References

  1. Bavula. V.V. Lie algebras of triangular polynomial derivations and an isomorphism criterion for their Lie factor algebras. Izv. Math. 2013, 77 (6), 3-44. doi: 10.1070/IM2013v077n06ABEH002670
  2. Bavula V.V. Every monomorphism of the Lie algebra of triangular polynomial derivations is an automorphism. C. R. Math. Acad. Sci. Paris 2012, 350 (11-12), 553-556. doi: 10.1016/j.crma.2012.06.001
  3. Bondarenko V.M., Petravchuk A.P. Wildness of the problem of classifying nilpotent Lie algebras of vector fields in four variables. Linear Algebra Appl. 2019, 568, 165-172. doi: 10.1016/j.laa.2018.07.031
  4. Freudenburg G. Algebraic theory of locally nilpotent derivations. Encyclopaedia of Math. Sciences, Berlin, 2006.
  5. Makedonskyi Ie. On noncommutative bases of the free module $W_n(K)$. Comm. Algebra 2016, 44 (1), 11-25. doi: 10.1080/00927872.2013.865035
  6. Makedonskyi Ie.O., Petravchuk A.P. On nilpotent and solvable Lie algebras of derivations. J. Algebra 2014, 401, 245-257. doi: 10.1016/j.jalgebra.2013.11.021
  7. Nowicki A. Polynomial Derivations and their Rings of Constants. Uniwersytet Mikolaja Kopernika, Torun. 1994.
  8. Petravchuk A.P. On nilpotent Lie algebras of derivations of fraction fields. Algebra Discrete Math. 2016, 22 (1), 118-131
  9. Sysak K.Ya. On nilpotent Lie algebras of derivations with large center. Algebra Discrete Math. 2016, 21 (1), 153-162.