1, (D)
|y (v O o) + e (v D oy

By(T) = H [h(t>]1HC[o,T] ple® e (ki i yk2> 1+

1 e (69, )L aiog) + o 9D oy )

From inequalities (23) and (24) we conclude

(e, v, )y, + 13 [ cjo,ry < A(T) + B(T) la(®)llcjo,ry l(x, £)1lm3,, (25)

where
A(T) = Ay(T) + Ay(T),  B(T) = By(T) + Ba(T).

Let Kg denote the closed ball of radius R = A(T) + 2 centered at zero in E3.

Theorem 2. Let the conditions (A)-(C) and the condition
B(T)(A(T) +2)* < 1 (26)
be fulfilled. Then problem (1)—(4), (7) has a unique solution in the ball K.

Proof. Let us consider in the space E3. the equation
z =Pz, (27)

where z = {u,a}. The components ®;(u,a), i = 1,2, of operator ®(u,a) defined by the right
side of equations (18), (20), respectively. Now, consider the operator ®(u,a) in the ball Ky of
the space E3.

Similar to (25) we obtain that for any z,z1,zp € Kg the following inequalities hold

19zl s < AT) + B(T) [ p(t)  cpo,y 1, v, )l g < AT) + B(T)(A(T) +2)%, (28)

[ @21 — @zl < BIT)R( s (5, ,8) — a9, DIz, + lar(t) = ol cpoy ). (29)

Then by (26), from estimates (28) and (29) it is clear that the operator @z acts in a ball Kg
and satisfy the conditions of the contraction mapping principle. Therefore the operator ®z
has a unique fixed point {u,a} in the ball Kg, which is a unique solution of equation (27), i.e.,
{u,a} is a unique solution of the systems (18), (20) in the ball K.

The function u(x,y,t) as an element of the space E3 is continuous and has continuous

derivatives uy(x,y,t), uxx(x, Y, t), uy(x,y,t), txy(x,y,t), uyy(x,y,t) in Dr.
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From the equation (15) it is clear that

e, (1) + (Af + va)e(Bugn(t) = Fu(t;u,a), 0<t<T,

NI—

{ i i <Vk,n

n=1k=1

, 2
aOllcom) < V2l llnn 0,

ey 0+ Syl t) + POy )+ ey ) o, o
xy
Thus u¢(x,y, t) is continuous in Dr.
It is not hard to verify that equation (1) and conditions (2)—(4), (7) are satisfied in the usual
sense. Thus, the solution of the problem (1)—(4), (7) is a pair of functions {u(x,t),a(t)}. By
virtue of the Lemma 1, it is unique in the ball Kr. Theorem has been proved. ]

Thus, by Theorem 1 and Theorem 2, we arrive at the following main result.

Theorem 3. Assume that all conditions of Theorem 2 and compatibility condition

11
o(x0,90) + | [ Klx,y)p(x,y)dxdy = h(0) + 3h(T)
00

hold. Then problem (1)—5) has a unique classical solution in the ball Ky for sufficiently small
values of T.
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B poboTi AocaiakeHO HeAOKaABHY 0bepHeHY KpalioBy 3apady AASI ABOBMMipHOTO IapaboAiuHo-
TO piBHSIHHSI APYTOrO HOPSIAKY Y MPSIMOKYTHIlM obaacTi. MeToro Li€l cTaTTi € BU3HAYEHHS HEBiAO-
Moro KoedpiltieHTa Ta po3B’sI3Ky BkaszaHoI 3apaui. Io6 aocaiamTy po3’si3HiCTE obepHeHOI 3apadi,
MU TIepeTBOPIOEMO OPUTiHAABHY 3aAady y AeSIKY AOMOMIXHY 3apady 3 TPUBIaABHMMM KpaliOBUMMI
yMoBaMIL. BUKOPMCTOBYIOUN IIPVMHIIMIT CTMCKAIOUMX BiAOOGpakeHb, AOBEACHO iCHyBaHHS i €AMHICTD
PO3B’sI3Ky AASI eKBiBaA€HTHOI 3aAadi. BUKOpMCTOBYIOUWM eKBiBaA€HTHICTh, OTpMMaHO TeopeMy IIpo
iCHyBaHHS i €AVHICTh KAACMYHOTO PO3B’SI3Ky OpUTiHAABHOI 3apa4i.

Kntouosi ciiosa i ppasu: obepHeHa 3apada, ABOBMMipHe mapaboaiuHe piBHsIHHS, MeToA Dyp’e, kKaa-
CUYHIIA PO3B 130K, Ilepeo3HauyeHa yMOBa.



