
ISSN 2075-9827 e-ISSN 2313-0210 http://www.journals.pnu.edu.ua/index.php/cmp

Carpathian Math. Publ. 2020, 12 (1), 55–68 Карпатськi матем. публ. 2020, Т.12, №1, С.55–68

doi:10.15330/cmp.12.1.55-68

ERDOĞAN E.

ZERO PRODUCT PRESERVING BILINEAR OPERATORS ACTING IN SEQUENCE

SPACES

Consider a couple of sequence spaces and a product function — a canonical bilinear map asso-

ciated to the pointwise product — acting in it. We analyze the class of “zero product preserving”

bilinear operators associated with this product, that are defined as the ones that are zero valued in

the couples in which the product equals zero. The bilinear operators belonging to this class have

been studied already in the context of Banach algebras, and allow a characterization in terms of

factorizations through ℓr(N) spaces. Using this, we show the main properties of these maps such

as compactness and summability.

Key words and phrases: sequence spaces, bilinear operators, factorization, zero product preserv-
ing map, product.

Faculty of Art and Science, Department of Mathematics, Marmara University, 34722, Kadıköy/Istanbul, Turkey
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1 INTRODUCTION

Let us fix a couple of Banach spaces having a characteristic operation involving couples of

vectors for giving an element in other Banach space. For example, the pointwise product of

functions from Lp and Lp′ for obtaining an element of L1, or the internal product in a Banach al-

gebra. Let us call “product” this bilinear map. Bilinear maps factoring through such a product

preserve some of its good properties, and so it is interesting to know which bilinear operators

satisfy such a factorization. This general philosophy is in the root of some current develop-

ments in mathematical analysis, mainly in the Banach algebras and vector lattices setting (see

for example [1, 5, 7, 12] and references therein).

In this paper we analyze the class of bilinear maps factoring through a product in a dif-

ferent context. We study the main characterizations and properties when the operators act in

couples of classical Banach sequence spaces (ℓp(N)-spaces). The essential result (Theorem 1)

shows that the factorization is equivalent to a certain “zero product preservation” property.

Concretely, bilinear maps satisfying this property are the ones that are 0-valued for couples of

elements whose products are equal to zero.

Let us explain the relation of our class of maps with some notions and results that can be

found in the current literature. Alaminos J. et al have studied zero product preserving bilinear

maps defined on a product of Banach algebras and C∗-algebras to get a characterization for

(weighted) homomorphisms and derivations. They have obtained a class of Banach algebras

A that satisfy the equality ϕ(ab, c) = ϕ(a, bc), a, b, c ∈ A, for every continuous zero product

preserving bilinear map ϕ : A × A → B. By adding some conditions to the algebra, they have
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proved that ϕ(ab, c) = ϕ(a, bc) gives a factorization for the bilinear operator ϕ as ϕ(a, b) :=

P(ab) for a certain linear map P : A → B [1]. Recently, Alaminos J. et al have shown in [2] that

there are some Banach algebras that do not satisfy the equality ϕ(ab, c) = ϕ(a, bc) such as the

algebra C1[0, 1] of continuously differentiable functions from [0, 1] to C, although the operator

ϕ is zero product preserving map. In particular, this shows that any bilinear operator cannot

be factored through the product.

In the meantime, some authors have studied the zero product preserving property for the

bilinear maps acting in vector lattices and function spaces with the name orthosymmetry. This

term is firstly used by Buskes G. and van Rooij A. to give a factorization for bilinear maps

defined on vector lattices and they obtained the powers of vector lattices by orthosymmetric

maps, see [6, 7]. Recently, Ben Amor F. has studied the commutators of orthosymmetric maps

in [4] and investigated an expanded class of orthosymmetric bilinear maps that are related

to symmetric operators given by Buskes G. and van Rooij A. The interested reader can see

the reference [5] for a detailed information about the orthosymmetric maps acting in vector

lattices.

In a different direction, factorization of zero product preserving bilinear maps for the con-

volution product acting in function spaces has been studied by Erdoğan E. et al (see [10]).

Recently, Erdoğan E. and Gök Ö. have studied a class of bilinear operators acting in a pro-

duct of Banach algebras of integrable functions and showed a zero product preserving bilinear

operator defined on the product of Banach algebras that factors through a subalgebra of abso-

lutely integrable functions by convolution product (see [11]). Moreover, Erdoğan E. et al have

obtained a class of zero product preserving bilinear operators acting in pairs of Banach func-

tion spaces that factor through the pointwise product and they have given characterizations

by means of norm inequalities for these bilinear maps [12].

The aim of this paper is to give a new version of the factorization results given in the men-

tioned studies for the zero product preserving bilinear operators defined on the product of

sequence spaces. We center our attention on bilinear operators B defined on the product of

Banach spaces E and F satisfying the zero product preserving property

x⊛ y = 0 implies B(x, y) = 0, (x, y) ∈ E × F,

where ⊛ is defined using the pointwise product of sequences, showing that they are exactly

the ones that factors through ⊛.

This paper is organised as follows: Section 2 is devoted to giving some preliminary results

on products and factorization through them. In Section 3, the main result of the paper on

factorization of zero product preserving on sequence spaces is proved (Theorem 1). Using it,

compactness and summability properties of product factorable operators are investigated and

some applications are given.

2 PRELIMINARIES: PRODUCTS AND BILINEAR MAPS

We use standard notations and notions from Banach space theory. The sets of natural num-

bers and integers are denoted by N and Z, respectively. For a Banach space E, BE will denote

the unit ball of E. We write χA for the characteristic function of a set A. Operator (linear or

multilinear) indicates continuous operator. The space of all linear operators between Banach
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spaces X, Y is denoted by L(X, Y), and we write B(X ×Y, Z) for the vector space of all bilinear

Z-valued operators, where Z is also a Banach space.

For a positive real number p, ℓp(N) is the space of all complex valued absolutely p-sum-

mable sequences. It is a Banach space with the norm ‖(xi)‖p =
( ∞

∑
i=1

|xi|
p
)1/p

for p ≥ 1, and

ℓ∞(N) shows the Banach space of all bounded sequences endowed with the norm ‖(xi)‖∞ =

supi∈N
|xi|.

If µ is a measure and 1 ≤ p < ∞, we write Lp(µ) for the Lebesgue space of classes of µ-a.e.

equal p-integrable functions.

We call a continuous operator (weakly) compact if it maps the closed unit ball to a relatively

(weakly) compact set.

A Banach space E has Dunford-Pettis property if every weakly compact linear operator

T : E → F is completely continuous (that is, it maps every weakly compact set A ∈ E into a

compact set with respect to the norm topology of the Banach space F).

A linear operator T : X → Y is said to be (p, q)-summing (T ∈ Πp,q(X, Y)) if there is a

constant k > 0 such that for every x1, . . . , xn ∈ X and for all positive integers n

( n

∑
i=1

∥∥T(xi)
∥∥p

Y

)1/p
≤ k sup

x′∈BX′

( n

∑
i=1

|〈xi, x′〉|q
)1/q

.

For the summing operators we refer the reader to [9].

Throughout the paper we will use the term product for a specific bilinear map, typically

with some special properties and being canonical in some sense. However, the only assump-

tion on such a product is that it is a continuous bilinear map. We will need stronger properties

for the products that are presented in [12] by Erdoğan E. et al.

Definition 1. Consider a bilinear operator ⊛ : X × Y → Z, (x, y)  ⊛(x, y) =: x⊛ y, where

X, Y, Z are Banach spaces. We say that the bilinear operator⊛ is a norm preserving product (n.p.

product for short) if it satisfies the inclusion BZ ⊆ ⊛(BX × BY) and

‖x⊛ y‖Z = inf
{
‖x′‖X‖y′‖Y : x′ ∈ X, y′ ∈ Y, x⊛ y = x′ ⊛ y′

}
,

for every (x, y) ∈ X × Y.

Now let us give some examples of bilinear operators that are n.p. product or not.

Example 1. Let (Ω, Σ, µ) be a complete σ-finite measure space and let (E, ‖.‖E) be a Banach

function space over µ. (For the definition of Banach function space we refer to [14, Def 1.b.17]).

We will write E(p), p ≥ 1, for the p-convexification of the Banach lattice E in the sense of

[14, Ch. 1.d] (see also the equivalent notion of pth power in [17, Ch.2] for a more explicit

description). In the case that E is a Banach function space, E(p) is also a Banach function space

with the norm ‖ f‖E(p) = ‖| f |p‖
1/p
E for f ∈ E (see [16, Prop.1]).

Let us consider the bilinear operator defined by the (µ-a.e.) pointwise product ⊙ : E(p) ×

E(q) → E(r), ( f , g)  f · g, where
1

p
+

1

q
=

1

r
for 1 ≤ r < p, q < ∞. We claim that this bilinear

map is a norm preserving product. Indeed, consider f ∈ BE(r) , h := | f |r/psgn f ∈ E(p) and

g := | f |r/q ∈ E(q), where sgn f denotes the sign function of f . By the definition of the norm of
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the p-convexification, it follows that ‖h‖E(p) =
∥∥∥
∣∣∣| f |r/psgn f

∣∣∣
p∥∥∥

1/p

E
= ‖| f |r‖

1/p
E = ‖ f‖

r/p

E(r) ≤ 1.

Similarly, ‖g‖E(q) = ‖ f‖
r/q

E(r) ≤ 1. Therefore, BE(r) ⊆ ⊙(BE(p) × BE(q)) is obtained.

Let us show now that ‖h · g‖E(r) = inf{‖h′‖E(p)‖g′‖E(q) : h′ ∈ E(p), g′ ∈ E(q), h · g = h′ · g′}

for h ∈ E(p) and g ∈ E(q). Indeed, by the generalized Hölder’s inequality we have that h · g ∈

E(r) and ‖h · g‖E(r) ≤ ‖h‖E(p)‖g‖E(q) (see [16, Lemma 1]). Since this inequality holds for all

couples (h′, g′) such that f = h · g = h′ · g′, we obtain ‖h · g‖E(r) ≤ inf{‖h′‖‖g′‖ : h · g = h′ · g′}.

Conversely, consider an arbitrary element f ∈ E(r). Then f has the following factorization:

h = | f |r/psgn f ∈ E(p), g = | f |r/q ∈ E(q) and h · g ∈ E(r). Moreover, ‖h‖E(p) = ‖ f‖
r/p

E(r) and

‖g‖E(q) = ‖ f‖
r/q

E(r) . Therefore ‖h‖E(p)‖g‖E(q) = ‖ f‖
r/p

E(r)‖ f‖
r/q

E(r) = ‖ f‖E(r) . This proves

‖ f‖E(r) = ‖h · g‖E(r) ≥ inf
{
‖h′‖E(p)‖g′‖E(q) : h · g = h′ · g′

}
,

and so ⊙ is an n.p. product.

Note that if we consider E = L1(µ) we obtain that the pointwise product is an n.p. product

from Lp(µ) × Lq(µ) to Lr(µ). In particular, if µ is the counting measure on N, the pointwise

product ⊙ : ℓp(N) × ℓq(N) → ℓr(N) is an n.p. product (for a more detailed information

see [16, Lemma 1] or [17, Lemma 2.21(i)]).

Example 2. Let E, F be normed spaces and E ⊗ F denotes their algebraic tensor product. Pro-

jective norm π and injective norm ε on E⊗ F are calculated by π(z) = inf
{

∑
n
i=1 ‖xi‖‖yi‖ : z =

∑
n
i=1 xi ⊗ yi

}
, and ε(z) = sup

{
〈x′ ⊗ y′, z〉 : x′ ∈ BE′ , y′ ∈ BF′

}
, respectively (see [8, Section

2,3]). It is well-known that any reasonable tensor norm α on the tensor product E ⊗ F satisfies

the inequality ε ≤ α ≤ π. For every (x, y) ∈ E × F, it is seen that by the definitions of these

norms

ε(x ⊗ y) ≤ α(x ⊗ y) ≤ π(x ⊗ y) ≤ inf{‖x′‖‖y′‖ : x′ ⊗ y′ = x ⊗ y}.

Besides, for every simple tensor x ⊗ y it is known that for any reasonable tensor norm α

we have α(x ⊗ y) = ‖x‖E‖y‖F (see [8, §12.1]). Then, any reasonable tensor norm satisfies

the equality involving the norm in Definition 1. But the tensor product does not satisfy the

inclusion, since clearly it is not surjective. So, it is not a norm preserving product.

Example 3. Let us define the following seminorm on X ⊗ L(X, Y). If z = ∑
n
j=1 xj ⊗ Tj is such

that ∑
n
j=1 Tj(xj) = yz ∈ Y, we define

π•(z) = inf
{

π(z′) : z′ =
m

∑
j=1

x′j ⊗ T′
j , such that

m

∑
j=1

T′
j (x′j) = yz

}
.

That is, π• is the quotient norm given by the tensor contraction c : X⊗̂πL(X, Y) → Y de-

fined as c(z) = c
(

∑
n
j=1 ∑

n
j=1 xj ⊗ Tj

)
= ∑

n
j=1 •(xj, Tj) = ∑

n
j=1 Tj(xj) associated to the following

factorization.

X × L(X, Y)

⊗
��

•

%%
X⊗̂π L(X, Y) c // Y.
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The description of this seminorm can be found in [18]. It defines a norm if we construct a

quotient space X⊗̂π•L(X, Y) by identifying the equivalence classes of the projective tensor pro-

duct X⊗̂π L(X, Y) with the range of c in Y, i.e. c(X⊗̂πL(X, Y)) ⊂ Y. Thus, for z = ∑
n
j=1 xj ⊗ Tj

and z′ = ∑
m
j=1 x′j ⊗ T′

j , z ∼ z′ if and only if ∑
m
j=1 Tj(x′j) = ∑

n
j=1 Tj(xj). The norm of a class

[z] = {z′ : z ∼ z′}, for z = ∑
n
j=1 xj ⊗ Tj, is given by

π•(z) = inf{π(z′) : z ∼ z′}.

Let us show that • is a norm preserving product.

Fix T ∈ L(X, Y) and x ∈ X and consider yz = T(x); clearly the inequality ‖yz‖ ≤ ‖T‖‖x‖

holds. Now, consider another tensor z = ∑
n
i=1 xi ⊗ Ti such that yz = ∑

n
i=1 Ti(xi). Since ‖yz‖ =

‖∑
n
i=1 Ti(xi)‖ ≤ ∑

n
i=1 ‖Ti‖‖xi‖, we obtain that ‖x • T‖ = ‖yz‖ ≤ π•(z).

In the opposite direction, for y ∈ Y there are elements T0 ∈ L(X, Y) and x0 ∈ X such that

T0(x0) = y and ‖y‖ = ‖T0‖‖x0‖. To see this, just take a couple (x0, x′0) of norm one elements

x0 ∈ X and x′0 ∈ X′ such that 〈x0, x′0〉 = 1. Now define T0(x) := 〈x, x′0〉 y, x ∈ X, and note

that ‖T0‖ = ‖y‖. Therefore, if z = x0 ⊗ T0, we have that y = yz. So, this gives in particular

that BY ⊆ •(BX × BL(X,Y)), since π•(z) ≤ ‖yz‖. Together with the inequality in the previous

paragraph this also gives ‖x0 • T0‖ = ‖yz‖ = π•(z). More precisely, we have proven that

‖x • T‖Y = inf
{
‖x0‖X‖T0‖L(X,Y) : x0 ∈ X, T0 ∈ L(X, Y), x • T = x0 • T0

}

for all T ∈ L(X, Y) and x ∈ X. Thus, • is a norm preserving product.

Since to find the factors of a Banach space is a current problem in the mathematical liter-

ature, there are found more examples of the norm preserving products including the Banach

function spaces (see [13, 15, 19]).

Let X, Y, Z be Banach spaces. A bilinear operator B : X × Y → Z is called ⊛-factorable

for the Banach valued n.p. product ⊛ : X × Y → G if there exists a linear continuous map

T : G → Z such that B factors through T and ⊛ (see [12, Definition 1]).

In this case, the following triangular diagram

X × Y B //

⊛

##

Z

G

T

OO

holds. In the paper [12], Erdogan E. et al have proved a necessary and sufficint condition for

⊙-factorability by a summability requirement as follows.

Lemma 1 (Lemma 1, [12]). The bilinear operator B : X × Y → Z is ⊛-factorable for the n.p.

product⊛ if and only if there exists a constant K such that for all x1, . . . , xn ∈ X and y1, . . . , yn ∈

Y we have ∥∥∥
n

∑
i=1

B(xi, yi)
∥∥∥

Z
≤ K

∥∥∥
n

∑
i=1

xi ⊛ yi

∥∥∥
G

.

Example 4. Consider a bilinear continuous operator B : ℓ2(N) × ℓ2(N) → ℓ1(N). Let us

use the result above for characterizing when B is ⊙-factorable with respect to the pointwise

product. It was shown in the first example that the pointwise product ⊙ from ℓ2(N)× ℓ2(N)
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to ℓ1(N) is an n.p. product. Let (a, b) =
(

∑
∞
k=1 αkχ{k}, ∑

∞
m=1 βmχ{m}

)
∈ ℓ2(N)× ℓ2(N). Then

the image of this element under pointwise product is

a ⊙ b =
∞

∑
k=1

αk

∞

∑
m=1

βm(χ{k} ⊙ χ{m}) =
∞

∑
k=1

αkβkχ{k}.

Thus, for the finite sets of sequences a1, . . . , an, b1, . . . , bn we have

n

∑
i=1

ai ⊙ bi =
n

∑
i=1

∞

∑
k=1

αikβikχ{k} =
∞

∑
k=1

( n

∑
i=1

αikβik

)
χ{k}.

The ℓ1(N) norm of this sequence is ‖(zk)‖ℓ1(N) = ∑
∞
k=1 |∑

n
i=1 αikβik|. By Lemma 1, we

obtain that the bilinear operator B factors through the pointwise product if and only if there is

a constant K for all finite sequences (ai)
n
i=1, (bi)

n
i=1 ⊂ ℓ2(N) such that

∥∥∥
n

∑
i=1

B(ai, bi)
∥∥∥

1
≤ K

∞

∑
k=1

∣∣∣
n

∑
i=1

αikβik

∣∣∣.

Let us consider now a more specific bilinear operator B : ℓ2(N)× ℓ2(N) → ℓ1(N): a diago-

nal multilinear operator. Recall that a bilinear operator B ∈ B(ℓ2(N)× ℓ2(N), ℓ1(N)) is called

bilinear diagonal if there is a bounded sequence ξ = (ξk)k such that B(a, b) = ∑
∞
k=1 ξkαkβkχ{k}.

By Hölder inequality, it is easily seen that B ∈ B(ℓ2(N) × ℓ2(N), ℓ1(N)) if and only if ξ ∈

ℓ∞(N). For arbitrary finite sequences (ai)
n
i=1, (bi)

n
i=1 ⊂ ℓ2(N), we obtain

∥∥∥
n

∑
i=1

B(ai, bi)
∥∥∥

1
=

∥∥∥
n

∑
i=1

∞

∑
k=1

ξkαikβikχ{k}

∥∥∥
1
≤ ‖ξk‖∞

∞

∑
k=1

∣∣∣
n

∑
i=1

αikβik

∣∣∣ = K
∞

∑
k=1

∣∣∣
n

∑
i=1

αikβik

∣∣∣.

Therefore, it is seen that every bilinear diagonal operator is factorable through ⊙. Remark

that a bilinear diagonal operator satisfies that B(a, b) = 0 whenever a ⊙ b = 0. We will prove

in what follows that this is also a sufficient condition for factorability of bilinear operators

defined on the topological product of sequence spaces.

3 THE POINTWISE PRODUCT IN SEQUENCE SPACES

Let us center our attention in this section in a particular product that is important in math-

ematical analysis. It is given by the pointwise product of sequences, functions and generalized

sequences belonging to Banach lattices. In order to give a full generality to our results, we will

consider several extensions of the bilinear map given by the pointwise products.

In the case of sequences, we will consider the following notion. The reference product is

the pointwise product of sequences, that is ⊙ : ℓp(N) × ℓq(N) → ℓr(N), a ⊙ b = a · b =

(aibi)
∞
i=1 ∈ ℓr(N), that is well-defined and continuous by Hölder’s inequality. This is clearly

an n.p. product, as have been explained in the previous section. Also, it has commutativity

and associativity properties.

The following notion is crucial in this paper.

Let X, Y, Z be Banach spaces. We say that a bilinear continuous operator B : X ×Y → Z is

zero “product”-preserving if it is 0-valued for couples of elements whose product equals 0.

Theorem 1. Let
1

p
+

1

q
=

1

r
for 1 ≤ r < p, q < ∞. Consider a bilinear operator B : ℓp(N) ×

ℓq(N) → Y. The following assertions are equivalent.
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(1) The operator B is zero ⊙-preserving, i.e. B(x, y) = 0 whenever x ⊙ y = 0.

(2) The operator B is ⊙-factorable. That is, there is a linear and continuous operator T :

ℓr(N) → Y such that B = T ◦ ⊙, and so we have the factorization

ℓp(N)× ℓq(N) B //

⊙

''

Y

ℓr(N).

T

OO

Proof. Let us show that there is a linear continuous operator T such that B := T ◦ ⊙ whenever

the operator B is a zero ⊙-preserving. Define the map Tn : ℓp(N) ⊙ ℓq(N) → Y, Tn(z) :=

B(z ⊙ χ{1,2,...,n}, χ{1,2,...,n}) for all n ∈ N, where z ∈ ℓp(N) ⊙ ℓq(N); note that z ⊙ χ{1,2,...,n} ∈

ℓp(N), and χ{1,2,...,n} ∈ ℓq(N), and so Tn is well defined for each n ∈ N. The linearity of Tn

is a consequence of the linearity of the bilinear operator B in the first variable. To show the

boundedness of the map Tn, we give an equivalent formula for this operator. Since χ{1,2,...,n} =

∑
n
i=1 χ{i} by the properties of characteristic function, we have

Tn(a ⊙ b) = B(a ⊙ b ⊙ χ{1,2,...,n}, χ{1,2,...,n}) =
n

∑
i=1

B(a ⊙ b ⊙ χ{1,2,...,n}, χ{i}).

The pointwise product of a = (αk)
∞
k=1 ∈ ℓp(N) and b = (βk)

∞
k=1 ∈ ℓq(N) is a ⊙ b =

(αkβk)
∞
k=1 = ∑

∞
k=1 αkβkχ{k}. By the continuity of B, the image of the couple (a, b) ∈ ℓp(N) ×

ℓq(N) under the bilinear operator B is

B(a, b) = B
( ∞

∑
k=1

αkχ{k},
∞

∑
m=1

βmχ{m}

)
=

∞

∑
k=1

αk

∞

∑
m=1

βmB(χ{k}, χ{m}).

Since χ{k} ⊙ χ{m} = 0 (k 6= m) and by the zero ⊙-preservation of the operator B, we have

B(a, b) = ∑
∞
k=1 αkβkB(χ{k}, χ{k}). Thus,

Tn(a ⊙ b) =
n

∑
i=1

B(a ⊙ b ⊙ χ{1,2,...,n}, χ{i}) =
n

∑
i=1

B
( ∞

∑
k=1

αkβkχ{k} ⊙ χ{1,2,...,n}, χ{i}

)

=
n

∑
i=1

n

∑
k=1

αkβkB(χ{k}, χ{i}).

Using the zero ⊙-preservation property once again, we obtain

Tn(a ⊙ b) =
n

∑
i=1

αiβiB(χ{i}, χ{i}) = B
( n

∑
i=1

αiβiχ{i},
n

∑
i=1

χ{i}

)
= B

( n

∑
i=1

αiχ{i},
n

∑
i=1

βiχ{i}

)
.

By the boundedness of the bilinear operator B, it follows that

sup
z∈Bℓr(N)

‖Tnz‖Y = sup
(a,b)∈B

ℓp(N)×B
ℓq(N)

z=a⊙b

∥∥∥B
( n

∑
i=1

αiχ{i},
n

∑
i=1

βiχ{i}

)∥∥∥
Y

≤ sup
(a,b)∈B

ℓp(N)×B
ℓq(N)

z=a⊙b

n

∑
i=1

|αiβi|‖B(χ{i}, χ{i})‖Y < ∞.
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This shows that Tn is (uniformly) bounded, n ∈ N, and therefore (Tn)∞
n=1 is a bounded

sequence of linear operators acting in ℓr(N), since ℓr(N) = ℓp(N)⊙ ℓq(N). Indeed, note that

since ⊙ is an n.p. product, we have that it is surjective and preserves the norm, and so for

every z ∈ ℓr(N) we find adequate a ∈ ℓp(N) and b ∈ ℓq(N) such that z = a ⊙ b.

The sequence {Tn(a ⊙ b)}∞
n=1 is a Cauchy sequence for every a ∈ ℓp(N) and b ∈ ℓq(N),

and it is convergent by completeness of the Banach space Y. Indeed, since a ⊙ b ∈ ℓr(N), then

for every ε > 0, there is an N ∈ N such that

∥∥∥
∞

∑
i=n

αiχ{i}

∥∥∥
ℓp(N)

∥∥∥
∞

∑
i=n

βiχ{i}

∥∥∥
ℓq(N)

<
ε

‖B‖
∀n > N.

Using again that B(χ{i}, χ{j}) = 0 if i 6= j, we obtain

‖Tm(a ⊙ b)− Tn(a ⊙ b)‖Y =
∥∥∥B

( m

∑
i=n+1

αiβiχ{i},
m

∑
i=n+1

χ{i}

)∥∥∥
Y

≤ ‖B‖
∥∥∥

m

∑
i=n+1

αiχ{i}

∥∥∥
ℓp(N)

∥∥∥
m

∑
i=n+1

βiχ{i}

∥∥∥
ℓq(N)

< ε ∀m > n > N.

Let us define now the limit operator T : ℓr(N) → Y of the operator sequence {Tn}, that

is T(a ⊙ b) = limn→∞ Tn(a ⊙ b). It is easily seen that T is well defined and linear. Since

Tn(a ⊙ b) converges for every a⊙ b ∈ ℓr(N), then it is bounded for every a⊙ b. By the Uniform

Boundedness Theorem, it follows that T is continuous. Therefore, we obtain

B(a, b) = lim
n→∞

n

∑
i=1

αiβiB(χ{i}, χ{i}) = lim
n→∞

Tn(a ⊙ b) = T(a ⊙ b).

Besides, the image of an element is independent from its representation. Indeed, for the ele-

ment x = a1 ⊙ b1 = a2 ⊙ b2, we obtain

T(a1 ⊙ b1) = lim
n→∞

B(a1 ⊙ b1 ⊙ χ{1,2,...,n}, χ{1,2,...,n})

= lim
n→∞

B(a2 ⊙ b2 ⊙ χ{1,2,...,n}, χ{1,2,...,n}) = T(a2 ⊙ b2).

Hence we obtain the factorization of the bilinear operator B through the pointwise product as

B = T ◦ ⊙.

For the converse, assume that the map B is ⊙-factorable. Then, by Lemma 1 given in

[12] (see also page 59) it is obtained that there is a positive real number K such that, for all

x1, . . . , xn ∈ ℓp(N) and y1, . . . , yn ∈ ℓq(N), the following inequality holds

∥∥∥
n

∑
i=1

B(xi, yi)
∥∥∥

Y
≤ K

∥∥∥
n

∑
i=1

xi ⊙ yi

∥∥∥
ℓr(N)

.

Clearly, this inequality implies zero ⊙-preservation of the bilinear map B. This finishes the

proof.

Now we will give a generalization of our results. Consider two Banach spaces E and F that

are isomorphic -as Banach spaces- to ℓp(N) and ℓq(N), respectively, and the isomorphisms

are given by the operators P : E → ℓp(N) and Q : F → ℓq(N). We define the product

⊙P×Q : E × F → ℓr(N) by

⊙P×Q(x, y) = P(x)⊙ Q(y), x ∈ E, y ∈ F.



ZERO PRODUCT PRESERVING BILINEAR OPERATORS ACTING IN SEQUENCE SPACES 63

To make this definition more understandable, let us illustrate it by the following diagram

E × F
⊙P×Q //

P×Q
��

ℓr(N).

ℓp(N)× ℓq(N)

⊙

55

In this situation considered above of the product ⊙P×Q = P(.) ⊙ Q(.), a bilinear map

B : E × F → Y is zero ⊙P×Q-preserving if

⊙P×Q(x, y) = 0 implies B(x, y) = 0

for all x ∈ E and y ∈ F. Namely, the map B is said to be zero ⊙P×Q-preserving if B(x, y) = 0

whenever P(x)⊙ Q(y) = 0.

Theorem 2. Let
1

p
+

1

q
=

1

r
for 1 ≤ r < p, q < ∞. Let the Banach spaces E and F be isomorphic

to ℓp(N) and ℓq(N) by means of the isomorphisms P and Q, respectively. Consider a Banach

valued bilinear operator B : E × F → Y. The following assertions imply each other.

(1) The operator B is ⊙P×Q-factorable. That is, there exists a linear continuous operator

T : ℓr(N) → Y such that B = T ◦ ⊙P×Q, and the following diagram commutes.

E × F B //

P×Q
��

Y

ℓp(N)× ℓq(N)
⊙ // ℓr(N).

T

OO

(2) There is a positive real number K such that, for every finite set of elements {xi}
n
i=1 ∈ E

and {yi}
n
i=1 ∈ F, the following inequality holds

∥∥∥
n

∑
i=1

B(xi, yi)
∥∥∥

Y
≤ K

∥∥∥
n

∑
i=1

P(xi)⊙ Q(yi)
∥∥∥
ℓr(N)

.

(3) The operator B is zero ⊙P×Q-preserving, that is, x ⊙P×Q y = 0 implies B(x, y) = 0.

Proof. Let us prove that (3) implies (1). Under the conditions of the theorem, consider the

bilinear map B = B ◦ (P−1 × Q−1) : ℓp(N)× ℓq(N) → Y. We have that for all x ∈ E and y ∈ F,

x ⊙P×Q y = P(x) ⊙ Q(y) = 0 implies that 0 = B(x, y) = B(P(x), Q(y)) = 0. That is, since P

and Q are isomorphisms, we have that for all a ∈ ℓp(N) and b ∈ ℓq(N), a ⊙ b = 0 implies that

B(a, b) = 0.

We are in situation of using Theorem 1 for B. So we have that there is a linear operator

T : ℓr(N) → Y such that B = T ◦ ⊙. By the definition of B, we obtain B = B ◦ (P × Q) =

T ◦ ⊙ ◦ (P × Q), the required factorization.

The equivalences among the three statements of the theorem follow directly using Lemma

1 in [12] and this factorization.
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We will say a bilinear map B : X × X → Y is symmetric if B( f , g) = B(g, f ) for every couple

( f , g) ∈ X × X.

It is easily seen that any ⊙-factorable bilinear map B : ℓp(N) × ℓp(N) → Y factorized

through ℓr(N) for 2r = p is symmetric, since B(an, bn) = T(an ⊙ bn) = T(bn ⊙ an) = B(bn, an)

holds for all (an)∞
n=1, (bn)∞

n=1 ∈ ℓp(N) by the commutativity of the pointwise product.

Now, we will give symmetry condition for general product.

Corollary 1. Let the Banach space X be isomorphic to ℓp(N) for p ≥ 2. Then any zero ⊙P×P-

preserving bilinear map B : X × X → Y satisfies the symetry condition, that is B(x, y) =

B(y, x) for all x, y ∈ X.

Proof. Since the map B is zero ⊙P×P-preserving, it is ⊙P×P-factorable. Then, for r = p/2 there

is a linear continuous map T : ℓr(N) → Y defined by B(x, y) = T ◦ ⊙ ◦ (P × P)(x, y) =

T(P(x)⊙ P(y)). By the commutativity of the pointwise product we get the symmetry

B(x, y) = T(P(x) ⊙ P(y)) = T(P(y) ⊙ P(x)) = B(y, x).

Remark 1. The extension of the result given in Theorem 1 from the case of ⊙ to the case of

⊙P×Q products implicitly shows a fundamental fact about factorization through the point-

wise product. The requirement “a ⊙ b = 0 implies B(a, b) = 0” can be understood as a

lattice-type property: indeed, note that for sequences a and b in the corresponding spaces,

a ⊙ b = 0 if and only if a and b are disjoint, and so we can rewrite the requirement of being

zero ⊙-preserving as “if |a| ∧ |b| = 0, then B(a, b) = 0”. Since P and Q are just (Banach space)

isomorphisms, we have shown that the property is primarely related to the pointwise product,

and not to the lattice properties. The result is particularly meaningful if we consider P and Q to

be the isomorphisms associated to changes of unconditional basis of ℓp(N) and ℓq(N) whose

elements are not in general disjoint.

Remark 2. Consider the bilinear map B : E × E′ → Y, where E′ denotes the topological dual of

E. This bilinear map can only be ⊙P×Q-factorable through the sequence space ℓ1(N). Indeed,

let P denote the isomorphism between E and ℓp(N) (p ≥ 1). Since the duals of isomorphic

spaces are isomorphic, it follows that E′ is isomorphic to (ℓp(N))′ = ℓp′(N) for
1

p
+

1

p′
= 1 by

the isomorphism P′ that is adjoint map of P. Therefore B can only be ⊙P×P′-factorable and in

this case it is factorized through ℓ1(N).

3.1 Compactness properties of zero ⊙P×Q-preserving bilinear maps

Theorem 2 provides a useful tool to obtain the main properties of zero ⊙P×Q-preserving

bilinear maps. It is already clear that (weakly) compactness of the factorization map T is

necessary and sufficient condition for the (weakly) compactness of the zero ⊙P×Q-preserving

map B by the definition of the norm preserving product. Indeed, for a zero ⊙P×Q-preserving

map B,

B is (weakly) compact ⇐⇒ B(UX × UY) is relatively (weakly) compact

⇐⇒ B(Uℓp(N) × Uℓq(N)) is relatively (weakly) compact

⇐⇒ T(Uℓr(N)) is relatively (weakly) compact

⇐⇒ T is (weakly) compact.

Now, we will give more specific situations.
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Proposition 1. Let
1

p
+

1

q
=

1

r
for 1 ≤ r < p, q < ∞. Suppose that there are isomorphisms P

and Q such that the bilinear operator B : E × F → Y is zero ⊙P×Q-preserving. Then

(i) B(E × F) is a linear space;

(ii) if P and Q are isometries, then B(BE × BF) is convex;

(iii) if r = 1 and Y is reflexive, then B(BE × y) is a relatively compact set for every y ∈ F as

well as B(x × BF) is relatively compact for every x ∈ E;

(iv) if r > 1, then B(BE × BF) is relatively weakly compact;

(v) if 1 ≤ s < r < ∞ and Y = ℓs(N), then B(BE × BF) is relatively compact.

Proof. Consider the factorization for B given by B = T ◦ (P ⊙ Q).

(i) Since ⊙ is an n.p. product and B factors through it by Theorem 2, we have that

B(E × F) = T(ℓp(N) ⊙ ℓq(N)) = T(ℓr(N)), that is, the range of a linear map. So it is a

linear space.

(ii) Clearly, A = P ⊙ Q(BE × BF) = Bℓp(N) ⊙ Bℓq(N) = Bℓr(N) is a convex set, and so T(A) is

also convex.

(iii) Note that there is a sequence b = Q(y) such that A = P ⊙ Q(BE, y) is equivalent to

Bℓp(N) ⊙ b ⊂ ℓ1(N). Recall that 1 < p, q < ∞. Note also that T : ℓ1(N) → Y is weakly compact

by the reflexivity of the range space Y. Since A is a weakly compact set in ℓ1(N) we have that

T(A) is relatively compact by the Dunford-Pettis property of ℓ1(N).

(iv) Since B(BE × BF) = T(P(BE)⊙ Q(BF)), and P(BE)⊙ Q(BF) is equivalent to the unit

ball of the reflexive space ℓr(N), we get the result.

(v) Recall that by Pitt’s Theorem (see [9, Ch. 12]), every bounded linear operator from ℓr(N)

into ℓs(N) is compact whenever 1 ≤ s < r < ∞. The factorization gives directly the result.

3.2 Zero ⊙P×Q-preserving bilinear operators among Hilbert spaces

In this section, assume that E, F and Y are separable Hilbert spaces. Our first result shows a

summability property of zero product preserving bilinear maps, and is a direct consequence of

Grothendieck’s Theorem. It also provides an integral domination for B. The second corollary is

obtained as a result of the Schur’s property of ℓ1(N) (recall that a Banach space has the Schur’s

property if weakly convergent sequences and norm convergent sequences are the same) and it

is again an application of the compactness properties of the bounded subsets of ℓ1(N).

Corollary 2. Let H1, H2 and H3 be separable Hilbert spaces. Let B : H1 × H2 → H3 be a zero

⊙P×Q-preserving bilinear operator. Then

(i) for every x1, . . . , xn ∈ H1, y1, . . . , yn ∈ H2 there is a constant K > 0 such that

n

∑
i=1

∥∥∥B(xi, yi)
∥∥∥ ≤ K sup

z′∈Bℓ∞(N)

n

∑
i=1

∣∣∣
〈

P(xi)⊙ Q(yi), z′
〉∣∣∣,

(ii) and there is a regular Borel measure η over Bℓ∞(N) such that

‖B(x, y)‖ ≤ K
∫

Bℓ∞(N)

|〈P(x)⊙ Q(y), z′〉| dη(z′), x ∈ H1, y ∈ H2.
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Proof. Let us consider the zero ⊙P×Q-preserving bilinear map B : H1 × H2 → H3. Since any

separable Hilbert space is isomorphic to the sequence space ℓ2(N), we can define a bilinear

map B = B(P−1 × Q−1) : ℓ2(N) × ℓ2(N) → H3. The zero ⊙P×Q-preserving property of

B implies the ⊙-preserving property of the map B. Therefore, by Theorem 2 we have the

factorization B := T ◦⊙, where T : ℓ1(N) → H3. One of the results of Grothendieck’s Theorem

states that every linear operator from ℓ1(N) to a Hilbert space is 1-summing. It follows that,

for every x1, . . . , xn ∈ H1, y1, . . . , yn ∈ H2 there is a constant K > 0 such that

n

∑
i=1

∥∥∥B(xi, yi)
∥∥∥ =

n

∑
i=1

∥∥∥B(P(xi), Q(yi))
∥∥∥ ≤ K sup

z′∈Bℓ∞(N)

n

∑
i=1

∣∣∣
〈

P(xi)⊙ Q(yi), z′
〉∣∣∣.

The second inequality of the corollary given above is clearly seen by Pietsch Domination The-

orem (see [9, Theorem 2.12]). This theorem states that every 1-summable operator has such a

regular Borel measure. Thus, we get a regular Borel measure η over Bℓ∞(N) satisfying

‖B(x, y)‖ = ‖B(P(x), Q(y))‖ ≤ K
∫

Bℓ∞(N)

|〈P(x)⊙ Q(y), z′〉| dη(z′)

for x ∈ H1, y ∈ H2.

Corollary 3. Let H1, H2 and H3 be separable Hilbert spaces. Let B : H1 × H2 → H3 be a zero

⊙P×Q-preserving bilinear operator. Then

(i) for every couple of sequences (xi)
∞
i=1 in H1 and (yi)

∞
i=1 in H2 such that (P(xi)⊙ Q(yi))

∞
i=1

is weakly convergent, we have that (B(xi, yi))
∞
i=1 converges in the norm;

(ii) for S1 ⊆ H1 and S2 ⊆ H2 such that P(S1)⊙ Q(S2) ⊆ ℓ1(N) is relatively weakly compact,

we have that B(S1 × S2) is relatively compact.

We can obtain some (weaker) summability results if we consider the range space Y with

some cotype-related properties. It is known that a Banach space has the Orlicz property, if it

is of cotype 2 (see [8, 8.9]). Recall that a Banach space is said to have the Orlicz property if the

identity map in it is (2, 1)-summing. It follows that for any zero ⊙P×Q-preserving bilinear map

B : E × F → Y whose range space Y has the Orlicz property, we get a domination as follows:

for f1, . . . , fn ∈ E and g1, . . . , gn ∈ F,

( n

∑
i=1

∥∥B( fi, gi)‖
2
Y

)1/2
≤ k sup

ε i∈{−1,1}

∥∥
n

∑
i=1

ε i (P( fi)⊙ Q(gi))
∥∥
ℓr(N)

.

Let us finish the paper with an application by using convolution maps defined on sequence

spaces and function spaces.

3.3 Application: convolution maps

Consider any bilinear map B : L2[0, 2π] × L2[0, 2π] → Y such that B( f , g) = 0 when-

ever f , g ∈ L2[0, 2π] are such that f ⊙̂×̂g = f̂ ⊙ ĝ = 0, where ̂ denotes the Fourier trans-

form. Plancherel’s well-known theorem states that the Banach space L2[0, 2π] is isometri-

cally isomorphic to ℓ2(Z) by the Fourier transform. Therefore, the bilinear map B is zero
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⊙̂×̂-preserving. The class of these bilinear maps was investigated by Erdoğan E. et al in [10]

by the term ∗-continuous map and they gave a factorization for B such that

B = T ◦ ˇ ◦ ⊙ ◦ (̂ × )̂ = T ◦ ∗,

where ˇ is the inverse Fourier transform.

Now, we will give a more specific example. H and H2 stand for the holomorphic functions

on the unit disc D and Hardy space of the functions, respectively. Recall that Hardy space H2

consists of the functions whose all Fourier coefficients are zero with negative index, besides,

it is closed subspace of L2[0, 2π] which is isomorphically isomorphic to the sequence space

ℓ2(N) by Fourier transform. It is possible to represent any holomorphic function f ∈ H as a

Taylor polynomial f (z) = ∑
∞
n=0 anzn. This representation is given by the Fourier coefficients

for the elements of H2 whenever f ∈ H2.

Arregui and Blasco defined the u-convolution of the holomorphic functions f and g in

H given by f (z) = ∑
∞
n=0 anzn and g(z) = ∑

∞
n=0 bnzn as f ∗u g(z) = ∑

∞
n=0 u(an, bn)zn, where

u : C ×C → C is a bilinear continuous map (see [3, Definition 1.1.]). If we consider the bilinear

map u defined as u(an, bn) = an ⊙ bn, then we get f ∗u g(z) = ∑
∞
n=0(an ⊙ bn)zn. Therefore, it is

seen that u-convolution defined on H2 ×H2 to H2 is a zero ⊙̂× -̂preserving, since f ⊙̂×̂g =

f̂ (n)⊙ ĝ(n) = 0 implies f ∗u g = 0 for all f , g ∈ H2. By Theorem 2, it follows that there is a

linear map T : ℓ1(N) → H2 such that f ∗u g = T( f̂ (n)⊙ ĝ(n)) = ∑
∞
n=0 xnzn, where (xn)∞

n=1 is

the sequence in ℓ1(N) obtained by the pointwise product f̂ (n)⊙ ĝ(n). Also, by Corollary 1 it

is obtained that u-convolution is a symmetric map.
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Ердоган Е. Бiлiнiйнi оператори, що зберiгають нульовий добуток, на просторах послiдовностей //

Карпатськi матем. публ. — 2020. — Т.12, №1. — C. 55–68.

Розглянемо пару просторiв послiдовностей i функцiю добутку (канонiчне бiлiнiйне вiд-

ображення, асоцiйоване з поточковим множенням), що дiє на ньому. Ми аналiзуємо клас бi-

лiнiйних операторiв, що “зберiгають нульовий добуток”, асоцiйований з цим добутком, ви-

значених таким чином, що вони дорiвнюють нулю на парах, в яких добуток дорiвнює нулю.

Бiлiнiйнi оператори, що належать цьому класу, вже дослiджувалися в контекстi банахових

алгебр, вони можуть бути охарактеризованi в термiнах факторизацiї ℓr(N) просторiв. Вико-

ристовуючи це, ми демонструємо основнi властивостi цих вiдображень, такi як компактнiсть i

сумовнiсть.

Ключовi слова i фрази: простори послiдовностей, бiлiнiйнi оператори, факторизацiя, зберi-

гаюче нульовий добуток вiдображення, добуток.


