References
-
Abramowitz M., Stegun I.A.
Handbook of mathematical functions with Formulas, Graphs, and Mathematical Tables.
Dover Publications, New York, 1972.
-
Aceto L., Malonek H.R., Tomaz Gr.
A unified matrix approach to the representation of Appell polynomials.
Integral Transforms Spec. Funct. 2015, 26 (6), 426-441.
doi: 10.1080/10652469.2015.1013035
-
Aldo F., Longo E.
An algebraic approach to Sheffer polynomial sequences.
Integral Transforms Spec. Funct. 2014, 25 (4), 295-311.
doi: 10.1080/10652469.2013.842234
-
Appell P.
On one class of polynomials.
Annales scientifiques de l’E.N.S. 2e serie 1880, 9, 119-144.
-
Arfken G.B., Weber H.J., Harris F.E.
Mathematical Methods for Physicists: A Comprehensive Guide.
Academic Press, 7th edition, 2011.
-
Cheikh Y.B., Chaggara H.
Connection problems via lowering operators.
J. Comput. Appl. Math. 2005, 178 (1-2), 45-61.
doi: 10.1016/j.cam.2004.02.024
-
Costabile F.A., Longo E.
A determinantal approach to Appell polynomials.
J. Comput. Appl. Math. 2010, 234 (5), 528-1542.
doi: 10.1016/j.cam.2010.02.033
-
Dominici D.
Asymptotic analysis of generalized Hermitepolynomials.
Analysis (Berlin) 2008, 28 (2), 239-261.
doi: 10.1524/anly.2008.0911
-
Fasenmyer M.C.
Some generalized hypergeometric polynomials.
Bull. Amer. Math. Soc. 1947, 8 (53), 806-812.
-
Gould H.W., Hopper A.T.
Operational formulas connected with two generalizations of Hermite Polynomials.
Duke Math. J. 1962, 29, 51-63.
-
Hazewinkel M.
Appell polynomials: Encyclopedia of Mathematics.
Kluwer Academic Publishers, 2001.
-
Slater L.J.
Generalized hypergeometric functions.
Cambridge University Press, Cambridge, UK, 1966.
-
Srivastava R.
Some generalizations of Pochhammer’s symbol and their associated families of hypergeometric functions and hypergeometric polynomials.
Appl. Math. Inf. Sci. 2013, 7 (6), 2195-2206.
-
Srivastava H.M., Karlsson W.
Multiple Gaussian Hypergeometric. Series: Ellis Horwood Series in Mathematics and Its Applications.
Ellis Horwood, Ltd. 1994.
-
Srivastava H.M., Manocha H.L.
A treatise on generating functions.
Halsted Press, New York, 1984.
-
Yang Y., Micek C.
Generalized Pascal functional matrix and its applications.
Linear Algebra Appl., 2007, 423, 230-245.
doi: 10.1016/j.laa.2006.12.014