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SUFFICIENT CONDITIONS FOR THE IMPROVED REGULAR GROWTH OF ENTIRE
FUNCTIONS IN TERMS OF THEIR AVERAGING

Let f be an entire function of order p € (0,+c0) with zeros on a finite system of rays
{zrargz = ¢;},j€{l,....m}, 0 < ¢ < <...< ¢y < 27 and h(¢) be its indicator. In
2011, the author of the article has been proved that if f is of improved regular growth (an entire
function f is called a function of improved regular growth if for some p € (0,4+0), p1 € (0,p),
and a 27-periodic p-trigonometrically convex function h(¢p) # —co there exists a set U C C con-
tained in the union of disks with finite sum of radii and such that log|f(z)| = |z|°h(¢) + o(]z|f1),
U # z = re'? — o), then for some p3 € (0,p) the relation

/r log |f (fe'?)] |f§te’4’)| dt = %ph(qo) +o(r?), r— +oo,
1

holds uniformly in ¢ € [0,271]. In the present paper, using the Fourier coefficients method, we
establish the converse statement, that is, if for some p3 € (0,p) the last asymptotic relation holds
uniformly in ¢ € [0,27], then f is a function of improved regular growth. It complements simi-
lar results on functions of completely regular growth due to B. Levin, A. Grishin, A. Kondratyuk,
Ya. Vasyl’kiv and Yu. Lapenko.

Key words and phrases: entire function of completely regular growth, entire function of improved
regular growth, indicator, Fourier coefficients, averaging, finite system of rays.
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1 INTRODUCTION

It is well known ([13, p. 24]) that an entire function f of order p € (0, +00) may be repre-

sented in the form
° z
f@) == E (WJ /
n=1 n

where A, are all nonzero roots of the function f(z), A € Z is the multiplicity of the root at
the origin, Q(z) = Y./_; Qxz* is a polynomial of degree v < p, p < p is the smallest integer
for which Y% ; [A,|7P~! < +c0 and E(w,p) = (1 — w)exp(w + w?/2 + -+ + wP/p) is the
Weierstrass primary factor.

Let f be an entire function of order p € (0, +0). The function

. log | f(re'?
h(g) = hs(@) = limsup %ﬂ, ¢ € [0,27],

r—»00
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is called the indicator of f ([13, p. 51]). The indicator is a continuous 27t-periodic p-trigonomet-
rically convex function (see [13, pp. 53-54]). A set C C C is called a C%-set ([13, p. 90]) if it can

be covered by a system of disks {z : |z —a| < s;}, k € IN, satisfying Y sy =o(r)asr — +oo.
lag|<r

An entire function f of order p € (0, +o0) with the indicator h(¢) is said to be of completely
reqular growth in the sense of Levin and Pfluger ([13, p. 139]) if there exists a C%-set such that
log |f(re'?)| = r*h(g) +o(r*), C° % re'? — oo, uniformly in ¢ € [0,27). In the theory of entire
functions of completely regular growth (see [13, pp. 139-167]) the following theorem is valid.

Theorem A ([13, p. 150]). In order that an entire function f of order p € (0,+oc0) with the
indicator h(¢) be of completely regular growth, it is necessary and sufficient that uniformly in
¢ € [0,27] one of the following relations hold:

r1 tel? P
J5(9) ::/1 L‘ft(e )‘dt:%h((p)—l—o(rp), r — 400,

r d 0
9) = [ T(0)F = Th9) +007), 1 oo

Similar results for entire functions of p-regular growth were obtained by A. Grishin [2]
and for meromorphic functions of completely regular growth of finite A-type ([11, p. 75]) by
A. Kondratyuk [11, p. 112] and Ya. Vasyl’kiv [14] (see also Yu. Lapenko [12]).

In [5,16] the notion of entire function of improved regular growth was introduced, and
a criterion for this regularity was obtained in terms of the distribution of zeros under the
condition that they are located on a finite system of rays.

An entire function f is called a function of improved regular growth ([5, 16]) if for some p €
(0,400) and p; € (0,p), and a 27r-periodic p-trigonometrically convex function h(¢) # —oo
there exists a set U C C contained in the union of disks with finite sum of radii and such
that log |f(z)| = |z[Ph(¢) + o(|z|?), U Z z = re!? — co. If an entire function f is of im-
proved regular growth, then it has the order p and indicator /(¢) ([16]). In the case when
zeros of an entire function f of improved regular growth are situated on a finite system of rays
{zrargz =19}, j€{l,...,m},0 < ¢ < ¢ <... < Py < 27, the indicator & has the form
(see [16])

m
h(g) =) _hi(g), p€(0,+0)\N, (1)
j=1
where (@) is a 27r-periodic function such that on [y}, ¢; + 277)
TTA;
. — ] W — .
hi() Sin1p cosp(p —¢; —m), A;€[0,+00).

In the case p € IN, the indicator / is defined by the formula ([5])
3
Trcos(pp +05) + ) hi(e), p=p,
h(g) = j=1 (2)
Qpeospp, p=p—1,

where 07 € C, tp = [57/p + Qpl, 0f = arg(d¢/p + Q) and h;(¢) is a 27-periodic function such
that on [y}, ¢; + 271)

A.
hi(p) = Aj(m — @ + ;) sinp(p — ;) — ?] cos p(g — ).
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At present, many different conditions are known that are necessary and sufficient for the
improved regular growth of entire functions (see [1,3-10,15-17]). In view of this, it is natural to
establish an analog of Theorem A for the class of entire functions of improved regular growth.
In this direction, the following results were obtained in [6, 8].

Theorem B ([8]). If an entire function f of order p € (0,+o0) is of improved regular growth,
then for some p; € (0, p), one has

7P
I¢(g) = ?h(q’) +0(r2), 1= +oo,

uniformly in ¢ € [0,271].

Theorem C ([6]). If an entire function f of order p € (0, 4+o0) with zeros on a finite system of
rays {z :argz = ¢;}, j € {1,...,m},0 < 1 < ¢p < ... < ¢ < 27, is of improved regular
growth, then for some p3 € (0, p) the relation

0
THo) = hlg) +00P), 1= +oo 3)

holds uniformly in ¢ € [0,27t], where h(¢) be defined by (1) and (2).

However, the problem of finding the converse of Theorems B and C remained open. The
aim of the present paper is to prove the converse of Theorem C. Our principal result is the
following theorem.

Theorem 1. Let f be an entire function of order p € (0,+o0) with zeros on a finite system of
rays {z :argz = ¢;},j € {1,...,m},0 < 1 < ¢p < ... < ¢y < 27 and h(¢) be its indicator.
If for some p3 € (0, p) the relation (3) holds uniformly in ¢ € [0,27t] with h(¢) defined by (1)
and (2), then f is a function of improved regular growth.

2 PRELIMINARIES

Let f be an entire function with f(0) = 1 and (A,),en be the sequence of its zeros. For
ke Z and r > 0, we set

L —ikarg Ay, L "n (t,f)
ng(r, f) = )L%:S,e kargAn. Ni(r, f) := /0 %dt,
* ’ Nk(trf)
Ni(r,f) = | ——==dt, n(r, g, f) = 1,
‘ /O t A <r, Zarg)\nztp
N(r, s ) = /Orn(t,zp;ﬁ it N*(r, 1 f) = /Of N(t,;p;f) it

1 2. . 1 2.
ci(rlog|f1) = 5 [ e log | f(re) [ dp,  culrJp) =5 [ eI dp,

In the proof of Theorem 1, we use the following auxiliary statements.

Lemma 1 ([5, 16]). An entire function f of order p € (0, 4o0) with zeros on a finite system of
rays{z :argz = ¢;},j € {1,...,m},0 < ¢y < ¢ < ... < ¢y < 27, is a function of improved
regular growth if and only if for some py € (0,p) and eachj € {1,...,m}

n(t, p;; f) = At +-o(t), t — 400, A; € [0,400), 4)
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and, in addition, for p € N and some p5 € (0,p) and o € C, one has
Y A =6p400P), 1 — oo (5)
0<|Au| <1

In this case, the indicator h(¢) be defined by formulas (1) and (2).

We remark that, for p = p + 1 equality (4) holds with A; = 0, because Y,y [An| Pl < 4o
(see [5, p. 19]).

Lemma 2. If an entire function f of order p € (0, +0) satisfies the conditions of Theorem 1,
then for some p3 € (0,p) and each k € Z, one has

Y
Celr, ) = iy +o(r™), 7=+ (6)
k2
Ni(r, f) = ck (1—p—> ;—l—o(r%) r — 400, (7)
where
Ck i= -~ /Zn e *h(p)dp = L iA‘e_ik% Aj € [0, +00) (8)
27 Jo 2= r BjE /

ifp € (0,400) \ N, and

_P iA.e—ikle k| £ p =
-k ’ P="r
Tfeief 1
=42 45

0, [k|l#Ap=p+1,

Q . _
(5 k=p=p+1,

A, k=p=p, ©)

ifp € N.
Proof. Under the conditions of the lemma, by using (3), for some p3 € (0,p) and each k € Z,
we get

cr(r, J5) = i/zneik‘l) <ﬁh( ) —|—0(rp3)> dp =c¢ ” +o(r), r— 4o

AN f o 27-( 0 p q) (P - kp 7 7

where ¢y is defined by formulas (8) and (9) (see [6,7,9,10]). Thus, relation (6) holds. Let us
prove relation (7). Using relations (see [14, pp. 39, 43], [11, pp. 107, 112], [6, p. 13])

Ck(?’,]}) _ /7 Ck(t’10g|f|) dt,

t
N, ) = el log 1)~ [ /Ck“"g'f“ u kez, r>o,

we obtain

r r tc
Ny = [ SD gy ey [ gy ez, s

Then, using (6) and passing to the limit as r — +o0, we get
(3 r p—1 2
NE(r, f) :ckr—+o(rp3)—k2/ dt/ < L o(uP 1)) du=c, <1—k—2> +o(r).
p 0 p=/ P
Lemma 2 is proved. O
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Lemma 3. Let f be an entire function of order p € (0, +00) with zeros on a finite system of rays
{zrargz=9;},je{l,...,m},0< ¢ <o < ... <Py < 27. In order that the equality

A.
N*(r,;; f) = p—zjrp +o(r®), r— +oo, Aj€0,+00), (10)

holds for some p3 € (0,p) and eachj € {1,...,m}, it is necessary and sufficient that, for some
p3 € (0,0) and kg € Z and each k € {ko, ko +1,...,ko+ m — 1}, relation (7) with cy, defined

m .
by (8) and (9) be true. Besides, we have ) A]-e’lpll’f =0,ifp € N.
j=1

Proof. Necessity. Since (see [11, p. 127])
m .
n(r,f) = Y e ®in(r, i f), kez,
j=1
then
ik [ f) ik,
N, ’ = zklP]/ : dt = lklp}N yWir ),
o f) = e [ Lee NG yi)
m .
N¢(r,f) = Yo e ™iN*(r,y;; f), k€Z.
j=1

Using (10), for some p3 € (0,p) and each k € Z we obtain relation (7) with ¢, defined by (8)

m .
and (9). In this case, ) A]-e*lpll’f =0,ifp € N.
j=1
Let us prove the sufficiency. Without loss of generality, we can assume that k) = 0. Then, by

analogy with [7, p. 1957] (see also [10, p. 118], [11, p. 127]), for k € {0,1,...,m — 1} we get

N (r, f) = N*(r, 91, f) + N*(r, 92, f) + ..+ N*(r, s ),
Ni(r, f) = e VIN*(r, o; f) 4+ e V2N (1,0, f) + ... + e PN (r, P f),

i, f) = e DRINE (g f) 4 e DRNE (5, go; f) 4 4 e T DIRNE (7, 5 ).

This is a system of linear equations for the unknowns N*(r, ¥i; f),j€A{l,...,m}. Its determi-
nant is the nonzero Vandermonde determinant

1 1 1

D_ e~ e Y2 . e~ 1Pm 20,

e~ im=1)p1  o—i(m=1)pp = p=i(m=1)py

Therefore, the functions N*(r, ¢;; f), j € {1,...,m}, can be represented as linear combinations
of the functions Ny (r,f), k € {0,1,...,m — 1}. Using (7), we obtain relation (10), where by
the Cramer’s rule A; = psz /D,j € {1,...,m}, and Dj is the determinant formed from the
determinant D by replacing the j-column with the corresponding column (co, ¢y, ...,Cm—1),
Ck := %"(1 — ’p‘—;), k€{0,1,...,m—1}. Lemma 3 is proved. O
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1/ 27(j—1)
Remark 1. Letp € (0,+00) \N, p, = (n+ 10’;”) P {An i n € N\{1}} := ULy {pne’ i

n e N\{1}}, m € N\ {1} and (7, p. 1958])

@ =TT (15 ) ew ()p:% (A—)g) p=1lol

n=1 =1

Then foreachj € {1,...,m}, we obtain (see [7, p. 1959])

i o 0
N* <r, 2r(j—1) 1);f> :r_2+O<—r ) r — +oo.
m 1Y logr

Therefore, relation (10) is not true for any p3 € (0, p). Furthermore,

2z 2rt(j—1) ) m < P )
Ny(r,f)=) N'(r,——=;f )| ==r"4+0(— |, r— +oo.
=X (r i) = S+ 01

Thus, relation (7) is not true for k = 0. Moreover, since

m . —27ki
2= - 1—e _
e m —W—O, kE{l,,m—l},
j=1 1—etm
we conclude that
o a2n-1)
nk(r,f) — Z Ze_lk m — 0’
pn=r j=1

foreachk € {1,...,m — 1} and all r > 0. Therefore, relation (7) holds for any p3 € (0,p) and
eachk € {1,...,m—1}.

Lemma 4. Let f be an entire function of order p € (0, +00) with zeros on a finite system of rays
{zrargz=1q¢;},j€{l,...,m},0 < ¢ < o < ... < Py < 271. In order that the equality (4)
holds for some py € (0,p) and each j € {1,...,m}, it is necessary and sufficient that for some
p3 € (0,0) and eachj € {1, ..., m} relation (10) be true.

Proof. Indeed, using Lemma 3 from [15, p. 143] twice, we obtain the required statement. O

3 PROOF OF THEOREM 1

Let the conditions of Theorem 1 be satisfied. Then, by Lemmas 2—4, the relations (6), (7)
and (4) hold. Let us prove the equality (5) for p € IN. Since (see the proof of Lemmas 2 and 3)

rex(t, Tt o
c(t, J¢) dt, Ne(r.f) = Y e ™iN(r,p; f), keZ,

ce(rlog f) = Ni(r, f) + 2 |

and ([4, p. 101])

0 = \°
stiost) = jor o T (1) (%)) kma-ren

2P 0<|Ay|<r
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m .

then, using formulas (4), (6), (7), (9) and the identity ) A]-e*lpll’f =0,p=p €N, for some
j=1

ps € (0,p) we get

= \ P
— An
Y, A =20rPcy(r,log|f]) —pQp+1F Y, <_>

0<|Ay|<r o<iial<r \ T

r t, t m . r
=@rP@Mnﬂ+&£fi#ﬁm)—m%+r”Zéﬂ%ﬁwwwwj>
j=1

m . r . r t,Jt
=20 (Z e [ L’lff’f) dt+p2/0 —Cp(t]f) dt) —pQp

j=1 0

L2 i e~ iPYj (rpn(r, i f)—p /Or =t g f) dt)

j=1
=201~ P(]Ze ZP‘/’//O(A 1 4o(t47 1)) dt 4 p? / ( 1 4o (t03™ 1)) dt)

—pQp + 20 Zleipq;j <Ajr2p + o(rP1HP) — p/o (Ajth—l + o(tF+HP71)) dt)
]:

p m .
=20r F (% Y Aje i 4 corf 4 0(rP4) + o(rp3)> —pQp
=1

m .
L2 Z oY (%ﬂp + O(rp4+p)>

j=1
—p(tye" — Q) +0(rF) + (1) = b5 +0(1#F), 1 = +oo.

Hence, equality (5) holds for p = p with 67 = p(Tfeief — Qp). In the case p = p + 1, condition

(5) follows from (4) (see [5, p. 23, Remark 2]). Thus, according to Lemma 1, the entire function

f is a function of improved regular growth. This completes the proof of Theorem 1.
Combining Theorem 1 with Theorem C, we obtain the following theorem.

Theorem 2. In order that an entire function f of order p € (0,+0c0) with zeros on a finite
system of rays {z : argz = ¢;},j € {1,...,m},0 < 1 < ¢ < ... < Py < 271, be of improved
regular growth with the indicator h(¢) defined by (1) and (2), it is necessary and sufficient
that for some p3 € (0, p) the relation (3) holds uniformly in ¢ € [0,27].

Remark 2. For eachm € IN \ {1;2} there exists an entire function f of order p € (0, +oc0) \ IN
with zeros on a finite system of rays {z : argz = ¢;}, ¢; := 2mlj— 1),] € {1,...,m}, such that
uniformly in ¢ € |0, 27| the relation (3) is not true for any p3 € (O p) and f is not a function of
improved regular growth.

Indeed, let f be an entire function of order p € (0, +c0) \ N, defined as in Remark 1. Then
(see [7, p. 1959])

| — 0 0
m plogt log t

foreach j € {1,...,m}. Thus, relation (4) is not true for any ps € (0,p), and, according to
Lemma 1, the entire function f is not a function of improved regular growth. Further, for each
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j€A{l,...,m}, we obtain ([7, p. 1959])

co(r,log|f]) :]§N<r,72n(j_1>;f> = —YP+O<%>, r — +oo0.

m
Furthermore, (see [6, p. 11], [7, p. 1959])

ex(r,log |f]) = ¢ x(rogIf), k< —1,

1 k PN 3 R VT
ce(rlog fl) = 5 1 [(r) —(%)]ge B <k,

U<t Hn

and : N i\ 2 e
ci(rlog f]) = =5 {y{; (u_) +V,§r<7) }j_le n, k>ptl,
where (see Remark 1)
fe‘”‘% _ {O, keN, k+#m,
=1 m, k=m.
In view of this, since

r
ck(r, J§) :/0 7Ck(t'l?g|f|) at, keZ, r>0,

7P

m
co(r, ]}) = Pr" + O(logr

Ji(e) = Y. a(r, Jpe™ = co(r, T+ Y el(rJpe™, ¢ € (0,27,
kez kez\{0}

)I r%—i_oo/

we conclude that the relation (3) is not true for any p3 € (0,p).

Acknowledgment. The author would like to thank anonymous referee for valuable com-
ments and careful reading.
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Xaup P.B. Aocmamui ymosu nokpauyeHoeo pecyigpHo20 3pocants yiaux QyHKyiil 6 mepmiHax ix ycepe-
onennq // Kapmatcebki maTtem. myba. — 2020. — T.12, Nel. — C. 46-54.

Hexait f — mina dyrkuist mopsiaky p € (0,400) 3 HyAsSIMM Ha CKiHYEHHI CUCTeMi TPOMEHiB
{zrargz = ¢j},j€{l,....m},0 < ¢ < ¢ < ... < ¢ < 271 h(p) — il iHaMKaTop. Y
2011 poui aBTOp 1Ii€] CTATTi AOBiB, IO SKIIO f € (PYHKIIEIO MOKPAIIEHOTO PETYASIPHOTO 3pOCTaHHS
(mira pyHEKIis f Ha3MBaeThCS (PYHKITEIO IOKPAIIEHOTO PETYASIPHOTO 3POCTAHHS, SKIIIO AAST ACSKIX
p € (0,400), p1 € (0,p) i 27T-1IEPiOANYIHOI P-TPUrOHOMETPUYIHO OIYKAOI pyHKIII /(@) # —oo icHye
muOoxyHA U C C, sKa MiCTUTBCS B 06’€AHaHHI KPYTiB i3 CKiHUeHHOIO CyMOIO paaiyciB, Taka, IO
log |f(z)] = |z|°h() + o(|z|f1), U # z = re!? — o), To arst aesikoro p3 € (0, 0) CriiBBiAHOIITEHHST

/r log |f ()| |f§te’4’)| dt = ﬁh(qo) +o(r’3), r— +oo,
1 4

BUKOHYEThCsI PiBHOMIpHO 3a ¢ € [0,27]. B AaHilf po6oTi, BUKOPMCTOBYIOUM MeTOA KoedilieHTiB
Dyp’e, MM BCTAHOBAIOEMO OGepHEHe TBEPAXKEHHS, a caMe, SIKIIIO AAST Aesikoro p3 € (0,p) ocTarkHe
ACYIMITTOTMYHE CIIiBBIAHOIIIEHHSI BUKOHYETHCSI piBHOMIPHO 3a ¢ € [0,277], To f € dpyHKIIi€Io OoKpa-
LIEHOTO PeTyASIPHOTO 3pocTaHHs. lle AOIOBHIOE aHaAOriuHi pe3yabTaTu b. Aesina, A. I'pymmHa,
A. Konaparioka, f1. Bacuabkisa Ta 0. Aamerka mpo ¢oyHKIIIT IAKOM peryAsipHOTO 3pOCTaHHSI.

Kntouosi croea i ppasu: mira YHKIIIS HIAKOM PEryASIPHOTO 3pOCTaHHS, ITira (PYHKITisI OKpaIlle-
HOTO PEryASIPHOTO 3pOCTaHHs, iHAMKaTOp, KoedpirieaTn Dyp’e, yceperHeHHsI, CKiHUeHHa cucTeMa
TPOMEHIB.



