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BOUNDED SOLUTIONS OF A DIFFERENCE EQUATION WITH FINITE NUMBER OF

JUMPS OF OPERATOR COEFFICIENT

We study the problem of existence of a unique bounded solution of a difference equation with

variable operator coefficient in a Banach space. There is well known theory of such equations with

constant coefficient. In that case the problem is solved in terms of spectrum of the operator coef-

ficient. For the case of variable operator coefficient correspondent conditions are known too. But

it is too hard to check the conditions for particular equations. So, it is very important to give an

answer for the problem for those particular cases of variable coefficient, when correspondent con-

ditions are easy to check. One of such cases is the case of piecewise constant operator coefficient.

There are well known sufficient conditions of existence and uniqueness of bounded solution for the

case of one jump. In this work, we generalize these results for the case of finite number of jumps of

operator coefficient. Moreover, under additional assumption we obtained necessary and sufficient

conditions of existence and uniqueness of bounded solution.
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INTRODUCTION

Let (X, ‖ · ‖) be a complex Banach space, L(X) be the space of linear continuous operators

in X, I ∈ L(X) be the identity operator. Let us denote σ(A) the spectrum of an operator

A ∈ L(X). Let us denote S = {z∈ C : |z| = 1} the unit circle in the complex plane.

Let us consider the difference equation

xn+1 = Anxn + yn, n ∈ Z, (1)

where {An | n ∈ Z} ⊂ L(X), {yn | n ∈ Z} ⊂ X are known sequences, {xn | n ∈ Z} ⊂ X is a

desired sequence. In the paper we investigate the question of existence and uniqueness of a

bounded solution for the equation (1).

It is known [3, chapter 7.6] the equation (1) has a unique bounded solution {xn | n ∈ Z}

for any bounded sequence {yn | n ∈ Z} if and only if operators sequence fulfills a condition

of discrete dichotomy (analogue of exponential dichotomy, which is well known in the theory

of differential equations). However, checking of discrete dichotomy conditions is very hard,

so we need simpler conditions of existence and uniqueness of a bounded solution for special

operators sequences.
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To formulate one of such conditions we need the following spectral decomposition. As-

sume A ∈ L(X) and the condition σ(A) ∩ S = ∅ is true. Then the spectrum of the operator

A is decomposed into two parts, one of them is inside of the unit circle S, the other is outside.

Using the theorem about decomposition [4, p. 445] we can derive:

1) an existence of projectors P−(A), P+(A) ∈ L(X) such that

P−(A) + P+(A) = I;

2) decomposition of the space X to the direct sum

X = X−(A)+̇X+(A), (2)

where X−(A) = P−(A)X, X+(A) = P+(A)X are subspaces in which corresponding operators

A− = P−(A)A, A+ = P+(A)A have spectra

σ(A) ∩ {z∈ C | |z| < 1}, σ(A) ∩ {z∈ C | |z| > 1} (3)

accordingly.

I.V. Gonchar and M.F. Gorodnii investigated the equation (1) in the papers [1,2] for the case

of one jump of an operator coefficient. In the paper [1] the following result was proved.

Theorem 1. Let X be a complex Banach space and G, U be some operators from L(X), which

satisfy the following conditions:

1) σ(G) ∩ S = ∅, σ(U) ∩ S = ∅;

2) X = X−(G)+̇X+(U).

Then the difference equation
{

xn+1 = Gxn + yn, n ≥ 1,

xn+1 = Uxn + yn, n ≤ 0,

has a unique bounded in X solution {xn : n ∈ Z} for any bounded in X sequence {yn : n ∈ Z}.

In the paper the result of the Theorem 1 is generalized to an equation with several jumps

of an operator coefficient.

1 MAIN RESULTS

Let us consider a special case of the equation (1) with an operator coefficient, which changes

finite number of times:






xn+1 = A0xn + yn, n ≤ 0,

xn+1 = Anxn + yn, 1 ≤ n ≤ N − 1,

xn+1 = AN xn + yn, n ≥ N.

(4)

Here N is a fixed natural number.

Assume the conditions σ(A0)∩ S = ∅, σ(AN)∩ S = ∅ are true. Then each of the operators

A0, AN produce spectral decomposition of the form (2). Let us denote

P0− := P−(A0), P0+ := P+(A0), PN− := P−(AN), PN+ := P+(AN),

X0− := X−(A0), X0+ := X+(A0), XN− := X−(AN), XN+ := X+(AN).
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Remark 1. In a degenerate case, when one of the sets in (3) is empty, the corresponding sub-

space contains zero element only, so we can omit it in the direct sum. Further we assume

that all these sets are nonempty. For degenerate cases statements below are true if degenerate

summands are omitted.

Lemma 1. Let σ(A0) ∩ S = ∅. Then for any bounded sequence {yn : n ≤ 0} ⊂ X all bounded

solutions of the equation

xn+1 = A0xn + yn, n ≤ 0,

can be obtained by the formula

xn = An−1
0+ b −

0

∑
k=n

An−k−1
0 P0+yk +

n−1

∑
k=−∞

An−k−1
0 P0−yk, n ≤ 1, (5)

where b ∈ X0+ is an arbitrary element.

Proof. The condition σ(A0+) ⊂ {z∈ C : |z| > 1} implies the existence of the operator

A−1
0+ ∈ L(X) and the estimate

∃C > 0 ∃r ∈ (0, 1) ∀n ≥ 1 ||A−n
0+ || ≤ Crn. (6)

Similarly, the condition σ(A0−) ⊂ {z∈ C : |z| < 1} implies the estimate

∃C > 0 ∃r ∈ (0, 1) ∀n ≥ 1 ||An
0− || ≤ Crn. (7)

So, the defined sequence (5) is bounded for any element b ∈ X0+.

Let us check that the sequence (5) is a solution of the difference equation. We have

A0xn + yn = An
0+b −

0

∑
k=n

An−k
0 P0+yk +

n−1

∑
k=−∞

An−k
0 P0−yk + P0+yn + P0−yn

= A
(n+1)−1
0+ b −

0

∑
k=n+1

A
(n+1)−k−1
0 P0+yk +

(n+1)−1

∑
k=−∞

A
(n+1)−k−1
0 P0−yk = xn+1, n ≤ 0.

On the other hand, if {zn : n ≥ N} is any bounded solution and {xn : n ≥ N} is any

bounded solution of the form (5), the difference {rn = zn − xn : n ≥ N}, is a bounded solution

of the homogeneous equation

rn+1 = A0rn, n ≤ −1.

From this equation we have

r0 = A−n
0 rn, n ≤ −1,

and, using projection operator,

P0−r0 = A−n
0− rn → 0, n → −∞.

So, r0 ∈ X0+ and rn = An
0+r0, n ≤ −1. We obtained that solution {zn : n ≤ 0} has the form

(5). This completes the proof.
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Lemma 2. Let σ(AN) ∩ S = ∅. Then for any bounded sequence {yn : n ≥ N} ⊂ X all the

bounded solutions of the equation

xn+1 = AN xn + yn, n ≥ N,

can be obtained by the formula

xn = An−N
N− b +

n−1

∑
k=N

An−k−1
N PN−yk −

+∞

∑
k=n

An−k−1
N PN+yk, n ≥ N, (8)

where b ∈ XN− is an arbitrary element.

Proof. The conditions σ(AN+) ⊂ {z∈ C : |z| > 1} and σ(AN−) ⊂ {z∈ C : |z| < 1} imply the

existence of the operator A−1
N+ ∈ L(X) and estimates similar to (6) and (7). So, the sequence (8)

is bounded for any element b ∈ XN−.

If we put the sequence (8) to the difference equation, we obtain

AN xn + yn = An−N+1
N− b +

n−1

∑
k=N

An−k
N PN−yk −

+∞

∑
k=n

An−k
N PN+yk + PN−yn + PN+yn

= An+1−N
N− b +

(n+1)−1

∑
k=N

A
(n+1)−k−1
N PN−yk −

+∞

∑
k=n+1

A
(n+1)−k−1
N PN+yk = xn+1, n ≥ N.

Similar to proof of previous lemma, the difference {rn = zn − xn : n ≥ N} between any

bounded solution {zn : n ≥ N} and bounded solution {xn : n ≥ N} of the form (8), is a

bounded solution of the homogeneous equation

rn+1 = ANrn, n ≥ N,

and has a form

rn = An−N
N rN , n ≥ N.

Since

PN+rn = An−N
N+ rN , PN+rN = AN−n

N+ rn → 0, n → +∞,

we have rN ∈ XN− and rn = An−N
N− r0, n ≥ 0. So any bounded solution has the form (8). The

proof is completed.

Lemma 3. Let N ≥ 2 and AN−1 AN−2 · . . . · A1 be injection. The boundary problem

{

xn+1 = Anxn + yn, 1 ≤ n ≤ N − 1,

P0−x1 = v, PN+xN = u,
(9)

has a unique solution {xn : 1 ≤ n ≤ N} ⊂ X for any v ∈ X0−, u ∈ XN+ and any

{yn : 1 ≤ n ≤ N − 1} ⊂ X if and only if

X = W+̇XN−, (10)

where W = {AN−1 AN−2 · . . . · A1x : x ∈ X0+}.
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Proof. If a solution of the problem (9) exists, then the formula

xn = An−1 An−2 · . . . · A1x1 +
n−2

∑
k=1

An−1An−2 · . . . · Ak+1yk + yn−1, 2 ≤ n ≤ N, (11)

is true. One can check this result by induction. We have x2 = A1x1 + y1 and

Anxn + yn = An An−1An−2 · . . . · A1x1

+
n−2

∑
k=1

An An−1 An−2 · . . . · Ak+1yk + Anyn−1 + yn = xn+1, 2 ≤ n ≤ N − 1.

Necessity. Let the boundary problem has a unique solution for any bounded sequence

{yn : 1 ≤ n ≤ N − 1} ⊂ X and boundary conditions v ∈ X0−, u ∈ XN+.

Let us fix an arbitrary element f ∈ X. In case y1 = y2 = . . . = yN−2 = ~0, yN−1 = f ,

u = v =~0 problem (9) has the unique solution. Formula (11) gives us

xN = AN−1 AN−2 · . . . · A1x1 + f

that is, using boundary conditions, we have f = PN−xN + AN−1 AN−2 · . . . · A1(−P0+x1). This

equality implies f is the sum of elements from W and XN−.

To prove uniqueness of the element’s decomposition let us assume by the contrary that

there are nonzero elements u0 ∈ X0+, v0 ∈ XN− such that

~0 = AN−1 AN−2 · . . . · A1u0 + v0. (12)

Boundary problem (9) in case y1 = y2 = . . . = yN−2 = yN−1 = ~0, u = v = ~0 has unique

solution {x1, x2, . . . , xN−1, xN} and

xN = AN−1 AN−2 · . . . · A1x1.

But adding assumption (12) we have

(xN − v0) = AN−1 AN−2 · . . . · A1(x1 + u0),

so, {x1 + u0, x2, . . . , xN−1, xN − v0} is another solution of the boundary problem. A contradic-

tion.

Since f is arbitrary, the required decomposition (10) is proved.

Sufficiency. Let decomposition (10) is true. For arbitrary v ∈ X0−, u ∈ XN+ and

{yn : 1 ≤ n ≤ N − 1} ⊂ X let us denote

f :=
N−2

∑
k=1

AN−1 AN−2 · . . . · Ak+1yk + yN−1 − u + AN−1 AN−2 · . . . · A1v.

Due to the space decomposition we have

∃!(w, b) ∈ W × XN− : f = w + b

or equivalently

∃!(a, b) ∈ X0+ × XN− : f = AN−1 AN−2 · ... · A1a + b.
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Using the definition of f we have

∃!(a, b) ∈ X0+ × XN− :
N−2

∑
k=1

AN−1 AN−2 · ... · Ak+1yk + yN−1

= AN−1 AN−2 · ... · A1(a − v) + (b + u).

(13)

This statement implies that the problem (9) has a solution. Indeed, we can put x1 = v − a.

The first boundary condition is fulfilled. Elements x2, . . . , xN could be obtained from (11). By

comparing (11) for n = N and (13) we obtain xN = b + u and the second boundary condition

is fulfilled too.

Obtained solution is unique since for homogeneous boundary problem we have

xN = AN−1AN−2 · . . . · A1x1

and xN ∈ XN−, x1 ∈ X0+. But using space decomposition (10) we obtain xN = ~0, and

using condition that operator AN−1 AN−2 · . . . · A1 is injective, we have x1 = ~0, so x2 = . . .

= xN−1 =~0. The lemma is proved.

Theorem 2. Let σ(A0) ∩ S = ∅, σ(AN) ∩ S = ∅ and AN−1 AN−2 · . . . · A1 be an injection. Then

the equation (4) has a unique bounded solution {xn : n ∈ Z} ⊂ X for any bounded sequence

{yn : n ∈ Z} ⊂ X if and only if

X = W+̇XN−,

where W = {AN−1 AN−2 · . . . · A1x : x ∈ X0+}.

Proof. Necessity. Let the equation (4) has a unique bounded solution {xn : n ∈ Z} ⊂ X for any

bounded sequence {yn : n ∈ Z} ⊂ X.

Let {bn : 1 ≤ n ≤ N − 1} ⊂ X and u ∈ XN+, v ∈ X0− be arbitrary. We will consider

bounded sequence {yn : n ∈ Z} ⊂ X, where yn = 0, n < 0; y0 = v; yn = bn, 1 ≤ n ≤ N − 1;

yN = −AN+u; yn = 0, n > N. For this sequence there exists a unique bounded solution

{xn : n ∈ Z} ⊂ X.

By Lemma 1 the part of solution {xn : n ≤ 1} has such form that x1 = b+ v where b ∈ X0+.

That implies

P0−x1 = v. (14)

Similarly by Lemma 2 the part of solution {xn : n ≥ N} has such form that xN = b + u,

where b ∈ XN−, so

PN+xN = u. (15)

Due to equalities (14) and (15) the sequence {xn : 1 ≤ n ≤ N} is a solution of the boundary

problem (9).

Suppose by the contrary that boundary problem (9) has another solution {zn : 1 ≤ n ≤ N}.

Let

z0 = A−1
0+(z1 − y1), zn = An

0+z0, n ≤ −1,

zN+1 = ANzN + yN , zn = An−N−1
N− zN+1, n ≥ N + 2.

One can see that sequence {zn : n ∈ Z} is bounded due to spectral properties of A0+ and

AN−. This sequence is a solution of (4). Indeed, for 1 ≤ n ≤ N − 1 equation is true due to

boundary problem and since

z0 = A−1
0+(z1 − y1) ∈ X0+, zN+1 = ANzN + yN = AN−zN + AN+u − AN+u ∈ XN−,
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we have

z1 = A0+z0 + y1 = A0z0 + y1, zn+1 = An+1
0+ z0 = A0 An

0+z0 = A0zn, n ≤ −1,

zN+1 = ANzN + yN , zn+1 = An−N
N− zN+1 = AN An−N−1

N− zN+1 = ANzn, n ≥ N + 1.

This solution is different from {xn : n ∈ Z} (at least for 1 ≤ n ≤ N). A contradiction.

Since boundary problem (9) has unique solution for any input data, Lemma 3 gives us

decomposition (10).

Sufficiency. Assume that decomposition (10) is true. Let {yn : n ∈ Z} ⊂ X be any bounded

sequence. We will construct bounded solution of (4). This solution consists of three parts,

described by Lemmas 1–3 (with intersections in x1 and xN).

By Lemma 1 for bounded sequence {yn : n ≤ 0} ⊂ X we have

xn = An−1
0+ b1 −

0

∑
k=n

An−k−1
0 P0+yk +

n−1

∑
k=−∞

An−k−1
0 P0−yk, n ≤ 1,

where b1 ∈ X0+. In particular, x1 = b1 + v, where v =
0

∑
k=−∞

A−k
0 P0−yk ∈ X0−. So, P0−x1 = v.

Similarly, by Lemma 2 for bounded sequence {yn : n ≥ N} ⊂ X we have

xn = An−N
N− b2 +

n−1

∑
k=N

An−k−1
N PN−yk −

+∞

∑
k=n

An−k−1
N PN+yk, n ≥ N,

where b2 ∈ XN− . In particular, xN = b2 + u, where u =−
+∞

∑
k=N

AN−k−1
N+ yk ∈XN+. So, PN+xN = u.

By Lemma 3 the boundary problem (9) with defined above u and v has the unique solution

{xn : 1 ≤ n ≤ N} ⊂ X. So x1, xN are uniquely defined by sequence {yn : n ∈ Z} ⊂ X.

That implies that b1 = P0+x1, b2 = PN−xN are uniquely defined too. So the whole solution

{xn : n ∈ Z} ⊂ X is uniquely defined.

Constructed solution is a unique bounded solution of (4).

Remark 2. For N = 1 sufficiency of Theorem 2 gives us the statement of Theorem 1.

Example 1. Let X = l2, N = 2,

A0x = (x1/2, x2(2 + 1/2), x3/4, x4(2 + 1/4), x5/6, x6(2 + 1/6), . . .),

A1x = (x1 − x2, x1 + x2, x3 − x4, x3 + x4, x5 − x6, x5 + x6, . . .), A2 = A0.

Then

σ(A0) = σ(A2) = {1/(2n), 2 + 1/(2n) | n ∈ N} ∪ {0, 2},

X2− = {x ∈ l2 | x2 = x4 = x6 = . . . = 0},

X0+ = {x ∈ l2 | x1 = x3 = x5 = . . . = 0},

W = {x ∈ l2 | x1 = −x2, x3 = −x4, x5 = −x6, . . .}.

Since W+̇X2− = X, conditions of Theorem 2 are fulfilled so for any bounded sequence y the

equation (4) has a unique bounded solution.
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Чайковський А.В., Лагода О.А. Обмеженi розв’язки рiзницевого рiвняння зi скiнченною кiлькiстю

стрибкiв операторного коефiцiєнта // Карпатськi матем. публ. — 2020. — Т.12, №1. — C. 165–172.

В роботi вивчається питання iснування єдиного обмеженого розв’язку рiзницевого рiвнян-

ня зi змiнним операторним коефiцiєнтом в банаховому просторi. Iснує добре розвинена тео-

рiя вiдповiдних рiвнянь зi сталим коефiцiєнтом, в рамках якої поставлене питання розв’язане

в термiнах спектру операторного коефiцiєнта. Для випадку змiнного операторного коефiцi-

єнта вiдповiднi умови також вiдомi, проте є дуже складними для перевiрки. Тому важливим є

дати вiдповiдь на поставлене питання для тих частинних випадкiв змiнного коефiцiєнта, коли

вiдповiднi умови легко перевiрити. Одним з таких випадкiв є рiвняння з кусково-сталим опера-

торним коефiцiєнтом. Вiдомi достатнi умови iснування та єдиностi обмеженого розв’язку для

випадку одного стрибка. В цiй роботi цi результати узагальнюються для випадку скiнченного

числа стрибкiв операторного коефiцiєнта. Крiм того, за додаткового припущення отримано

необхiднi та достатнi умови iснування та єдиностi обмеженого розв’язку.

Ключовi слова i фрази: рiзницеве рiвняння, обмежений розв’язок, банахiв простiр.


