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LALS., SHARMA V.K.

ON THE ESTIMATION OF FUNCTIONS BELONGING TO LIPSCHITZ CLASS BY
BLOCK PULSE FUNCTIONS AND HYBRID LEGENDRE POLYNOMIALS

In this paper, block pulse functions and hybrid Legendre polynomials are introduced. The esti-
mators of a function f having first and second derivative belonging to Lip,[a, ] class, 0 < a < 1,
and g, b are finite real numbers, by block pulse functions and hybrid Legendre polynomials have
been calculated. These calculated estimators are new, sharp and best possible in wavelet analysis.
An example has been given to explain the validity of approximation of functions by using the hybrid
Legendre polynomials approximation method. A real-world problem of radioactive decay is solved
using this hybrid Legendre polynomials approximation method. Moreover, the Hermite differential
equation of order zero is solved by using hybrid Legendre polynomials approximation method to
explain the importance and the application of the technique of this method.
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INTRODUCTION

In recent years, researchers like Marzban and Razzaghi [8, 10], Hsiao [4] defined and then
used hybrid functions (HFs) for the numerical solutions of differential equations and integral
equations. Working in the same direction, Marzban et al. [11] derived an operational matrix for
a detailed analysis of HFs. In the continuation of their efforts, Merzban [9] studied the optimal
control of linear delay systems applying HFs.

Objectives of this research paper are:

(i) to introduce block pulse functions and hybrid Legendre polynomials;
(ii) to estimate the error bounds of the functions of a certain class by hybrid functions;

(iii) to estimate the approximations of a function f € Lip,[a, b] by the partial sums of the
block function series and hybrid Legendre series.

This research paper is organized as follows. In Section 1, block pulse functions and their
some properties, block pulse functions expansion, hybrid Legendre polynomials, hybrid Leg-
endre polynomials expansion, and Lip,|a, b] class have been explained. In Section 2, the ap-
proximation of a function f € Lip, [0, 1] by block pulse functions expansion, Legendre polyno-
mials expansion and hybrid Legendre polynomials expansion have been estimated and appro-
priate detailed proofs are provided. In Section 3, hybrid Legendre approximation is explained
with the help of an example. Section 4 is introduced to explain the application of this expan-
sion in solving the Hermite differential equation of order zero and in solving some real-world
problems. Eventually, some conclusions are mentioned in Section 5.

YAK 517.5
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1 DEFINITIONS AND PRELIMINARIES

1.1 Block pulse functions and their expansion
Let n be an arbitrary fixed positive integer. Define functions B;,i = 1,2, ..., 1, on the inter-
val [0, 1] by (see [7])
i—1 i
1, 5-<t<y;
0, otherwise.

it = {

These functions are referred as block pulse functions (or BPFs).
Let (-, -) denotes the inner product over the field F (R or C). Block pulse functions expan-
sion of an f € L?[0,1) is given by (see [3])

ﬂﬂzimﬁw,ﬁwzﬂﬁm, W

where 7 is an arbitrary fixed positive integer associated with block pulse function B;. Let S,
denotes the n'/" partial sum of the series in (1) and it is given by

&mzimmw

1.2 Properties of block pulse functions

An n-set of BPFs defined above satisfies the following properties.
1. Disjointness, i.e., B;(t)Bj(t) = d;;Bi(t), where 1 <i,j < n, §;; is the Kronecker delta.
2. Orthogonality, i.e.,
0, i#j; ..
<5irﬁj>:{l ._Z 1<i,j<n
s, i=],

3. Completeness, i.e., for every f € L2[0,1) Parseval’s identity

[} £ =5 1Pl P

satisfied, where fg, is defined in (1).

1.3 Legendre and hybrid Legendre polynomials
Legendre differential equation is given by (see [1])

d? d
_ )Y o4y =
(1—x )dx2 Zxdx +nn+1)y =0,
where 7 is a positive integer. Legendre polynomial L, (x) is the solution of above differential
equation and it is written in the form (see [2])

2] n—2r)!
Ea(¥) = Z(_lyznr!(éz— r)!%n); 2r)!xHr’

r=0
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where
[E] _ { L, ifniseven;
2 "51, if n is odd.
Rodrigue’ s formula for L, (x) is given by

1 d"

Ln(¥) = 557 (x*-1)", n=0,12,....

Let n and m be the arbitrary fixed positive integers. Hybrid Legendre polynomials, denoted
by hz-]-, i=1,2,...,n,j=0,1,...,m—1,on the interval [0, 1) are defined by

. _ 9 i=1 ~ i.
i (8) = Li(2nt -2i+1), 5 < t‘< -
0, otherwise,
where i and j are the orders of BPFs and Legendre polynomials respectively.
1.4 Hybrid Legendre polynomials expansion
If f € L2[0,1), then associated hybrid Legendre polynomial infinite series is (see [6])

f = ¥ Sy, =

i=1j=0 ( ijr ij>.

(2)

The (1, m)!" partial sums of the series (2) is given by

n m—1

sum(t) =Y Y cijhi(t).

i=1 j=0
1.5 Lipy[a,b] class
A function f belongs to Lip,[a, b] class for 0 < a < 1if
fx+t) = f(x)| =0(t*), 0 <a <1
If0 < a < B<1, then Lipg[0,1] C Lip,[0,1].

Example. Leta = 3, = J and f(x) = x3, g(x) = X3, Vx € [0,1], then ¢ € Lipg[0,1] =
g € Lip,[0,1]. Here,

Nl—=

g+ =g =[x+ 01— x| < |(x+1) =22 =

Hence, |g(x+1)—g(x)| = O(t%) and g € Lip% [0,1]. Also,

NI—
~
Q=

NI—
I
~~
Q=
~~
=
IA
~~
@I=
~
<
~~
m
—
=)
~
—_
-

<|(x+t)—x|2 =t

g(x+1) —g(x)| = )(x+t)% _x2

~
I

Hence, [g(x +1t) — g(x)| = O(t%) and g € Lip%[O, 1]. Now,

[fx+t) = f¥)] =
Thus, |f(x +t) — f(x)| = O(t%) and f € Lip%[O, 1]. But

(x+Df | <|x+h)—xf =1, Vielo1]

f(x+1) — f(x)] = )(x+t)% — | <) —x]f = t%t—% — th i,
Hence,
P [LCEDETT
t2

This shows that f ¢ Lip% [0,1]. Therefore Lip% [0,1] € Lip% [0,1].
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2 MAIN RESULTS

Theorem 1. Let f be a differentiable function on the interval [0, 1] such that its first derivative

f' € Lip,[0,1] and the block pulse functions expansion of f be f Z fp:Bi(t), where
fo = <<£ ”[Z >>, and B; is a block pulse function. Then the error of approximation of f by
1
m

(Suf)(t) = )_ fpBi(t) is

i=1
O () = min = Sufl =0 | (141

where 0 < « <1 and m be an arbitrary fixed positive integer.

Proof. Since

i—1 i ,
el:fﬁzﬁl(t>_f(t)?q%,’%)l v|: m !E)r 1_112/--'rmr
where m is an arbitrary fixed positive integer associated with the BPFs and X[iz1 iy is a char-

acterstic function defined on the interval [1 1 1 ) Then

%Zﬁ@@+ﬂ@ﬂ%%—%ﬁﬁ[ 11
Now, by Taylor theorem (see [5])
eil* = f;s/ﬁ dt+/f2 {)dt - Zf,sl/ﬁ ’3’+/f2 it -2y, /f<>

:%+jﬂc; )”‘%j}< ")
R () e ()
Bl )

1 1
m

+2/f<i_1>uf’<i;1+9u> du—2fﬁl,/<f (i;) +uf’<i;11~|—9u>>du
0 0

/()

1
~ 2y [ur (o) au
0

+2f <i;1> /%f’ <i_71—|—6u> udu — 2fp,
0
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where 0 < 6 < 1. Also,

f,Bj = m<f/ﬁl> =

[ (r(5 )+f<

From the above formulas we get

leill5 :/j u? <f/ (i_TlnLGu))Zdu—m( j uf
1 . )

j (1_1 )du

§‘L\§\~

7N
3|
—_
o)
NS
Qu
NS

+
1 (i=1 2 1 (i=1
oA ( 1 1 >+<f<7)> +2A1f<7)<1 L1 )
m2+3 \ 20 +3  (a+2)2 ’
where A; is a positive constant.
Hence,

i—1Y)2 i—1
HeHZ — i ||e||2 — A% 1 + 1 + (f/(lW)) + 2A1f/<17) 1 + 1
2T e TR T 202 \20 43 7 (0 42)2 12m?2 mat2 A+3  2a+4

248 (F(5))°, 4af ()

— a2 12m2 met2
2 1 (i=1Y\)2 2 A, ! (i=1 ri=1Y\ N 2
:2< 1241 +(f(m))+ 1f(m)>§2<Al +f(m)>
m2e+2 24412 met2 mot+1 m
Therefore,
1 1
llell = O p- 1+ )|

So, the proof of Theorem 1 is completely established. O

Theorem 2. Let f be a differentiable function defined on the interval [—1,1] such that its sec-
ond derivative f" € Lipy[—1,1] and Legendre expansion of function f be

t) = ZC]P](t), (3)
j=0
. : . P)
where P; is a Legendre polynomial and ¢; = PP Then the error of the approximation of f
177
m—1
by (Unf)(t) = Y ¢iPi(t), m=1,2,...,1is
j=0

ECP)(f) = min |[f — Upfll> < M <1+ \/ziﬁ> (2m1_3>%,
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where m > 2 is an integer, M is a positive constant and 0 < a < 1.

Proof. Legendre expansion of a function f(f) is given by (3). Let
m—1

denotes the m!" partial sum of (3). Then for arbitrary m > 2, we have

1 2
If = Unld = [ (F = )2t = /<Zg ﬁ

-1 -1
1

— 2 [ 2
_Zcf/Pfdt <2]+1

and for arbitrary j > m, we obtain

[ f(£)P;(t)at . - /
C]:_l - _ ];‘ /f() (t)dt %/ () 1-1-21—{_1]—1[11L
ijzdt 21 Y
1
1/ |
2/ 10 (Pl P’)ﬂ > [ £ (B =Py
1

1 1
o 1 1" 1 1 . / //
() — Jm2 7 j+2 7
where B;(t) 21 %13 Hence,

1 1
kﬂs%/v%o—ﬂmnwmnm+§/vﬂmu&mwt
- (4)

1 " 1
< MT{!f\“\Bj(f)}dH / 2(0)’/}310)\‘1@
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where M; is a positive constant. Next, applying the Cauchy-Schwarz inequality, we get

1

1 1 1 1
</]t\“\Bj]dt> S/\t!z“dt /\Bjyzdt:2/\t]2“dt /ysjyzdt

-1
/ H2+P Lt
2(x—|—1 (2j +3)? (]—1)

2 2 2 2
(2(x+1)(2]+3) (2]+5 2j—|—1>+(21x+1)(2j—1)2<2j—3+2j+1>
_ 16 | _
~ (2a+1)(2j —3)8
Hence,
[ Bl < ——" . ®)
I, V2u+1(2j —3)2
Also,
; 2 16
Bdt) < </12dt> </ B: 2dt> < — .
(_/11 X B s
Therefore,
; 4
/|B]-|dt <= ©6)
-1 (2]_3)j

By (4)-(6) we have

1 4M; 1 If7(0)] 4 ( 1 ) 1
il < = + <M +1) ——
It 2 ooy (2 -3)

where M = max {2Mj3,2|f”(0)|} and

© 1 S 2
If = Unlz < 3 M° <1+\/m> (2/—3)%(2j+1)

Hence,

”f—Um|!z§\f2M<1+ L )( 1

Thus Theorem 2 is completely proved. O
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Theorem 3. Let f be a differentiable function on [0,1] such that f"" € Lip,[0,1] and hybrid
Legendre polynomials expansion of f be

i=1j=0
where ¢;; = o hy )

iy 1) and hi]- is the hybrid Legendre polynomials, and
l]/ l]

n m—1
(Spmf)(t Z;Jclhl (1)

be the (n, m)" partial sum of the series (7). Then the error of approximation f by Sy f is

(5 3) )

2m —3)3

HFs

f min [|f — Symflla = O

where m > 2, n is a positive integerand 0 < a <1

Proof. We see that hybrid Legendre polynomials expansion of f is given by (7). Now, suppose
n and m are the arbitrary fixed positive integers. Then fori = 1,2
we have

onandj=0,1, m—1,
J f(®)hij(t)dt f
(f hij) = 5

P;(2nt — 2i+1)dt
Cij <h h > = - i i
1]/ ij n n
2 2 _ 7
Ahzj(”dt AP]. (2nt —2i +1)dt
1 u+2i—1> du
u
‘f1f< 2n 12 241 [ (ut2i—1
= /f — = ) Pi(u)du
2 2n ]
J PRy %
1 2n

8)
2L [ (21 o 24 o b2i-1Y (P =P
(523 (42 ()

-1

2n 2]~|—1
1
1 t+2i—1 t+2i—1
=5 [F(F5) () =4 /f (F 5 ) (B =B
-1

1

1 [, (t+2i— t+2i—1
= — —_— dt ———— | P qdt =L+ L.
n/1f< o >+1 +4/f< );1 1+ 1
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Now,

1, (t42i—1 1 F  /t+2i—1\ [Pla—P
_ - ! L= ) _ / 1 — j+2 j
h=7 /f < 2n >PJ+1dt 4n /f ( 2n )( 2j+3 )dt
-1

-1

1
1 g (t+2i—1
= m_/lf <72n ) (Pj+2 — Pj) dt (9)

1 .
_ 1 /f,, t+2i—1 Piio— P it
8n? 2n 2j+3 '
-1

Next,

1 ; t+2i—1 1 / t+2i—1 P P
_ ! 1= , _ 7 I— -2 5
 dn /1f < 2n )ledt 8n? /1f < 2n ) < 2j—1 )dt' (10)

By (8)—(10) we have

o y(t+2i—1
= 8n2/f <

)
_ 8n2/f,,<t+21—1>

P.,—P P._,—P
j+2 ] j—2 J

.H :
213 + 2 —1 ence

1 t+2i—1
1 t+2i—1
S@/f”< 2n )‘fﬁ<
1

1
M 1 "
< gz | Bl + g |f
-1

1
2 — 1 / g (t+2i—1 P]',Q — P]'
( 2j+3 ) +81/12 1f < 2n 2j—1 at

1
2 — ijZ_Pj p 1 / g (t+2i—1
b= 2= par,
( 2]+3 2j—1 ) 8n2 f 2n /
.

where B i =

1
81 Q.2
-1

1 1
>‘/|Bj|df/
-1

)'IB dt +

20 —
2n

(21 —1
2n

)‘ |B;|dt (1)

where M; is a positive constant.
Now, by (5), (6) and (11) we get

M 4 1 4
S a3 1rx+2 5 gV (12)
28t o 1 1(2j —3)2 8 (2j —3)2

B (s S ] G
- V20 120+ pat2 - 2n2 (2 — 3)% - net2 - 2p2 (2j — 3)%’
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where B = max { M, My }. Since f” € Lip,[0,1],0 < a < 1, itis continuous on [0, 1]. Therefore
it is bounded on [0, 1]. Thus, there exists a constant M independent of ¢ such that [ f” ()| < M,

1 _
Vt € [0,1]. Alson € Nandi =1,2,...,1,500 < 17 < 1,ie. ! € [0,1] for each n and

(3]

Let S, f denotes the (1, m)!" partial sum of the series (7) as given in theorem 3. Now,

f=sunf = (L4 £ ) (E+ £ )am- £ om=£ L omy

i=1 i=n+1 i=1 j=0 i=1j=m

i=1,2,...,n. Hence < M,.

Then

1
&/@m
0

2 n
cijhij > dt = Z

i=1j

1 n
Hf— Snmf”% :/ (2
0

i=1j

e
e

n (13)
i i 2 m 2 i i 1
= ci: | Pr(2nt —2i+1)dt = Cii —7ms Ty
=5 l]d ] =55 i n n2j+1)
By (12) and (13) we have
- SunfB< 525 8% (s + ) s
nmfllz < 55 ne+2 " 2n2 ) (27— 3)3n(2j + 1)
1 2 o 1 1
= B ;
(n”‘+2 2n2> ];1 (2/—3)°(2j+1)
= nzx—l—Z ]:m net2 - 2n2 ) (2m —3)
Hence,
1 1 1
_ 2 < — )
|f = Sumfllz <B na+2 + 2112 (2m — 3>%
Therefore,
E(HFS)(f):minl‘f—snmf”ZZO L—FL # m>2and 0 <a <1.
n,m ’ na+2 212 (2171 _ 3>% ’ = >~
]

3 NUMERICAL EXAMPLE OF HYBRID LEGENDRE POLYNOMIALS APPROXIMATION

In this section hybrid Legendre polynomials approximation of the function

B+t242t+1, Vteo,1],
f(t) = .
0, otherwise
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forn = 1,2 and m = 1,2,3 has been explained by graphs of concerned function. S, ,, for
n=1,2and m = 1,2,3 are calculated and are given as

51(1) = g, 0<t<1, 5a(t) = A +B2t-1), 0<t<],
’ 0, otherwise, ’ 0, otherwise,
51a(0) T+Jt-1)+ZB2t—-1)2-1], 0<t<1,
13(t) = .
0, otherwise,
B, 0<t<], PB4t -1), 0<t<s,
Soa(t) =93, l<i<y, Sop(t) =3+ 2B4r—3), l<t<y,
0, otherwise, O, otherwise,
15 4 184t — 1) + 5 [3(4t —1)2—1], 0<t<}i
So3(t) = 341 + 284t -3)+ Bt -3)2-1], 1<t<y,
0, otherwise.

The graphs of S,,, and f(t) has been plotted for n = 1,2 and m = 1,2,3 in Figures 1-6
respectively. Hybrid Legendre polynomial approximation error for different values of n and
m is shown in Table 1.

n m | [|f = Sumll2
m=1 1.14131
n=1|m=2| 0.187295
m=3 | 0.0188982
m=1 | 0.603409
n=2 | m=2 | 0.0486932
m=3 | 0.00236228

Table 1. Hybrid Legendre polynomial approximation errors for different values of n and m

b

-1 -1 1 2 -2 -1 E e

Figure 1. Graph of S1; and the function f(t) Figure 2. Graph of S; » and the function f(t)
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-10 -0.5 0.5 10 2 21 1

(=]

Figure 3. Graph of S; 3 and the function f(t) Figure 4. Graph of S, 1 and the function f(t)
4F s
3 3
1k Ik
1 1

L I I L L L L L
-15 -10 0.5 0.5 1.0 15 =13 -1.0 -0.3 0.5 1.0 1.5
Figure 5. Graph of S, and the function f(t) Figure 6. Graph of S, 3 and the function f(t)

4 APPLICATION OF HYBRID LEGENDRE POLYNOMIALS EXPANSION

4.1 Application of hybrid Legendre polynomials expansion in real-world problems

We have used the hybrid Legendre polynomial approximation method to solve the differ-
ential equations related to the following real-world problem.

4.1.1 Radioactive decay

Radioactivity [12] is one of the effects of disruption in the nucleus of a radioactive substance.
It is important to remember that radioactivity has also been used in the diagnosis of cancers
through lighting in the nucleus form of the atoms to the recipient.

If m(t) be the mass of a radioactive substance at time ¢, then (see [12])

dm

T —km(t), m(0) = my, (14)

where k is a decay constant and my is the initial mass. Let us consider k = 2 and my = 2, the
above equation reduces to
dm

—p = —2m(t), m(0) =2, (15)
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Equation (15 ) is now solved using hybrid Legendre polynomials operational matrix of inte-
gration as in [6] for n = 5 and m = 3 as below.

Let

h(t) = [ho, h11, h12, hoo, a1, ho, Biso, sy, s, hao, iy, hao, Biso, sy, hisa) T (16)

Here h(t) be 15 x 1 column vector and hi]- fori = 1,2,3,4,5and j = 0,1,2 are calculated as
given in subsection 1.3. The integration of above vector h(t) is given as

/0 h(x)dx = Ph(t).

Here P is 15 x 15 hybrid Legendre polynomials operational matrix of integration and it is given
as

1 1 1 1 1 1
& & 0 + o o & o o f o o Lt 0 o0
% 0 % 0 0 0 0O 0O O 0 0 0 0 0 0
0O -4 0 0 0 0 0O O 0O 0O O 0 0 0 O
1 1 1 1 1
o 0 0 & & o ¢+ o o f o o Lt o0 o
0 0 0 —% 0 % O 0 0 0O 0 0 0 0 O
o 0 0 0 -0 0 0O 0O O O O 0O 0 O
1 1 1 1
0o 0 0 0 0 O W o cly 0o o %I o0 o0
P={ 0 0 0 O 0 0 — 0 4 0 0 0 0 0 0]|.(17
o 0 0 0 0 0 0 -0 0 0 0 0 0 O
1 1 1
o 0 0 0 o0 0 0 0 0 & & o Lt 0 o0
o 0 0 0 O 0 0 0 0 -5 0 & 0 0 0
o 0 0 0 0 0 0O O 0 0 —-% 0 0 0 O0
o 0 0 0o 0 O O O 0 O 0 0 & & O
o 0 0 0 0 0 0O 0 0 0 0 0 —5% 0 =%
0 0 0 0 0 0O O O 0O O 0 0 0 —% 0
Let m(t) = NTh(t), where
N(t) = [n10, 111, 112, 120, 21, 22, N30, M31, M32, a0, M1, Nag, M50, M1, M52
is an unknown vector. Integrating equation (15) and using initial conditions, we observe
(I42PT)N = 2d. (18)

Here I be a identity matrix of order 15 and d = [1,0,0,1,0,0,1,0,0,1,0,0,1,0,0]" is a column
vector of order 15 x 1. Equation (18) denotes the set of fifteen algebraic equations which can be
solved for N. Now comparison between exact solution and approximate solution of equation
(15) is given in Table 2.
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t Hybrid L egendre polynomials Exact solution | Absolute error
solutionforn =5,m =3
0.0 1.99912 2.00000 0.00088
0.1 1.63744 1.63746 0.00002
0.2 1.34005 1.34064 0.00059
0.3 1.09761 1.09762 0.00001
0.4 0.89826 0.89866 0.00040
0.5 0.73575 0.73576 0.00001
0.6 0.60212 0.60239 0.00027
0.7 0.49319 0.49319 0.00000
0.8 0.40362 0.40379 0.00017
0.9 0.33059 0.33060 0.00001

Table 2. Comparison between approximate solution and exact solution for k = 2 amd mgy = 2

Also, equation (14) is solved for k = 1 and my = 1 and comparison between approximate
solution and exact solution for k = 1 and my = 1 is shown in Table 3.

t Hybrid L egendre polynomials Exact solution | Absolute error
solutionforn =5,m =3
0.0 0.99994 1.00000 0.00006
0.1 0.90484 0.90484 0.00000
0.2 0.81868 0.81873 0.00005
0.3 0.74082 0.74082 0.00000
0.4 0.67028 0.67032 0.00004
0.5 0.60653 0.60653 0.00000
0.6 0.54878 0.54881 0.00003
0.7 0.49659 0.49659 0.00000
0.8 0.44930 0.44933 0.00003
0.9 0.40657 0.40657 0.00000

Table 3. Comparison between approximate solution and exact solution for k = 1 amd my =1

4.2 Application of hybrid Legendre polynomials expansion in solving Hermite differen-
tial equation of order zero

Consider the Hermite differential equation of order zero (see [13])
y' =2ty =0 (19)

with initial conditions
y(0) =y'(0) = 1. (20)
Now we have solved the equation (19) by hybrid Legendre polynomial operational matrix of
integration for n = 5 and m = 3 given by (17), which is obtained by hybrid Legendre polyno-
mial approximation method as below.
Let
y"(t) = LTh(t), (21)
where L = [lo, 11,112, 20, 121, 122, 130, 131, 132, 110, 141, 142, I50, 151,152]T is 15 x 1 unknown column
vector and h(t) is also a column vector given by (16). Now expanding f(¢) = 1and g(¢t) = t by
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hybrid Legendre polynomials for n = 5 and m = 3, we obtain f(t) = rTh(t) and g(t) = s"h(t),
where r = [1,0,0,1,0,0,1,0,0,1,0,0,1,0,0]” and

_[r1,31,51,71.109 73"
- 1107107 V10710”7107 10" 7107 10° " 10" 10’

are column vectors each of order 15 x 1. Now integrating equation (21) two times and using
initial conditions given by (20), we find

y'(t) = LTPh(t) 4 rTh(t)

and

y(t) = LTP?h(t) + r" Ph(t) + rTh(t).
Approximate s"hhT by hybrid Legendre polynomials as
sThh" =h's, (22)

where S is a square matrix of order 15 and it is given as

CO OO0 OO OO O oo ogg~
OO OO OO OO OO O OIgg-E-
cNoNeNeoNoNoNoNoNoNoNo N s =)
COoO o000 OO0 o oggwo oo
OO OO OO OO OoOgNuwa~ro © o
COoO OO0 OO o oWy oo o

OO OO0 OO ogHuo oo oo o
o o0 oo oghEuE~ro o0 oo o
OO OO O OguUEND OO0 O O o O
N eNeNaI N NieleNolNollollollellelo)
c o odhENEFo c o o0 o0 o0 o oo
N eNelNN S ol olloll ool ool ollollo)
ogrElvro o0 0000000 0O

guglogr O ©O O 0O 0O 0O O 0 O O O O
SeBEhv o 0O 0O 0O 0O 0O 0o 00 0o O

From the above we get

(I —2SPT) = 25r.

It is a system of algebraic equations which is solved for L. The exact solution of (19) is given by

t
y(t) =1 +/ e dx.
0

Comparison between approximate solution and exact solution is given in Table 4.
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t Hybrid L egendre polynomials Exact solution | Absolute error
solutionforn =5,m =3
0.0 1.000 1.000 0.000
0.1 1.101 1.100 0.001
0.2 1.204 1.203 0.001
0.3 1.311 1.309 0.002
0.4 1.425 1.422 0.003
0.5 1.548 1.545 0.003
0.6 1.686 1.680 0.006
0.7 1.840 1.833 0.007
0.8 2.019 2.009 0.010
0.9 2.229 2.215 0.014

Table 4. Comparison between approximate solution and exact solution for n = 5and m = 3
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Figure 7. Graph of exact solution (dark line) and approximate solution (dashed line)
of radioactive decay problem for k = 2 and my = 2
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Figure 8. Graph of exact solution (dark line) and approximate solution (dashed line)
of radioactive decay problem for k = 1 and my =1
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Figure 9. Graph of exact solution (dark line) and approximate solution (dashed line)
of Hermite differential equation

5 CONCLUSIONS

1. Estimates of Theorems 1, 2 and 3 are given by

on-ofi (2]

m

o (LP), o 1 1 .
@ e =0 | (14 m ) o) w22

(iii) Ely ) (f) = O

1 1 1
<lx—+2+2—2> — ,wherem > 2, 0 <« <1and n is a positive
n n=J) (2m —3)2

integer.
Since E,(WBP) (f) — 0O, ESHLP) (f) — 0and ES,{_,;FS) f — 0as m,n — oo, these approximations are
best possible in wavelet analysis.
2. The solution of differential equations associated with the radioactive decay problem and
the solution of the Hermite differential equation of order zero by hybrid Legendre polynomials
is approximately same as the exact solution. This is the significant achievement of this paper.
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Aan II1., Mapma B.K. Ipo oyinxy dyukyiil i3 kaacy Ainwiya 67104MHO-iMNYAbCHUMU (PYHKYIIMU WA 2i-
OpudHumu noninomamu Aescandpa // Kapnarceki Mmatem. my6a. — 2020. — T.12, Nel. — C. 111-128.

Y it poboTi, BUKOPUCTOBYIOUM OAOUYHO-IMIIYABCHI pYHKIIiT Ta ribpmaHi oAiHOMM AeXaHApa,
3HAVACHO OLIHKM (PYHKIIT f, sIKa Mae IepIIly i ApyTy IOXiAHI, III0 HAAeXaTb A0 Kaacy Lipa[a, b], ae
0 <a <1,ia, b— cxiHueHHi AiiicHi ucaa. OTpyMaHi OLIHKM € HOBMMY, TOYHVMMMY Ta HalIKpaIlMu
y BeliBeAeT aHaAi3i. I3 MeToro TIOsicHeHHST 06T pyHTOBaHOCTI alpOKCMMallii yHKIIi MeToAOM HabAN-
KeHHSI TibprAHMMM TIOAiHOMaMy AeXaHApa HaBeA€HO IIPYKAAA PO3B’SI3Ky 3aAadi paAioaKTMBHOTO
posnaay. Biabliie Toro, AAsl HOSICHEHHST BaXXAMBOCTI Ta 3aCTOCYBaHHSI METOAMKM IIbOTO METOAY 3Ha-
JA€HO pO3B’s130K AMdpepeHITiaAbHOTO piBHSHHS EpMiTa HyABOBOTO TIOPSIAKY.

Kontouosi croea i hpasu: 6A0UHO-iMITyAbCHa (pYHKIIsSI, IOAiHOM AeXXaHApa, Ti6pMAHMIT TOAIHOM
AexaHpapa.



