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ISOMORPHIC SPECTRUM AND ISOMORPHIC LENGTH OF A BANACH SPACE

We prove that, given any ordinal § < wy, there exists a transfinite /-sequence of separable Banach
spaces (Xy)a<s such that X, embeds isomorphically into Xz and contains no subspace isomorphic
to Xg forall & < B < 6. All these spaces are subspaces of the Banach space E, = (@5 £p),, where
1 < p < 2. Moreover, assuming Martin’s axiom, we prove the same for all ordinals § of continuum
cardinality.
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INTRODUCTION

We use the standard terminology of Banach spaces theory, see [1]. Let X and Y be Banach
spaces. We write X — Y if X embeds isomorphically into ¥, and X ~ Y if X and Y are
isomorphic.

Isomorphic spectrum

By the isomorphic spectrum of an infinite dimensional Banach space X we mean the set
sp (X) of all isomorphic types of infinite dimensional subspaces of X.

Consider the following equivalence relation on the set B of separable infinite dimensional
Banach spaces. We say that Banach spaces X, Y € B are equispectral and write X Ly provided
that X — Y and X < Y (notice that Banach [2, p. 193] used a different terminology for
equispectral Banach spaces X and Y, he said that X and Y have equal linear dimension and used
the notation dim; X = dim, Y). It is immediate that X Y if and only if sp (X) = sp (Y). Itis
a well known fact that X Y does not imply that X ~ Y, however X ~ Y easily implies that
X 2 y. For instance, L1 @ /> i L1, however L & 05 % L.

Observe that if X € {co, ¢y : 1 < p < oo} and Y is any infinite dimensional subspace of X
then X 2 Y.

Denote by B the set of all equivalence classes in 3 modulo the relation %, and for every
X € B by X we denote the equivalence class containing X.
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Given Banach spaces X and Y, we write X < Y to express that X — Y, while Y ¢ X. Itis
easy to see that, for every X;,Y; € B,i = 1,2 with Xj i X, and Vj i Y, the relation X; < Y;j is
equivalent to X, < Y2. So, the same relation < is well defined on B by setting X < ) provided
X <Y for some (or, equivalently, any) representatives X € X and Y € ).

Observe that < is a strict partial relation on 3, and that X < Y is equivalent to the strict
inclusion sp (X) C sp (Y).

By the solution of the homogeneous Banach space problem obtained by a combination of
results of Gowers [5,6] and Komorowski-Tomczak-Jaegermann [9,10], ¢; is the unique element
X of B with sp (X) = {X}. Although the spaces ¢y and ¢, with 1 < p < o, p # 2 have more
than one-element isomorphic spectrum, all of them are equispectral, as mentioned above. So,
¢o and ENp with 1 < p < oo are minimal elements of B. On the other hand, it is easy to see that

CJ0, 1] is the unique maximal element of g, which is, moreover, the greatest element of B.

Set-theoretical preliminaries

We use the standard set-theoretical terminology and notation of [7], where the reader can
also find necessary background. By ¢ we denote the cardinality of continuum. We say that A
meets B provided that AN B # @.

Let (M, <) be a partially ordered set. Following [11], the length of M is defined to be the
supremum of ordinals &« which are isomorphic to a subset of M, and is denoted by L(M). For
instance, L(«) = « for every ordinal « and L(R) = w.

Let w, be any infinite cardinal. We endow the power-set P(w,) with the partial order
A < Bifand onlyif |A\ B] <R, = |B\ A|.

Let us recall the statement of Martin’s axiom (MA). A subset D of a partially ordered set P
is said to be dense if for every p € P thereisd € D such thatd < p. A subset Q C P is said to be
consistent provided for every finite subset F C Q there exists p € P such that p < f for every
f € F. Elements p, q of P are said to be consistent if the two-element subset {p, g} is consistent.
A subset Q C P consisting of more than two elements is said to be pairwise inconsistent if every
two distinct elements of Q are not consistent. P is said to have the countable chain condition
(CCC in short) if every pairwise inconsistent subset of P is at most countable.

Martin’s axiom. Let P be a partially ordered set possessing the CCC. Let 9t be a collection
of dense subsets of P of cardinality < c¢. Then there exists a consistent subset Q C P which
meets every element of .

We remark that MA is independent of the usual axioms ZFC. It follows from the Contin-
uum Hypothesis (CH) and sometimes allows to extend results, previously established under
the assumption of CH.

We need the following combinatorial lemma proved in [11].

Lemma 1. (i) For every regular cardinal ws one has L(P(ws)) > ws 7.

(ii) Let w, be the cardinal of cardinality ¢. Then (MA) L(P(wp)) = We1-

Here (MA) in item (ii) means that the proof of (ii) uses Martin’s axiom.
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Isomorphic length of a Banach space

Let X be a separable infinite dimensional Banach space. By the isomorphic length of X we
mean the length of the subset By of the partially ordered set B consisting of all equivalence
classes containing all infinite dimensional subspaces of X: IL(X) = L(Bx). Since by the above
ggp and By, are singletons, we have that I L(¢y) = IL(co) = 1for every p € [1,+00). In the next
section, we show that for E,, = (@72, £p), with1 < p < 2 one has IL(E,) > w,, and Martin’s
axiom implies that IL(E,;) = wcq1. Of course, the same could be said about the universal
Banach space C|0, 1], which has the maximal possible length.

1 TRANSFINITE <-INCREASING SEQUENCES OF SPACES

Theorem 1. Let1 < p < 2and E, = (@}, ¢p),. Then

1) for every ordinal -y of cardinality ¥, there is a transfinite sequence (X, )x<- of subspaces
of Ey, such that X, < Xp foralla < B < 7,

2) (MA) for every ordinal -y of cardinality ¢ there is a transfinite sequence (X )y« of sub-
spaces of E, such that X, < Xg foralla < p <.

Proof. Let (pn)5°_; be any sequence on numbers with p < p; < pp < ...and lim, e pn = 2.

Lemma 2. For every finite dimensional Banach space X and every n € IN there exists m € IN
such that for every into isomorphism T : ()} — X ®2 (D>, Lp;), one has | T|[| T~ > n.

Proof of Lemma 2. Recall the standard definition (see, for example, [12, p. 54]): a Banach space Z
is said to have Rademacher type p, 1 < p < 2 (or just type p) if there exists a constant T, (Z) < co
such that for every k € IN and for every x1,...,xx € Z,

1 o\ VP ‘ 1/p
(/0 dt) <T,(2) (Z Hxiué) , )
i=1

z
where {r;} are Rademacher functions.

k
;Vi(t)xi

The Khinchin-Kahane inequality (see e.g. [12, p. 57]) implies that we can replace the value

1/
<f01 Hzle ri(t)xi Zdt) b with (fol HZi(Zl ri(t)xl-
(1), it will not change the class of spaces of type p, but may change the constant T,(Z), let us
denote this new constant T, 2(Z).
Now we shall check (recall that p < 2) that the fact that spaces {Z,,}$° ; have type p with
uniformly bounded constants {T,2(Z,)}5,, then Z := (52 Zx), also has type p with con-
stant T, >(Z) bounded from above by T := sup,, Tj2(Z).

2
Z dt) in the left-hand side of inequality
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Soletz; = {zin}5; € (B71Zn), 50 iy € Zy. We have

1/2
/1 it B /1 i
0 B (U— |

5 1/2
dt

2

k
Y ri(t)z
i=1

k
Z ri(t)zi,n
i=1

Z Zn

2/p
p )
Zn

p/2 k 17p
2) =T<Zwﬁﬂ) :
i=1

where in the first line we use the definition of Z as a direct sum; in the second line we use the
fact that Z, have type p with constant T; in the third line we use the triangle inequality for the
space {5/, (recall that 2/p > 1), and in the last line we use the definition of Z again.

Now we return to the proof of Lemma 2. Since X is finite-dimensional, it has type p,4+1
with sufficiently large constant. We need the well-known fact that ¢, has type p if p € [1,2]
(see e.g. [12, p. 63]) and an easy-to-see fact (consider the unit vectors) that £, does not have a
larger type.

We conclude that X @, (@j>n Ep].)z has type p;, ;1 with some constant C, but £,, does not
have type p,1. Therefore the type constant of (i) for type p,1 and sufficiently large m is
> Cn. It is easy to see that this implies that for every into isomorphism T : £} — X @,
(Bjsnp;), one has [T T~ > n. O

1/2

Zin

1/p

k 00
<T Z (Z:l|zi,n
n—=

i=1

We continue the proof of Theorem 1. Using Lemma 2, construct recurrently a sequence
(my)nen of positive integers so that

for every n € IN and every into isomorphism

n—1
u: o — (Do), @2 (D), @
i=1 j>n
one has ||U||[|[UY]| > n.

It is known that for every € > 0, every m € IN and every g € (p,2] there exists a subspace F
of £, which is (1 + ¢)-isomorphic to /i (see [8] for tight estimates of the parameters involved,
the result itself follows from [4]). Using this fact for e = 1, m = m, and q = p,, for every
n € IN we choose a subspace F, of n-th summand of E, (which is isometric to £,) which is
2-isomorphic to £}, say, by means of an isomorphism J, : F, — 5" with || J |||, ]| < 2.

Fix any ordinal -y of cardinality N; (or ¢, respectively). Using items (i) and (ii) of Lemma 1,
respectively, choose a transfinite sequence (Ny)a<, 0f subsets of IN so that [N, \ Ng| < Rg =
INg \ Ny forall a < B < <. For each a < 1y set

Ko = ( D Fn)z'

nEN,
We consider each X, as a subspace of E,. Let us show that (X, ).« has the desired properties.
Fixany « < B < 7. Set N' = N, \ Ng, N = Ny N Ng, N = Ng\ Ny. Then N, = N'UN”,
Ng = N"UN", |N'| <R = |[N"|. Hence,
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Xo = <§%Fn>2®2 < D Fn)z' Xp = < D Fn>2®2 < D F")z'

neN” neN’ neN""

Since |[N'| < ®g = |N"""|, we have that

dim( @ Fr), < co=dim( @ Fu),

neN’ neN"

and hence, X, embeds isomorphically into X B-

Prove that X does not embed isomorphically into X,. Assume, on the contrary, that there is
an into isomorphism T : X3 — X,. Take any n9 € N and consider the restriction T,;, = T,
of T to Fy,.

Observe that
no -1

Xy C <@ Fi>2 )]
i=1

(© ),

J=1o

Let
-1 -1
5: <n€B Fi)z ©2 <® g”]‘)z - <n€B 5%’)2 @2 <® gp])z
i1 j>n i=1 j>n

?lo—l

be an operator which sends ((f;)1;",g) to ((Jifi)";',g). Since J; are isomorphisms with
TN < 2,80 is S with ||S]|[|S™Y|| < 2. Hence,

B B 1 . by 1
I TIT 1||2HTOHHTolHZEHSOTOH”(SOTO) "> 50-

This is impossible for large enough ny € N"”. O

The next corollary follows from Theorem 1 and the observation that a separable infinite di-

mensional Banach space X has only continuum many closed subspaces, and hence,
IL(X) < weiq.

Corollary 1. (MA) IL(E,) = IL(C[0,1]) = we1.

2 REMARKS AND AN OPEN PROBLEM

It would be interesting to find the isomorphic length of the classical spaces L, = L,[0, 1].
Problem 1. Evaluate IL(L,) for1 < p < oo, p # 2.

The embeddability of L, into L, for 1 < p < r < 2 [4] together with impossibility of the
embedding L, into L, for the same values of p,r [2, p. 206] imply the inequality IL(L,) > w;
for1 < p < 2, because every countable ordinal @ < w is isomorphic to a subset of any interval
(a,b) in the reverse order. The same inequality IL(L,) > w; for all values 1 < p < co, p # 21is
a corollary of the following result.

Theorem 2 (Bourgain, Rosenthal, Schechtman, [3]). Let 1 < p < oo, p # 2. There exists a
family (X,,’Z),le of complemented subspaces of L, so that for alla < B < w one has xXF < XZ.

Moreover, if B is a separable Banach space such that X, < B foralla < w; then L, < B.
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Observe that Theorem 2 gives a strictly <-increasing wi-sequence of subspaces of L, for

1 < p < 2 directly. The same holds also for p = 1 due to the fact ([4]) that L, (1 < r < 2)
embeds isometrically into L;. On the other hand, the argument based on embeddability /non-
embeddability of L, into L, does not provide an uncountable sequence. However, both argu-
ments provide the same estimate for IL(L,) if 1 < p < 2.
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AOBeAeHO, IO AST KOXKHOTO OpAMHAAY 0 < wp icHye TpaHCiHITHa J-TIOCAIAOBHICTD cemapa-
beabHMX 6aHAXOBMX MPOCTOPIB (Xy)y <5 TaKa, MO X, BKAAAAETHCS i30MOpdHO B Xg i He MicTUTH
HiATTpOCTOpiB, i30MopdHMX A0 Xg AAs Beix & < B < 4. Bei ni mpocropu e mianpocropamu 6aHa-
xoBoro npocropy E, = (B, EP)Z, ae 1 < p < 2. Biapwmr Toro, y nmpumyiensi akciomn Maprina
AOBEAGHO AaHe TBEPAKEHHS AASI BCiX OPAMHAAIB § IIOTY>XXHOCTi KOHTUHYYM.

Kntouoei cnosa i ppasu: baHaxis mpocTip, isoMopdoHe BKAaAeHHsI, akcioma MapTiHa.



