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ZERO PRODUCT PRESERVING BILINEAR OPERATORS ACTING IN SEQUENCE
SPACES

Consider a couple of sequence spaces and a product function — a canonical bilinear map asso-
ciated to the pointwise product — acting in it. We analyze the class of “zero product preserving”
bilinear operators associated with this product, that are defined as the ones that are zero valued in
the couples in which the product equals zero. The bilinear operators belonging to this class have
been studied already in the context of Banach algebras, and allow a characterization in terms of
factorizations through ¢"(IN) spaces. Using this, we show the main properties of these maps such
as compactness and summability.
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1 INTRODUCTION

Let us fix a couple of Banach spaces having a characteristic operation involving couples of
vectors for giving an element in other Banach space. For example, the pointwise product of
functions from L and L?' for obtaining an element of LY, or the internal product in a Banach al-
gebra. Let us call “product” this bilinear map. Bilinear maps factoring through such a product
preserve some of its good properties, and so it is interesting to know which bilinear operators
satisfy such a factorization. This general philosophy is in the root of some current develop-
ments in mathematical analysis, mainly in the Banach algebras and vector lattices setting (see
for example [1,5,7,12] and references therein).

In this paper we analyze the class of bilinear maps factoring through a product in a dif-
ferent context. We study the main characterizations and properties when the operators act in
couples of classical Banach sequence spaces (¢¥ (IN)-spaces). The essential result (Theorem 1)
shows that the factorization is equivalent to a certain “zero product preservation” property.
Concretely, bilinear maps satisfying this property are the ones that are 0-valued for couples of
elements whose products are equal to zero.

Let us explain the relation of our class of maps with some notions and results that can be
found in the current literature. Alaminos J. et al have studied zero product preserving bilinear
maps defined on a product of Banach algebras and C*-algebras to get a characterization for
(weighted) homomorphisms and derivations. They have obtained a class of Banach algebras
A that satisfy the equality ¢(ab,c) = ¢(a,bc), a,b,c € A, for every continuous zero product
preserving bilinear map ¢ : A X A — B. By adding some conditions to the algebra, they have
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proved that ¢(ab,c) = ¢(a, bc) gives a factorization for the bilinear operator ¢ as ¢(a,b) :=
P(ab) for a certain linear map P : A — B [1]. Recently, Alaminos J. et al have shown in [2] that
there are some Banach algebras that do not satisfy the equality ¢(ab,c) = ¢(a, bc) such as the
algebra C'[0, 1] of continuously differentiable functions from [0, 1] to C, although the operator
@ is zero product preserving map. In particular, this shows that any bilinear operator cannot
be factored through the product.

In the meantime, some authors have studied the zero product preserving property for the
bilinear maps acting in vector lattices and function spaces with the name orthosymmetry. This
term is firstly used by Buskes G. and van Rooij A. to give a factorization for bilinear maps
defined on vector lattices and they obtained the powers of vector lattices by orthosymmetric
maps, see [6,7]. Recently, Ben Amor F. has studied the commutators of orthosymmetric maps
in [4] and investigated an expanded class of orthosymmetric bilinear maps that are related
to symmetric operators given by Buskes G. and van Rooij A. The interested reader can see
the reference [5] for a detailed information about the orthosymmetric maps acting in vector
lattices.

In a different direction, factorization of zero product preserving bilinear maps for the con-
volution product acting in function spaces has been studied by Erdogan E. et al (see [10]).
Recently, Erdogan E. and Gok O. have studied a class of bilinear operators acting in a pro-
duct of Banach algebras of integrable functions and showed a zero product preserving bilinear
operator defined on the product of Banach algebras that factors through a subalgebra of abso-
lutely integrable functions by convolution product (see [11]). Moreover, Erdogan E. et al have
obtained a class of zero product preserving bilinear operators acting in pairs of Banach func-
tion spaces that factor through the pointwise product and they have given characterizations
by means of norm inequalities for these bilinear maps [12].

The aim of this paper is to give a new version of the factorization results given in the men-
tioned studies for the zero product preserving bilinear operators defined on the product of
sequence spaces. We center our attention on bilinear operators B defined on the product of
Banach spaces E and F satisfying the zero product preserving property

x®y = 0implies B(x,y) =0, (x,y) € EXF,

where ® is defined using the pointwise product of sequences, showing that they are exactly
the ones that factors through ®.

This paper is organised as follows: Section 2 is devoted to giving some preliminary results
on products and factorization through them. In Section 3, the main result of the paper on
factorization of zero product preserving on sequence spaces is proved (Theorem 1). Using it,
compactness and summability properties of product factorable operators are investigated and
some applications are given.

2 PRELIMINARIES: PRODUCTS AND BILINEAR MAPS

We use standard notations and notions from Banach space theory. The sets of natural num-
bers and integers are denoted by IN and Z, respectively. For a Banach space E, B will denote
the unit ball of E. We write x4 for the characteristic function of a set A. Operator (linear or
multilinear) indicates continuous operator. The space of all linear operators between Banach
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spaces X, Y is denoted by L(X, Y), and we write B(X x Y, Z) for the vector space of all bilinear
Z-valued operators, where Z is also a Banach space.
For a positive real number p, ¢ (IN) is the space of all complex valued absolutely p-sum-

o 1/p
mable sequences. It is a Banach space with the norm ||(x;)||, = < Y |xi]? ) for p > 1, and
i=1

¢*(IN) shows the Banach space of all bounded sequences endowed with the norm ||(x;) |l =
upyen il

If y is a measure and 1 < p < oo, we write LP () for the Lebesgue space of classes of p-a.e.
equal p-integrable functions.

We call a continuous operator (weakly) compact if it maps the closed unit ball to a relatively
(weakly) compact set.

A Banach space E has Dunford-Pettis property if every weakly compact linear operator
T : E — F is completely continuous (that is, it maps every weakly compact set A € E into a
compact set with respect to the norm topology of the Banach space F).

A linear operator T : X — Y is said to be (p, q)-summing (T € I1,,4(X,Y)) if there is a
constant k > 0 such that for every x4,...,x, € X and for all positive integers n

n

<éHT(xi)H§)1/p <k sup <Z |<xi,x’>|‘7>1/q_

x'€Byr i=1

For the summing operators we refer the reader to [9].

Throughout the paper we will use the term product for a specific bilinear map, typically
with some special properties and being canonical in some sense. However, the only assump-
tion on such a product is that it is a continuous bilinear map. We will need stronger properties
for the products that are presented in [12] by Erdogan E. et al.

Definition 1. Consider a bilinear operator ® : X x Y — Z, (x,y) ~» ®(x,y) =: x ® y, where
X, Y, Z are Banach spaces. We say that the bilinear operator ® is a norm preserving product (n.p.
product for short) if it satisfies the inclusion By C ®(Bx x By) and

lx@yllz =inf {|x|xlly'lly: ¥ € X,y €Y, x0y =x" @y},
forevery (x,y) € X x Y.
Now let us give some examples of bilinear operators that are n.p. product or not.

Example 1. Let (), %, it) be a complete o-finite measure space and let (E, ||.||g) be a Banach
function space over y. (For the definition of Banach function space we refer to [14, Def 1.b.17]).
We will write E(P), p > 1, for the p-convexification of the Banach lattice E in the sense of
[14, Ch. 1.d] (see also the equivalent notion of pth power in [17, Ch.2] for a more explicit
description). In the case that E is a Banach function space, E\P) is also a Banach function space
with the norm ||f|| ) = |Hﬂi’|]1}5/;7 for f € E (see [16, Prop.1]).

Let us consider the bilinear operator defined by the (ji-a.e.) pointwise product ® : E() x

E@W — EW, (f,g) ~ f-g, where % + % = % forl <r < p,q < . We claim that this bilinear

map is a norm preserving product. Indeed, consider f € Bpi), h := |f|"/Psgnf € E() and
g:=|f""1 ¢ E@, where sgnf denotes the sign function of f. By the definition of the norm of
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e B y PP 1/p _ r/p
the p-convexification, it follows that ||h|p,) = ||||f|"/sgnf ; = A" = Ifllge < 1.

Similarly, (|8 zq) = HerE/(f < 1. Therefore, By € ©(Bg(,) X Bp()) is obtained.

Let us show now that ||l - g|| ¢y = inf{||1|| co» |18 || gy = B € EW, ¢ cEW, h-g=H-g'}
forh € EP) and g€E (). Indeed, by the generalized Holder’s inequality we have thath - g €
E" and ||k - Slleey < g 1€l (see [16, Lemma 1]). Since this inequality holds for all
couples (I',g") suchthatf =h-g =h'-g', weobtain ||h-g|| ;o) < inf{||W'||||g'|| :h-g=H-g'}.
Conversely, consider an arbitrary element f € E\). Then f has the following factorization:

b= |fI"/Psgnf € EW), g = |f"/1 € EW and - g € E). Moreover, ||l = ||f||}/}) and
/ g ,
181l = I £1I5) - Therefore [[hl| g 81l o) = ILFIES G = £l This proves

Hf”}g(r) = ||k ‘gHE(r> > inf{Hh/HE(w”g/HE(q) th-g= H 'g/}r

and so ® is an n.p. product.

Note that if we consider E = L () we obtain that the pointwise product is an n.p. product
from LP(pu) x L1(p) to L"(u). In particular, if p is the counting measure on IN, the pointwise
product ® : (P(N) x ¢1(N) — ¢"(IN) is an n.p. product (for a more detailed information
see [16, Lemma 1] or [17, Lemma 2.21(i)]).

Example 2. Let E, F be normed spaces and E ® F denotes their algebraic tensor product. Pro-

jective norm 7t and injective norm ¢ on E ® F are calculated by 7t(z) = inf { Y xillllyil c z =

Yo X ®y1~}, and ¢(z) = sup {(x’ ®y,z): x' € B,y € Bp/}, respectively (see [8, Section
2,3]). It is well-known that any reasonable tensor norm a on the tensor product E ® F satisties

the inequality e < a < 7. For every (x,y) € E x F, it is seen that by the definitions of these
norms

e(x@y) <a(x@y) < n(xey) <inf{|X[lly]: ¥ @y =x®y}.

Besides, for every simple tensor x ® y it is known that for any reasonable tensor norm a
we have a(x ® y) = ||x||ellyllr (see [8 §12.1]). Then, any reasonable tensor norm satisfies
the equality involving the norm in Definition 1. But the tensor product does not satisty the
inclusion, since clearly it is not surjective. So, it is not a norm preserving product.

Example 3. Let us define the following seminorm on X ® L(X,Y). Ifz = }.{; x; ® T; is such
that} i, Tj(xj) = yz € Y, we define

m m
Te(z) = inf{rc(z’) 12/ =) xj®T], such that ) Ti(x}) = VZ}-
p =1

That is, 7. is the quotient norm given by the tensor contraction ¢ : X®L(X,Y) — Y de-
fined as ¢(z) = ¢ 2;7:1 Z;l:1 X ® T]-) = Z;l:1 o(x;, Tj) = ;7:1 Tj(x;j) associated to the following
factorization.

X x L(X,Y)

®l ‘

X&L(X,Y) =Y.
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The description of this seminorm can be found in [18]. It defines a norm if we construct a
quotient space X® ,L(X,Y) by identifying the equivalence classes of the projective tensor pro-
duct X&-L(X,Y) with the range of cin Y, i.e. ¢c(X®L(X,Y)) C Y. Thus, forz = i1 % ®T;
and z' = Y"1 x; ® T}, z ~ 7' if and only if }J", Tj(x}) = L’ Tj(x;j). The norm of a class
2] ={z' 1z~ 2}, forz = 1L x; ® T, is given by

Te(z) = inf{7t(z) : z ~ 2'}.

Let us show that e is a norm preserving product.

FixT € L(X,Y) and x € X and consider y, = T(x); clearly the inequality ||y.| < ||T||||x|
holds. Now, consider another tensorz = Y_!' ; x; ® T; such thaty, = Y/ ; Ti(x;). Since ||y.|| =
|2 TiCxo)ll < X0y T3 il we obtain that [ o TI| = lyz|| < 7 (2).

In the opposite direction, fory € Y there are elements Ty € L(X,Y) and xy € X such that
To(x0) = y and ||y|| = ||Tol/||x0l|- To see this, just take a couple (xo, x;,) of norm one elements
xo € X and x{; € X’ such that (xp, x)) = 1. Now define Ty(x) := (x,x})y, x € X, and note
that ||Ty|| = ||y||. Therefore, if z = xo ® Ty, we have thaty = y.. So, this gives in particular
that By C e(Bx x By(x,y)), since 7te(z) < [ly:||. Together with the inequality in the previous
paragraph this also gives ||xo ® To|| = ||yz|| = 7e(z). More precisely, we have proven that

Hx ° T”y = inf{HxOHxHToHL(le) x0 € X, Ty € L(X,Y), xeT =xpe T()}
forallT € L(X,Y) and x € X. Thus, e is a norm preserving product.

Since to find the factors of a Banach space is a current problem in the mathematical liter-
ature, there are found more examples of the norm preserving products including the Banach
function spaces (see [13,15,19]).

Let X, Y, Z be Banach spaces. A bilinear operator B : X x Y — Z is called ®-factorable
for the Banach valued n.p. product ® : X x Y — G if there exists a linear continuous map
T : G — Z such that B factors through T and ® (see [12, Definition 1]).

In this case, the following triangular diagram

Xx)f—B>Z

.

G

holds. In the paper [12], Erdogan E. et al have proved a necessary and sufficint condition for
®-factorability by a summability requirement as follows.

Lemma 1 (Lemma 1, [12]). The bilinear operator B : X x Y — Z is ®-factorable for the n.p.
product ® if and only if there exists a constant K such that forall x1,...,x, € Xandyy,...,yn €

Y we have
n
‘ Z Xi ®Y;
i=1

Example 4. Consider a bilinear continuous operator B : ¢>(N) x (*(N) — ¢*(N). Let us
use the result above for characterizing when B is ®-factorable with respect to the pointwise
product. It was shown in the first example that the pointwise product ® from ¢*(IN) x ¢?(IN)

Z B(xi/ yl)
i=1

< K|
Z

o



60 ERDOGAN E.

to 1(IN) is an n.p. product. Let (a,b) = (L, KX (k) L1 BriX {m}) € (2(N) x £2(N). Then
the image of this element under pointwise product is

(9]

a®b= Z Z X{k} © X{m}) Z “kﬁk?({k}-
k=1 m=1

Thus, for the finite sets of sequences ay, .. .,a,, by, ..., b, we have

Zaz Ob; = Z Z “zkﬁzk%{k} = Z <Z ‘sz.sz)X{k}
i=1k=
The ¢'(IN) norm of this sequence is [zllay = Lizi | St aixPic|- By Lemma 1, we
obtain that the bilinear operator B factors through the pointwise product if and only if there is
a constant K for all finite sequences (a;)"_,, (b;)"_, C £*(IN) such that

Y B(ai, b)
i=1

Let us consider now a more specific bilinear operator B : £>(IN) x ?(IN) — ¢(IN): a diago-
nal multilinear operator. Recall that a bilinear operator B € B(¢?(IN) x ¢?(IN), ¢1(IN)) is called
bilinear diagonal if there is a bounded sequence ¢ = ()i such that B(a b) = Yelq SraxBrX (xy-
By Holder inequality, it is easily seen that B € B({>(N) x ¢*(N), ¢} (IN)) if and only if ¢ €
(*(N). For arbitrary finite sequences (a;)"_,, (b;)"_; C ¢*(IN), we obtain

H i B(a;, b;)
i

Therefore, it is seen that every bilinear diagonal operator is factorable through ©. Remark
that a bilinear diagonal operator satisfies that B(a,b) = 0 whenever a ©® b = 0. We will prove
in what follows that this is also a sufficient condition for factorability of bilinear operators
defined on the topological product of sequence spaces.

[ee]

ikBik |-

zkﬁsz{k}H < |8k loo Z ) Zﬂézkﬁzk zkﬁzk

i=1k=

3 THE POINTWISE PRODUCT IN SEQUENCE SPACES

Let us center our attention in this section in a particular product that is important in math-
ematical analysis. It is given by the pointwise product of sequences, functions and generalized
sequences belonging to Banach lattices. In order to give a full generality to our results, we will
consider several extensions of the bilinear map given by the pointwise products.

In the case of sequences, we will consider the following notion. The reference product is
the pointwise product of sequences, thatis ® : /F(IN) x #/(IN) — ¢"(N), a®b =a-b =
(a;ib))2, € '(IN), that is well-defined and continuous by Holder’s inequality. This is clearly
an n.p. product, as have been explained in the previous section. Also, it has commutativity
and associativity properties.

The following notion is crucial in this paper.

Let X, Y, Z be Banach spaces. We say that a bilinear continuous operator B: X x Y — Z is
zero “product”-preserving if it is 0-valued for couples of elements whose product equals 0.

1 1
Theorem 1. Let — + — = - for1 <r < p,q < oo. Consider a bilinear operator B : (¥ (IN) x

¢1(IN) — Y. The following assertions are equivalent.
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(1) The operator B is zero ®-preserving, i.e. B(x,y) = 0 whenever x ® y = 0.

(2) The operator B is ®-factorable. That is, there is a linear and continuous operator T :
¢"(N) — Y such that B =T o ®, and so we have the factorization

(P(N) x £1(N) ——Y

R A

(N,

Proof. Let us show that there is a linear continuous operator T such that B := T o © whenever
the operator B is a zero ®-preserving. Define the map T, : (F(IN) ©® ¢1(IN) — Y, Tu(z) :=
B(z ® Xf1,2,.n1: X{1,2,.,ny) for alln € N, where z € £/(IN) ® £7(IN); note that z © x{12,. 4} €
(P(N), and X143 € ¢7(IN), and so T, is well defined for each n € IN. The linearity of T,
is a consequence of the linearity of the bilinear operator B in the first variable. To show the
boundedness of the map T;,, we give an equivalent formula for this operator. Since X1, .1 =
Y_i—1 X{i} by the properties of characteristic function, we have

n

Tu(@a®b) =B@©bO X, ap X{12.0}) = 3 B@ObO X2, 1 X{i})-
i=1
The pointwise product of a = (a;)>, € (/(N) and b = (Br);>; € LI(N)isaOb =
(akBr)iz1 = k-1 ®kPrX{k}- By the continuity of B, the image of the couple (a,b) € (P(IN) x
¢1(IN) under the bilinear operator B is

B(a,b) = B< Y mXk Y ﬁm%{m}) =Y Y BuB(Xgky X(m))-
k=1 m=1 k=1 m=1

Since Xk} © X{m) = 0(k # m) and by the zero ®-preservation of the operator B, we have
B(a,b) = Y371 axBrB(X (k}, Xk})- Thus,

(e 9]

n
Tu(a®b) =) Bao®boxpo, ayXii}) = < Z akBrX (ky © X{1,2,. n}/X{z})

i=1 é =
LE

I M:

axBrB(X (k) X 1iy)-

Using the zero ®-preservation property once again, we obtain

Tu(a®b) = Z aiBiB(Xfiy, X{iy) —B<2“151X{},ZX{}> —B<2“1X{}rxﬁzX{})

l_

By the boundedness of the bilinear operator B, it follows that

sup || Tyzly = sup HB< Y Xy ) 50{{4) HY
ZEB[;V(]N) (a,b)EBé,p(N)XBM(N) i=1 i=1
z=a®b
n
< sup Y lwiBil I B(xgiy, x i) lly < eo.

(ll,b)EB[p(H\U XBM(N) i=1
z=a0b
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This shows that T, is (uniformly) bounded, n € N, and therefore (T;)S_; is a bounded
sequence of linear operators acting in ¢'(IN), since ¢"(IN) = ¢/(IN) ® ¢7(IN). Indeed, note that
since ® is an n.p. product, we have that it is surjective and preserves the norm, and so for
every z € {"(IN) we find adequate a € /#(IN) and b € ¢7(IN) such thatz = a ® b.

The sequence {T,(a ® b)};>; is a Cauchy sequence for every a € ¢/(IN) and b € (1(IN),
and it is convergent by completeness of the Banach space Y. Indeed, since a ® b € ¢"(IN), then

for every e > 0, there is an N € IN such that

HZ 0] . HZﬁzx{z}

Using again that B(x{;}, x{j;) = 0if i # j, we obtain

Vn > N.

(N W

m

ITutab) = Toa @)y = B ml lﬁix{i}'_; x|,

+
<18i] 33wl I 22 5
Let us define now the limit operator T : ¢"(IN) — Y of the operator sequence {T},}, that
is T(a®b) = limy—e0 Tn(a ©®b). It is easily seen that T is well defined and linear. Since
Tu(a ® b) converges for every a © b € ¢'(IN), then it is bounded for every a ® b. By the Uniform
Boundedness Theorem, it follows that T is continuous. Therefore, we obtain

<& Vm>n>N.
#1(N)

n
B(a,b) = r}g{}o;‘xiﬁiB(X{i}rX{i}) = lim T,(a©b) = T(@@Ob).
Besides, the image of an element is independent from its representation. Indeed, for the ele-
ment x = a; ® b; = ay ® by, we obtain
T(ay ©by) = lim B(a1 © b1 O X{12,.m} X{12,...m})
= lim B(a2 © b2 © X{12,..m} X{12,..,m}) = T(a2 © ba).

Hence we obtain the factorization of the bilinear operator B through the pointwise product as
B=To®.

For the converse, assume that the map B is ©®-factorable. Then, by Lemma 1 given in
[12] (see also page 59) it is obtained that there is a positive real number K such that, for all
X1,...,Xp € (P(N) and yy, ..., yn € ¢1(IN), the following inequality holds

B Xi, Yi .
i; (xi, i) )

Clearly, this inequality implies zero ©-preservation of the bilinear map B. This finishes the
proof. O

'Qyi

Now we will give a generalization of our results. Consider two Banach spaces E and F that
are isomorphic -as Banach spaces- to ¢/(IN) and ¢7(IN), respectively, and the isomorphisms
are given by the operators P : E — (/(N) and Q : F — ¢7(IN). We define the product
®P><Q :EXF — ﬂ(N) by

Opxo(x,y) =P(x) ©Q(y), x€E, yeF.
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To make this definition more understandable, let us illustrate it by the following diagram

®PxQ

ExF '(IN).

P(N) x ¢1(N)

In this situation considered above of the product ®pxo = P(.) ® Q(.), a bilinear map
B: E x F — Yis zero Opyg-preserving if

Opxg(x,y) =0 implies B(x,y) =0

forall x € E and y € F. Namely, the map B is said to be zero ®p, g-preserving if B(x,y) = 0
whenever P(x) ® Q(y) =

1 1 1
Theorem 2. Let; + 7 = torl <r < p,q < oo. Let the Banach spaces E and F be isomorphic
to (P (IN) and ¢1(IN) by means of the isomorphisms P and Q, respectively. Consider a Banach

valued bilinear operator B : E x F — Y. The following assertions imply each other.

(1) The operator B is ©pyq-factorable. That is, there exists a linear continuous operator
T:¢"(IN) = Y such that B= T o ®py, and the following diagram commutes.

ExF B Y
PxQ T
; |

OP(N) x 6N - " (N).

(2) There is a positive real number K such that, for every finite set of elements {x;}!' ; € E
and {y;}!_, € F, the following inequality holds

xi) © Q(yi)

(']/z‘ (N

(3) The operator B is zero ®py o-preserving, that is, x ®pyxq y = 0 implies B(x,y) = 0.

Proof. Let us prove that (3) implies (1). Under the conditions of the theorem, consider the
bilinear map B = Bo (P! x Q1) : /P(IN) x £9(IN) — Y. We have that forall x € Eand y € F,
X ®pxoy = P(x) ® Q(y) = 0 implies that 0 = B(x,y) = B(P(x), Q(y)) = 0. That is, since P
and Q are isomorphisms, we have that foralla € /?(IN) and b € ¢1(IN), a © b = 0 implies that
B(a,b) =

We are in situation of using Theorem 1 for B. So we have that there is a linear operator
T : ¢'(N) — Y such that B = T o ®. By the definition of B, we obtain B = Bo (P x Q) =
To®o (P x Q), the required factorization.

The equivalences among the three statements of the theorem follow directly using Lemma
1in [12] and this factorization. O
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We will say a bilinear map B : X x X — Y is symmetricif B(f,g) = B(g, f) for every couple
(f,g) e XxX.

It is easily seen that any ®-factorable bilinear map B : ¢/(IN) x ¢’(IN) — Y factorized
through ¢"(IN) for 2r = p is symmetric, since B(a,, b,) = T(a, ©® by) = T(by © an) = B(by, a,)
holds for all (a,)$>_, (bn)5_; € £7(IN) by the commutativity of the pointwise product.

Now, we will give symmetry condition for general product.

Corollary 1. Let the Banach space X be isomorphic to (¥ (IN) for p > 2. Then any zero ®pxp-
preserving bilinear map B : X x X — Y satisfies the symetry condition, that is B(x,y) =
B(y,x) forallx, y € X.

Proof. Since the map B is zero ©py p-preserving, it is ©p p-factorable. Then, for r = p/2 there
is a linear continuous map T : ¢"(IN) — Y defined by B(x,y) = To®o (P x P)(x,y) =
T(P(x) ® P(y)). By the commutativity of the pointwise product we get the symmetry

B(x,y) = T(P(x) © P(y)) = T(P(y) © P(x)) = B(y, x).
O

Remark 1. The extension of the result given in Theorem 1 from the case of ® to the case of
Opx@ products implicitly shows a fundamental fact about factorization through the point-
wise product. The requirement “a ® b = 0 implies B(a,b) = 0” can be understood as a
lattice-type property: indeed, note that for sequences a and b in the corresponding spaces,
a ®b = 0 if and only if a and b are disjoint, and so we can rewrite the requirement of being
zero ®-preserving as “if |a| A |b| = 0, then B(a,b) = 0”. Since P and Q are just (Banach space)
isomorphisms, we have shown that the property is primarely related to the pointwise product,
and not to the lattice properties. The result is particularly meaningful if we consider P and Q to
be the isomorphisms associated to changes of unconditional basis of (¥ (IN) and ¢1(IN) whose
elements are not in general disjoint.

Remark 2. Consider the bilinear map B : E x E' — Y, where E’ denotes the topological dual of
E. This bilinear map can only be ®py o-factorable through the sequence space (*(IN). Indeed,
let P denote the isomorphism between E and ¢F(IN) (p > 1). Since the duals of isomorphic

/ 1 1
spaces are isomorphic, it follows that E' is isomorphic to (¢F(N))" = ¢F (N) for; + P =1by
the isomorphism P’ that is adjoint map of P. Therefore B can only be ®p, p:-factorable and in
this case it is factorized through ¢! (IN).
3.1 Compactness properties of zero ©p, o-preserving bilinear maps

Theorem 2 provides a useful tool to obtain the main properties of zero ®p, o-preserving
bilinear maps. It is already clear that (weakly) compactness of the factorization map T is
necessary and sufficient condition for the (weakly) compactness of the zero ©p g-preserving
map B by the definition of the norm preserving product. Indeed, for a zero ®p o-preserving
map B,

B is (weakly) compact <= B(Ux x Uy) is relatively (weakly) compact
= B(Uppn) X Upny) is relatively (weakly) compact
< T(Up () is relatively (weakly) compact
<= T is (weakly) compact.

Now, we will give more specific situations.
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1 1 1
Proposition 1. Let — + — = - forl <r < p,q < 0. Suppose that there are isomorphisms P

p
and Q such that the bilinear operator B : E x F — Y is zero ®px g-preserving. Then
(i) B(E x F) is a linear space;
(ii) if P and Q are isometries, then B(Bg X Bp) is convex;

(iii) ifr = 1 and Y is reflexive, then B(Bg X y) is a relatively compact set for every y € F as
well as B(x x Br) is relatively compact for every x € E;

(iv) ifr > 1, then B(Bg x Bf) is relatively weakly compact;
(v) if1 <s<r<ooandY = ¢*(IN), then B(Bg x Bp) is relatively compact.

Proof. Consider the factorization for B givenby B =T o (P ® Q).

(i) Since ® is an n.p. product and B factors through it by Theorem 2, we have that
B(Ex F) = T(/P(N) ® ¢1(IN)) = T(¢"(IN)), that is, the range of a linear map. So it is a
linear space.

(i) Clearly, A = P ® Q(BE x Br) = BNy © Bu(ny = Byr) is a convex set, and so T(A) is
also convex.

(iii) Note that there is a sequence b = Q(y) such that A = P ® Q(Bg,y) is equivalent to
Bppny ©b C ¢'(IN). Recall that 1 < p,q < co. Note also that T : /1(IN) — Y is weakly compact
by the reflexivity of the range space Y. Since A is a weakly compact set in ¢! (IN) we have that
T(A) is relatively compact by the Dunford-Pettis property of £} (IN).

(iv) Since B(Bg x Bp) = T(P(Bg) ® Q(Br)), and P(Bg) ® Q(Bg) is equivalent to the unit
ball of the reflexive space ¢"(IN), we get the result.

(v) Recall that by Pitt’s Theorem (see [9, Ch. 12]), every bounded linear operator from ¢ (IN)
into £°(IN) is compact whenever 1 < s < r < co. The factorization gives directly the result. [

3.2 Zero Opyp-preserving bilinear operators among Hilbert spaces

In this section, assume that E, F and Y are separable Hilbert spaces. Our first result shows a
summability property of zero product preserving bilinear maps, and is a direct consequence of
Grothendieck’s Theorem. It also provides an integral domination for B. The second corollary is
obtained as a result of the Schur’s property of /! (IN) (recall that a Banach space has the Schur’s
property if weakly convergent sequences and norm convergent sequences are the same) and it
is again an application of the compactness properties of the bounded subsets of /! (IN).

Corollary 2. Let Hy, Hy and H3 be separable Hilbert spaces. Let B : H] x Hy — Hj3 be a zero
Opxg-preserving bilinear operator. Then

(i) forevery xi,...,x, € Hy,y1,...,yn € Hy there is a constant K > 0 such that

<K

4

< x) © Qyi), z >

)B Xi, i)

z EB % () i=

(ii) and there is a regular Borel measure 1] over By~ such that

1By <K [ 1(Px)©QW),)dn(), x € H, y€ Hy
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Proof. Let us consider the zero ®py g-preserving bilinear map B : Hy X Hy, — Hj. Since any
separable Hilbert space is isomorphic to the sequence space ¢?(IN), we can define a bilinear
map B = B(P~! x Q1) : ¢3(N) x 2(N) — Hjs. The zero ®pyg-preserving property of
B implies the ®-preserving property of the map B. Therefore, by Theorem 2 we have the
factorization B := T o ®, where T : /1(IN) — Hj. One of the results of Grothendieck’s Theorem
states that every linear operator from ¢!(IN) to a Hilbert space is 1-summing. It follows that,
for every x1,...,x, € Hy, y1,...,yn € Hp there is a constant K > 0 such that

n
3
i=1

- [(Px) @ Q). 2|

‘B(xir]/i) = éHE(P(%‘ (vi) H <K

ZGB (°°(N) i=1

The second inequality of the corollary given above is clearly seen by Pietsch Domination The-
orem (see [9, Theorem 2.12]). This theorem states that every 1-summable operator has such a
regular Borel measure. Thus, we get a regular Borel measure 77 over By satisfying

IB(x,y)|| = IB(P(x), Q)| <K / (y),2)]dn(z)

Bioo(
for x € Hy, y € Hs. O

Corollary 3. Let Hy, Hy and H3 be separable Hilbert spaces. Let B : Hy X Hy — Hj3 be a zero
Opxg-preserving bilinear operator. Then

(i) for every couple of sequences (x;)$° | in Hy and (y;)$>, in Hy such that (P(x;) © Q(vi))%,
is weakly convergent, we have that (B(x;,y;)), converges in the norm;

(i) for Sy C Hy and Sy C Hj such that P(S1) ® Q(Sz) C ¢}(IN) is relatively weakly compact,
we have that B(S1 x Sp) is relatively compact.

We can obtain some (weaker) summability results if we consider the range space Y with
some cotype-related properties. It is known that a Banach space has the Orlicz property;, if it
is of cotype 2 (see [8, 8.9]). Recall that a Banach space is said to have the Orlicz property if the
identity map initis (2, 1)-summing. It follows that for any zero ©p o-preserving bilinear map
B : E x F — Y whose range space Y has the Orlicz property, we get a domination as follows:
for f1,...,fn€ Eand g1,...,gn € F,

(X IBtsalR) " <k sup || Ees(P(f) © Q)

ge{-11}  i=1

Let us finish the paper with an application by using convolution maps defined on sequence
spaces and function spaces.

3.3 Application: convolution maps

Consider any bilinear map B : L?[0,27] x L2[0,27] — Y such that B(f,g) = 0 when-
ever f, ¢ € L?[0,27] are such that f ©®~,~g = f@ g = 0, where ~ denotes the Fourier trans-
form. Plancherel’s well-known theorem states that the Banach space L?[0,27] is isometri-
cally isomorphic to £2(Z) by the Fourier transform. Therefore, the bilinear map B is zero
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O~x~-preserving. The class of these bilinear maps was investigated by Erdogan E. et al in [10]
by the term *-continuous map and they gave a factorization for B such that

B:Tovo(ao(’\x’\) =Tox,

where ” is the inverse Fourier transform.

Now, we will give a more specific example. H and H? stand for the holomorphic functions
on the unit disc ID and Hardy space of the functions, respectively. Recall that Hardy space 2
consists of the functions whose all Fourier coefficients are zero with negative index, besides,
it is closed subspace of L2[0,27r] which is isomorphically isomorphic to the sequence space
¢2(IN) by Fourier transform. It is possible to represent any holomorphic function f € H as a
Taylor polynomial f(z) = Y7 ,a,z". This representation is given by the Fourier coefficients
for the elements of 2 whenever f € H2.

Arregui and Blasco defined the u-convolution of the holomorphic functions f and g in
H given by f(z) = Y oax2" and g(z) = Y obnz" as f x, g(z) = You(an, bn)z", where
u : C x C — Cis abilinear continuous map (see [3, Definition 1.1.]). If we consider the bilinear
map u defined as u(ay,, by) = a, © by, then we get f %, g(z) = Y _o(an © by)z". Therefore, it is
seen that u-convolution defined on H? x H? to H? is a zero ®~,~preserving, since f ®~,~g =
f(n) ®g(n) = 0 implies f %, ¢ = 0 for all f, g € H2. By Theorem 2, it follows that there is a
linear map T : ¢1(IN) — H2 such that f , g = T(f(n) ®§(n)) = ¥ x,z", where (x4)5q is
the sequence in £!(IN) obtained by the pointwise product f(1) ® g(n). Also, by Corollary 1 it
is obtained that u-convolution is a symmetric map.
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PosrasiHeMO Tlapy MpOCTOpPiB ITOCAIAOBHOCTeN i pyHKIIIO A06YTKY (KaHOHIUHe 6iAiHiliHe Bia-
obpakeHHs, acolilioBaHe 3 IIOTOYKOBMM MHOXEHHSIM), IIIO Ai€ Ha HbOMY. MU aHaAi3yeMo Kaac 6i-
AlHIVHIX omepaTopiB, 0 “36epiraloTh HyABOBMIT A0OYTOK”, acOLiiOBaHWMIA 3 IIMM AOOYTKOM, BU-
3HAUEHNX TaKMM YMHOM, III0 BOHM AOPIiBHIOIOTH HYAIO Ha IlapaX, B SIKMX AOOYTOK AOPIiBHIOE HYAIO.
biaiHilfHi omepaTopy, 0 HaAeXaTh IIbOMY KAacy, BXXe AOCAIAXYBAAMCS B KOHTEKCTi 6aHaXOBMX
aArebp, BOHM MOXYTh 6yTU OXapakTepyu3oBaHi B TepMiHax dpaxropusaril ¢ (IN) mpocropis. Buxo-
PMCTOBYIOUN I1e, MU AEMOHCTPYEMO OCHOBHI BAACTVMBOCTI IIMX Bia06GpakeHb, TaKi sSIK KOMIIAKTHICTB i
CYMOBHICTb.

Kntouosi csi08a i ¢hppasu: MpocTOpy MOCAIAOBHOCTeI!, 6iAiHINHI onepaTopw, dpaKTopusaris, 36epi-
raloyJe HyABOBMIT AOOYTOK BiaOGpakeHHsI, AODYTOK.



