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SOME PROPERTIES OF GENERALIZED HYPERGEOMETRIC APPELL

POLYNOMIALS

Let x(n) denotes the Pochhammer symbol (rising factorial) defined by the formulas x(0) = 1 and

x(n) = x(x + 1)(x + 2) · · · (x + n − 1) for n ≥ 1. In this paper, we present a new real-valued Appell-

type polynomial family A
(k)
n (m, x), n, m ∈ N0, k ∈ N, every member of which is expressed by mean

of the generalized hypergeometric function pFq
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and, at the same time, the polynomials from this family are Appell-type polynomials.

The generating exponential function of this type of polynomials is firstly discovered and the

proof that they are of Appell-type ones is given. We present the differential operator formal power

series representation as well as an explicit formula over the standard basis, and establish a new iden-

tity for the generalized hypergeometric function. Besides, we derive the addition, the multiplication

and some other formulas for this polynomial family.
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1 INTRODUCTION

In [4], P. Appell presented polynomial sequence {An(x)}, n = 0, 1, 2, . . . , such that

deg An(x) = n and satisfying the identity

A′
n(x) = nAn−1(x),

where A0(x) 6= 0, which is called the Appell polynomial sequence.

An arbitrary Appell polynomial sequence possesses an exponential generating function

A(t)ext =
∞

∑
n=0

An(x)
tn

n!
,

here A(t) is a formal power series

A(t) = a0 + a1t + a2
t2

2!
+ · · ·+ an

tn

n!
+ · · · , a0 6= 0. (1)
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The Appell-type polynomials An(x) are expressed in the terms of {an} as follows

An(x) =
n

∑
i=0

(

n

i

)

an−ix
i.

The simplest example of Appell-type polynomials is the monomial sequence {xn}, n =

0, 1, . . . ; other examples are the Bernoulli, the Euler polynomials and the Hermite polynomi-

als. For more examples one can consult [1, 11].

The Appell-type polynomials perform a large variety of features and are widely spread

at the different areas of mathematics, namely, at special functions, general algebra, combi-

natorics and number theory. Recently, the Appell-type polynomials are of big interest. The

modern researches give the alternative definitions of Appell-type polynomials and apply new

approaches based, for instance, on the determinant method or in Pascal matrix method (see,

e.g., [3, 16]). Consequently, many new properties of those polynomials are described and a

great deal of identities involving Appell-type polynomials are obtained (see [2, 6, 7]).

Let us recall that the generalized hypergeometric function is defined as follows

pFq
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where a1, a2, . . . , ap, b1, b2, . . . , bp are complex parameters and none of bi equals to a non-po-

sitive integer or zero, x(n) denotes the Pochhammer symbol (or rising factorial) defined by

x(n) = x(x + 1)(x + 2) · · · (x + n − 1) for n ≥ 1 and x(0) = 1. Further on, we denote the

generalized hypergeometric function by pFq for brevity.

We note that the Gauss hypergeometric function 2F1 and the Kummer hypergeometric func-

tion 1F1 are the partial cases of (2).

Apart from the Appell-type polynomials, there exist some polynomial families, which ad-

mit representation via the partial cases of the generalized hypergeometric function, i.e., the

Jacobi polynomials ([1])

P
(α,β)
n (z) =

(α + 1)(n)

n!
2F1

[

−n, n+α+β+1

α+1

1 − z

2

]

.

At the same time, there exists a number of the Appell-type polynomial families, which

also admit the representation via partial cases of the Gauss hypergeometric function. It is

known [1], that the Laguerre polynomials Ln(x) are presented as follows

Ln(x) = 1F1

[

−n

1
x

]

.

Remarkably, the Hermite polynomials Hn(x) are simply expressed in the terms of those func-

tions ([8])

Hn(x) = xn
2F0





−
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2
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−
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

 , G(x, t) = ext− 1
2 t2

.

The natural way of generalisation of the Hermitte polinomials is to expand the array of

ratios for another denominators, it was made in [10], the authors obtained the Gould-Hopper
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polynomials gm
n (x, h), with G(x, t) = ext+htm

, which could be also expressed in the terms of the

generalized hypergeometric function as follows

gm
n (x, h) = xn

mF0
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m
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m
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

 .

The aim of this paper is to find a polynomial family, which would be the Appell-type one

and admit the generalized hypergeometric function representation simultaneously. Still, there

exist the polynomial families, which have the needed representation, e.g., the generalized hyper-

geometric polynomials fn

(

ai; bj; x
)

, studied at [9], such that

fn

(
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= p+2Fq+2
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1,
1

2
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

 , n ∈ N0,

and the incomplete hypergeometric polynomials associated with generalized incomplete hyperge-

ometric function, studied at [13], but they both are not the Appel-type polynomials.

The difference between all mentioned classes of polynomials, depending, if they are of

Appell-type or not and if they possess the generalized hypergeometric function representation

or do not, has motivated the title of the paper.

Therefore, let us give the following

Definition 1. Let ∆(k,−n) denotes the array of k ratios −n
k ,−n−1

k , . . . ,−n−k+1
k , n ∈ N0,

k ∈ N. Then we call the polynomial family

A
(k)
n (m, x) = xn

k+pFq
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, (4)

the generalized hypergeometric Appell polynomials.

We note that if p = 0, q = 0, k := m, m := (−1)khkk the generalized hypergeometric Appell

polynomials A
(k)
n (m, x) become the Gould-Hopper polynomials gm

n (x, h) and if p = 0, q = 0,

m = −2, k = 2 they become the Hermite polynomials Hn(x) mentioned above.

The main result of this article is the following basic statement.

Theorem 1. The generalized hypergeometric Appell polynomials A
(k)
n (m, x) defined by defi-

nition 1 are the Appell type ones.

2 BASIC DEFINITIONS AND NOTATION

In addition to the rising factorial we use the falling factorial, defined by (x)0 = 1 and

(x)n = x(x − 1)(x − 2) · · · (x − n + 1) for n > 0. In these notations, the following relations

hold (see [1])

(x)n = (−1)n(−x)(n), (5)
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and the Gauss product of indexes formula (see [14]) will be written as follows

(−λ)(mn) = mmn
m

∏
j=1

(

−
λ − j + 1

m

)(n)

, n ∈ N0. (6)

We note that in the case, when either a or b is a non-positive integer, the generalized hyperge-

ometric function reduces to a polynomial

pFq
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As far as we deal with the differentiation, the differentiation formula with respect to z

would be useful: d
dx pFq
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[12].

3 BASIC PROPERTIES OF THE GENERALIZED HYPERGEOMETRIC APPELL POLYNOMIALS

3.1 Being of Appell type

Proof of Theorem 1. To prove the generalized hypergeometric Appell polynomials A
(k)
n (m, x)

are the Appell-type polynomials, it is sufficient to show that there exists a formal power series

A(t) such that the following relation holds
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.
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. Then from definition 2 and relations (5) and

(6) it follows that
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Using the expansion of ext into the power series and changing the product of the series by

the double series, we transform the generating function as follows
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then
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The inner sum is precisely equal to the generalized hypergeometric function in the form of

(3) and, therefore, the relation (4) holds. This means that the generating function admit the

needed representation (3).

It should be noted that there is another way to prove Theorem 1, which is to replace xt by t

and m
/

xk by x in [15, Problem 26, p.173].

As a consequence of Theorem1, we derive a new identity for the generalized hypergeomet-

ric function.

Corollary 1. The following identity holds
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Proof. The generalized hypergeometric Appell polynomials are the Appell-type ones, hence,

the identity d
dx

{

A
(k)
n (m, x)

}

= nA
(k)
n−1(m, x) fulfils.

Representing the polynomials A
(k)
n−1(m, x) in the terms of the generalized hypergeometric

function according to Definition 1, we immediately obtain the left side of the corollary equality.

To obtain its right side we differentiate the hypergeometric representation of the polyno-

mials A
(k)
n (m, x) under the Leibnitz rule:

d

dx

{
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.

Performing the derivative of the hypergeometric function, we obtain

xn d

dx

{

p+kFq

[

a1, a2, . . ., ap, ∆(k,−n)

b1, b2, . . ., bq

m

xk

]}

= xn

(

(−1)k(n)k

kk

a1 · · · ap

b1 · · · bq

m(−k)

1!xk+1

+
(−1)2k(n)2k

k2k

a1(a1 + 1) · · · ap(ap + 1)
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+
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= xn−k−1mk
(−1)k+1(n)k

kk

a1 · · · ap

b1 · · · bq

(

1 +
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,

that ends the proof.

Since an arbitrary polynomial of one variable Pn(x) ∈ C[x] always permits the formal series

representation

Pn(x) =
n

∑
i=0

αix
i,

we are interested in finding those representation for the generalized hypergeometric Appell

polynomials.

Corollary 2. The generalized hypergeometric Appell polynomials A
(k)
n (m, x) possess

(i) the standard basis {xi}n
i=0 representation

A
(k)
n (m, x) =

[n/k ]

∑
i=0

n!(−1)ki(γ)imi

i!kki(n − ki)!
xn−ki, (8)

(ii) the differential operator formal power series representation

A
(k)
n (m, x) =





[n/k ]

∑
i=0

(−1)ki(γ)imi

i!kki
Dki



 xn. (9)

Proof. (i) We use an approach from [6], which is based on the idea of the connection problem.

Given the two polynomial families of Appell type {Pn(x)} and {Qn(x)} with generating

functions A1(t) and A2(t) respectively, the solution of its connection problem could be written

as follows

Qn(x) =
n

∑
m=0

n!

m!
αn−mPm(x),

where A2(t)
A1(t)

=
∞

∑
k=0

αktk.

We are searching for the unknown coefficients αk to decompose the polynomials

Qn(x) = xn, A2(t) = 1

upon the polynomials A
(k)
n (m, x) defined by (3) with generating function A1(t) defined by (7).

Deriving the ratio of generating functions A2(t) and A1(t) we have

A2(t)

A1(t)
=

∞

∑
r=0

(−1)krmr

kkrr!
(γ)rtkr =

∞

∑
r=0

αrktrk,
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and, constructing the corresponding coefficients αn−m, we obtain the needed representation.

(ii) An arbitrary Appell-type polynomial Pn(x) could be also written in the symmetric form

Pn(x) =
n

∑
i=0

(

n

i

)

cix
n−i.

According to [11], the latter expression is equivalent to the following differential operator

representation

Pn(x) =

(

n

∑
i=0

ci

i!
Di

)

xn,

where D := d
/

dx is an ordinary differentiation with respect to x, consequently,

A
(k)
n (m, x) =

[n/k ]

∑
i=0

(

n

ki

)

cix
n−ki =

[n/k ]

∑
i=0

(

n

ki

)

(−1)ki(γ)imi(ki)!

i!kki
xn−ki,

we deduce a differential operator formal power series representation of the generalized hyper-

geometric Appell polynomials of the form (9).

Remark. Comparing the power series (1) and operational formula (9) of the generalized hyper-

geometric Appell polynomials to the corresponding ones of the Gould-Hopper polynomials

A(t) = ehtm
, gm

n (x, h) =
(

ehDm
)

xn,

it is easy to see that the latter have more compact forms.

Symmetry. Substituting the negative value of argument into the formula (8)

A
(k)
n (m,−x) =

[n/k ]

∑
i=0

(−1)n−ki n!(−1)ki(γ)imi

i!kki(n − ki)!
xn−ki,

we conclude that, in the case of even k, the generalized hypergeometric Appell polynomials

are the even ones themselves while n is an even number, and they are the odd ones themselves

while n is an odd number:

A
(2k)
2n (m,−x) = A

(2k)
2n (m, x), A

(2k)
2n+1(m,−x) = −A

(2k)
2n+1(m, x).

Otherwise, for any odd k in the case of odd n, the summands standing on the even places

change their signs into the opposite ones, and the same do the summands standing on the odd

places in the case of even n.

3.2 Adition and multiplication formulas and other properties

Here we shall prove the following result.

Theorem 2. The following formulas hold for the generalized hypergeometric Appell polyno-

mials

(i) addition formula

A
(k)
n (m, x + y) =

n

∑
i=0

(

n

i

)

yn−i A
(k)
i (m, x) =

n

∑
i=0

(

n

i

)

xn−iA
(k)
i (m, y),
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(ii) multiplication formula

A
(k)
n (m, Mx) =

n

∑
i=0

(

n

i

)

(M − 1)n−ixn−iA
(k)
i (m, x),

(iii) indexes interchange formula

n

∑
i=0

(

n

i

)

A
(k1)
i (m, x)A

(k2)
n−i(m, y) =

n

∑
i=0

(

n

i

)

A
(k2)
i (m, x)A

(k1)
n−i (m, y),

(iv) convolution type identity

n

∑
i=0

(−1)i
(

n

i

)

A
(k)
i (m, x)A

(k)
n−i(m, x)

=
(−1)nm n/k n!

kn

[n/k ]

∑
i=0

a
(i)
1 . . . a

(i)
p

i!b
(i)
1 . . . b

(i)
q

a
( n/k−i)
1 . . . a

( n/k−i)
p

(

n
/

k − i
)

!b
( n/k−i)
1 . . . b

(n/k−i)
q

.

Proof. The addition and the multiplication formulas hold for all Appell-type polynomial fam-

ilies ([11]), consequently, they hold for the generalized hypergeometric Appell polynomials as

well. The indexes interchange formulas could be obtained applying methods proposed in [6]

and the convolution type identity is obtained by the direct calculations at x = 0.

It is worth stressing, that the polynomials A
(k)
n (m, Mx) loose the property of being of

Appell-type. Moreover, the generalized hypergeometric polynomials over the polynomials

could be defined in the same manner as the generalized hypergeometric Appell polynomials:

A
(k)
n (m, f (x)) = ( f (x))n

p+kFq

[

a1, a2, . . ., ap, ∆(k,−n)

b1, b2, . . ., bq

m

( f (x))k

]

,

where f (x) = a0xp + a1xp−1 + · · ·+ ap, a0 6= 0, which deliver us the following differentiation

rule
d

dx
A
(k)
n (m, f (x)) = n f ′(x)A

(k)
n−1(m, f (x)).

In particular, in the case when p = a0 = 1, we obtain the Appell differentiation.
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У цiй статтi ми представляємо нове сiмейство многочленiв типу Аппеля {A
(k)
n (m, x)},

n, m ∈ N0, k ∈ N, кожен представник якого визначений над полем дiйсних чисел i може бути

представлений через узагальнену гiпергеометричну функцiю

pFq

[

a1, a2, . . ., ap

b1, b2, . . ., bq
z

]

=
∞

∑
k=0

a
(k)
1 a

(k)
2 . . . a

(k)
p

b
(k)
1 b

(k)
2 . . . b

(k)
q

zk

k!
,

де через x(n) позначено символ Похгаммера (зростаючий факторiал), який визначають за

формулою x(n) = x(x + 1)(x + 2) · · · (x + n − 1) для n ≥ 1 i x(0) = 1, у такий спосiб

A
(k)
n (m, x) = xn

k+pFq





a1, a2, . . ., ap,−
n

k
,−

n − 1

k
, . . .,−

n − k + 1

k
b1, b2, . . ., bq

m

xk



 ,

i одночасно многочлени цього сiмейства є многочленами типу Аппеля.

Для многочленiв цього сiмейства вперше знайдено породжуючу функцiю i доведено, що

вони є многочленами типу Аппеля. Знайдено розклад представникiв цього сiмейства за стан-

дартним базисом в замкнутiй формi та у формi ряду диференцiального оператора, а також

нову тотожнiсть для узагальненої гiпергеометричної функцiї. Крiм цього, для узагальнених

гiпергеометричних многочленiв Аппеля встановлено формули додавання i множення аргу-

мента та деякi iншi.

Ключовi слова i фрази: послiдовнiсть Аппеля, многочлен Аппеля, узагальнений гiпергеоме-

тричний многочлен, узагальнена гiпергеометрична функцiя.


