References

  1. Abramowitz M., Stegun I.A. Handbook of mathematical functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York, 1972.
  2. Aceto L., Malonek H.R., Tomaz Gr. A unified matrix approach to the representation of Appell polynomials. Integral Transforms Spec. Funct. 2015, 26 (6), 426-441. doi: 10.1080/10652469.2015.1013035
  3. Aldo F., Longo E. An algebraic approach to Sheffer polynomial sequences. Integral Transforms Spec. Funct. 2014, 25 (4), 295-311. doi: 10.1080/10652469.2013.842234
  4. Appell P. On one class of polynomials. Annales scientifiques de l’E.N.S. 2e serie 1880, 9, 119-144.
  5. Arfken G.B., Weber H.J., Harris F.E. Mathematical Methods for Physicists: A Comprehensive Guide. Academic Press, 7th edition, 2011.
  6. Cheikh Y.B., Chaggara H. Connection problems via lowering operators. J. Comput. Appl. Math. 2005, 178 (1-2), 45-61. doi: 10.1016/j.cam.2004.02.024
  7. Costabile F.A., Longo E. A determinantal approach to Appell polynomials. J. Comput. Appl. Math. 2010, 234 (5), 528-1542. doi: 10.1016/j.cam.2010.02.033
  8. Dominici D. Asymptotic analysis of generalized Hermitepolynomials. Analysis (Berlin) 2008, 28 (2), 239-261. doi: 10.1524/anly.2008.0911
  9. Fasenmyer M.C. Some generalized hypergeometric polynomials. Bull. Amer. Math. Soc. 1947, 8 (53), 806-812.
  10. Gould H.W., Hopper A.T. Operational formulas connected with two generalizations of Hermite Polynomials. Duke Math. J. 1962, 29, 51-63.
  11. Hazewinkel M. Appell polynomials: Encyclopedia of Mathematics. Kluwer Academic Publishers, 2001.
  12. Slater L.J. Generalized hypergeometric functions. Cambridge University Press, Cambridge, UK, 1966.
  13. Srivastava R. Some generalizations of Pochhammer’s symbol and their associated families of hypergeometric functions and hypergeometric polynomials. Appl. Math. Inf. Sci. 2013, 7 (6), 2195-2206.
  14. Srivastava H.M., Karlsson W. Multiple Gaussian Hypergeometric. Series: Ellis Horwood Series in Mathematics and Its Applications. Ellis Horwood, Ltd. 1994.
  15. Srivastava H.M., Manocha H.L. A treatise on generating functions. Halsted Press, New York, 1984.
  16. Yang Y., Micek C. Generalized Pascal functional matrix and its applications. Linear Algebra Appl., 2007, 423, 230-245. doi: 10.1016/j.laa.2006.12.014