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LOCAL NEARRINGS ON FINITE NON-ABELIAN 2-GENERATED p-GROUPS

It is proved that for p > 2 every finite non-metacyclic 2-generated p-group of nilpotency class
2 with cyclic commutator subgroup is the additive group of a local nearring and in particular of
a nearring with identity. It is also shown that the subgroup of all non-invertible elements of this
nearring is of index p in its additive group.

Key words and phrases: finite p-group, local nearring.

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereschenkivska str., 01024, Kyiv, Ukraine

E-mail: raeirina@imath.kiev.ua (Raievskal.Yu.), raemarina@imath.kiev.ua (Raievska M.Yu.)

INTRODUCTION

Nearrings are generalizations of associative rings in the sense that with respect to the ad-
dition they need not be commutative and only one distributive law is assumed. In this paper
the concept “nearring” means a left distributive nearring with a multiplicative identity. The
reader is referred to the books by Meldrum [6] or Pilz [8] for terminology, definitions and basic
facts concerning nearrings.

Following [3], the nearring with identity will be called local, if the set of all non-invertible
elements forms a subgroup of its additive group. The main results concerning local nearrings
are summarized in [11].

In [4] it is shown that every non-cyclic abelian p-group of order p" > 4 is the additive
group of a zero-symmetric local nearring which is not a ring. As it was noted in [5], neither a
generalized quaternion group nor a non-abelian group of order 8 can be the additive group of
a local nearring.

Therefore the structure of the non-abelian finite p-groups which are the additive groups of
local nearrings is an open problem [2].

It was proved that every non-metacyclic Miller-Moreno p-group of order p" > 8 is the
additive group of a local nearring and the multiplicative group of such a nearring is the group
of order p"~!(p — 1) [9]. In this paper finite non-abelian non-metacyclic 2-generated p-groups
(p > 2) of nilpotency class 2 with cyclic commutator subgroup are studied.
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1 PRELIMINARIES

Let G be a finite non-abelian non-metacyclic 2-generated p-group (p > 2) of nilpotency
class 2 with cyclic commutator subgroup.

Denote by G’ and Z(G) the commutator subgroup and the centre of G, respectively.

Let a and b be generators for G such that G/G' = (aG') x (bG’), aG’ has order p™ and
bG' has order p". Then ¢ = [a,b] generates G', ¢ has order pd with1l < d < n < m, and
c € Z(G) = {(a?",b"",c).

Suppose that (a) NG’ = (b) NG’ = 1. Then

m n d
G={a, b, cla? =b" =c* =1, a" =ac, c”:cb:c>

and each element of G can be uniquely written in the form a*1b™2¢*, x; € Cym, x2 € Cpn,
x3 € Cpu. Therefore the group G with p > 2 will be denoted by G(p™, p", p).

Lemma 1. For any natural numbers k and | the equality [a*, b'] = c* holds.

Proof. Since b~lab = ac, it follows that b~'ab! = ac'. Therefore, b~'akb! = (ac')* = a*c¥, thus
a kp=lgkp! = (K. O

Corollary 1. Let the group G(p", p", p) be additively written. Then for any natural numbers
k and [ the equalities —ak — bl + ak + bl = c(kl) and bl + ak = —c(kl) 4 ak + bl hold.

Lemma 2. For any natural numbers k, | and r the equality

(kb = aFplreHG) (1)
holds.
Proof. For r = 1, there is nothing to prove. By induction on r, we derive

(@Dl) = abrplreHG),

Replacing r by r + 1 in equality (1), we have

(@)D = ghrplrakple —kl(3) — k(r+1)pl(r+1) o=kl ,—KI(})
— D) plr+1) (=Kl (r+(3)) — k1)l (1) KIS
Thus, equality (1) holds for an arbitrary r. O

Corollary 2. Let the group G(p", p", p) be additively written. Then for any natural numbers
k, | and r the equality (ak + bl)r = akr 4 blr — ckl(}) holds.

Obviously, the exponent of G(p™, p", p?) is equal to p" for 1 < d < n < m.

Lemma 3. If x is an element of order p" of G( P, ) then there exist generators a, b, c of

this group such thata = x and a?" = bP" = ' =1a =ac,c" =ct =c.
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Proof. Indeed, for each x € G(p™, p",p?) there exist positive integers «, f and 7 such that
x = a*bPc7. Thus, we have

" = (a"bPeT)P" = (atDP)P P = " BB " (%)

_ apmlxbpmlgcpm(,yialg(l’ 2*1>) _ 1

by Lemma 2. Since |a| = p™ and 1 < d < n < m, where m > 1and p > 2, it follows that the
exponent of G(p™, p", p?) equals p™.
If

m—1_
xpmfl _ apmfllxbpmflﬁcpmfl(,yialg(P > 1)) # 1’

then either («,p) =1, 0r (B,p) = 1for m = n, or (,p) = 1 for m = n = d. So, without loss of
generality, we can assume that (¢, p) = 1. Then
(x,b) = (a*bPc7,b) = (a®,b) = (a,b) = G
and
b~ lxb = b= (a*bPc)b = (ac)*bPc? = (a*bPc)c® = xc®.
Furthermore, substituting c* instead of c for generators x and b of G(p™, p", p), we have simi-
lar expressions as for generators a and b, thus replacing the element a by x. O

The following assertion concerning the automorphisms group of G(p™, p", p?) is a direct
consequence of statement (B1) [7].

Lemma 4. Let G = G(p™, p", p*) and let Aut(G) be the automorphism group of G. Then the
following statements hold:

1) if m = n, then |Aut(G)| = p*4"=5(p?> —1)(p — 1);
2) ifm > n, then |Aut(G)| = p?#+3+m=2(p — 1)2.

An information about a group of automorphisms of G(p™, p™, p?) is given by the following
lemma.

Lemma 5. Let G = G(p™,p™, p?) and let there exist a subgroup A of Aut(G) of order
p?m+d=2(p2 1), where m, d > 1 with odd p. If an element g € G of order p™ and A contains
Sylow normal p-subgroup, then G # ¢4 U ®(G).

Proof. Assume that G = ¢4 U®(G). Then G = ({a) x {(c)) x (b) with generators a, b of order
p" and a central commutator ¢ = [a, b] of order p* by the definition. Hence

D(G) = ((aF) x (c)) = (b),
and thus all elements of order p™ are contained in gA. Furthermore, a = g" for some u € A,
hence ¢ = a4,i.e. G = a2 UP(G). Since |G| = p?"*+4 and ®(G) = p?" 92, it follows that
] = |G| = [@(G)] = p*" 2 (p? ~ 1),
and so the centralizer C4(a) of a in A equals 1. In particular, (a(c?))? = (a(c?))B = a(cP) for

the normal subgroup B = C4(a(c)) of order p?~! in A.
Considering the factor-group G = G/(c?) and A = A/B. Taking into consideration, that

74| = p*"1(p? — 1), we have G = a4 U P(G). Since |P(G)| = |Z(G)| and xy = yx for all
x € ®(G), y € G, we have ®(G) = Z(G). Therefore, G is a Miller-Moreno group. Since
G = a2 U Z(G), the latter equality is impossible by [9, Lemma 7]. This contradiction completes

the proof. O
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2 NEARRINGS WITH IDENTITY ON GROUP G(p™, p", p?)

First recall some basic concepts of the theory of nearrings.

Definition 1. A set R with two binary operations “+” and “-” is called a (left) nearring if the
following statements hold

(1) (R,+) = R is a (not necessarily abelian) group with neutral element 0;
(2) (R, ) is a semigroup;
(3) x(y+z) = xy+xz forallx,y,z € R.

If R is a nearring, then the group R™ is called the additive group of R. If in addition 0 - x = 0,
then the nearring R is called zero-symmetric and if the semigroup (R, -) is a monoid, i.e. it has
an identity element i, then R is a nearring with identity i. In the latter case the group R* of all
invertible elements of the monoid (R, -) is called the multiplicative group of R.

The following assertion is well-known.

Lemma 6. Let R be a finite nearring with identity i. Then the exponent of R™ is equal to the
additive order of i which coincides with additive order of every element of R*.

As a direct consequence of Lemmas 3 and 6 we have the following corollary.

Corollary 3. Let R be a nearring with identity i whose group R™ is isomorphic to a group
G(p™,p", p?). Then R* = (a) + (b) + (c) with elements a, b and c, satisfying relations ap™ =
bp" = cpd =0, -bt+ta+b=a+cand —a+c+a=—-b+c+b=cwithl <d<n<m,
wherea = i.

The following statement [10, Lemma 1] establishes a connection between the automorphism
group of the additive group of the nearring with identity and its multiplicative group.

Lemma 7. Let R be a nearring with identity i. Then there exists a subgroup A of the

automorphism group Aut(R™) which is isomorphic to R* and satisfying the condition
iA=1{i"|a € A} = R".

The subgroup A defined in Lemma 7 is called the automorphism group of the group R™
associated with the group R*.

The following statement [11, Theorem 54] concerns the structure of L which is the subgroup
of all non-invertible elements of finite local nearring R. Let ®(G) denote the Frattini subgroup
of G.

Theorem 1. Let R be a local nearring of order p" and let G(R) = R™ x R* be a group associated
with R. Then H = R™ x (i + L) is a Sylow normal p-subgroup of G(R) and L = Rt N ®(H).
In particular, if L is non-abelian, then its center is non-cyclic.

Considering ®(R™) < ®(H), we have the following corollary.

Corollary 4. ®(RT) < L =®(H)NR*.
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Let R be a nearring with identity i whose group R is isomorphic to a group G(p™, p", p?).
It follows from Corollary 3 that R™ = (a) + (b) + (c¢) with elements 4, b and ¢, satisfying re-
lations ap™ = bp" = cp? =0, ~b+a+b=a+cand —a+c+a = —b+c+b = cwith
1 <d < n < m, where a = i and each element x € R is uniquely written in the form
x = axy + bxy + cx3 with coefficients 0 < x; <p™,0 < xp <p"and 0 < x3 < p.

Furthermore, we can assume xa = ax = x for each x € R. Then there exist uniquely
defined mappings a: R = Zyn, f: R = Zpr and 7v: R — Z,,4 such that

xb = an(x) + bB(x) + cy(x). (2)
Lemma 8. If x = ax; + bxy + cx3 and y = ay; + by, + cys are arbitrary elements of R, then
xy = a(xay1 +yae(x)) +b(x2y1 + y2p(x))
+ C< — X122 <y21> - <y22> a(x)B(x) — xay1y20(x)
+ x3y1 + y27(x) + x1ysp(x) — xzysfx(x))r
where mappings«: R — Zyn, p: R — Zpn and y: R — Z,,q satisfy the conditions

(0) «(0) =0 (mod p™), B(0) = 0 (mod p") and 7(0) = 0 (mod p*) if and only if the near-
ring R is zero-symmetric;

(1) a(xy) = x1a(y) + a(x)B(y) (mod p™ );
(2) B(xy) = xa(y) + B(x)B(y) (mod p");
3) 7(xy) = —010(*Y)) — a(x)B(x) (PY) — xae(x)(y)B(y)
+x30(y) + 7(x)B(y) + 118(x)7(y) — 120(x)7(y) (mod p? ).
Proof. If R is a zero-symmetric nearring, then
0=0-b=aw(0) +bB(0) + cv(0),

thus «(0) = 0 (mod p™), B(0) = 0 (mod p") and ¥(0) = 0 (mod p?). On the other hand, if
the last congruences hold, then 0-b = a-0+b-0+c-0 = 0. Since a is the multiplicative
identity in R, we have 0-a = a - 0 = 0. Moreover, from the equality c = —a — b+ a + b and the
left distributive law it follows that0-c = —0-a—0-b+0-a+0-b = 0, hence

0-x=0-(axy +bxy+cx3) = (0-a)x;+ (0-b)x, + (0-c)x3 = 0.

This proves statement (0).
Next, using (2) and Corollary 1, we obtain

x¢c = —xa— xb+xa+xb=—cx3—bxy —ax; —cy(x) — bB(x) — an(x)
+ axy + bxy + cxz + an(x) + bB(x) + cy(x)
= —bxy —ax; — bB(x) —an(x) +axy + bxy +an(x) + bB(x)
= —bxy + cx1B(x) — bB(x) —ax; —a(a(x) — x1) + bxpy + an(x) + bB(x)
= cx1B8(x) — b(xp + B(x)) — an(x) + bxy + an(x) + bB(x)
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= cx1B(x) — b(xp + B(x)) — aa(x) — cxpu(x) + an(x) + bxy + bB(x)
= c(x1p(x) — xaa(x)) — b(xa + B(x)) + bx2 + b (x) = c(x15(x) — x2a(x)).

Therefore

xy = (axy + bxy + cxz)yr + (aw(x) + bB(x) + cy(x))y2 + (cx1B(x) — xa0(x))ys.

Corollary 2 implies that
(ax1 + bx)y1 = ax1y1 + bxoy; — cx1x n ,

(@0(x) + bB(x) )y = nyan(x) + byaB(x) — ¢ )a()p(x)
and
bxoy1 + ayru(x) = ayra(x) + bxoyy — cxoy1y20(x).
By the left distributive law, we have

xy = a(x1y1 + yau(x)) + b(xoy1 + v28(x)) + C( — X0 <y21>
_ <y22> w(x)B(x) — Xay1ya0(x) 4 x3y1 + Y2y (x) + x1y38(x) — x2y3a(x))_

Finally, the associativity of multiplication for all x, y € R implies that

D (xy)b = x(yb).
Thus

2) (xy)b = ana(xy) + bp(xy) + cy(xy)

and yb = aa(y) + bp(y) + cy(y) by formula (2). Substituting the last expression in the right
part of equality 1), we get

3) x(yb) = a(xia(y) +a(x)B(y)) + b(x2a(y) + B(x)B(y))
+o(—0120(*Y)) — a(2)B(x) (PY) — xoa(x)a(y)B(y)
+ x30(y) + (%) B(y) + x18(x)y(y) — 20 (x)y(y)).

Comparing the coefficients a, b and c in 2) and 3) by equality 1), we derive statements (1)—(3)
of the lemma. 0

3 LOCAL NEARRINGS ON GROUP G(p™, p", p*)

Let R be a local nearring with identity i, whose group R™ is isomorphic to the group
G(p™,p",p?). Then R* = (a) + (b) + (c) with elements a, b and ¢, satisfying relations
ap™ = bp" = cpd =0, -btat+b=a+cand—a+c+a=-b+c+b=cwithl <d<n<m,
where a = i and each element x € R is uniquely written in the form x = ax; + bxy + cx3 with
coefficients 0 < x; <p™, 0 < x, <p"and 0 < x3 < p.

We show that the set L of all non-invertible elements of R is a subgroup of index p in R™.



LOCAL NEARRINGS ON FINITE NON-ABELIAN 2-GENERATED p-GROUPS 205

Theorem 2. The following statements hold

1) L={(a-p)+(b)+ (c) and, in particular, the subgroup L is of index p in R™ and
[R¥| = pmtrtd=i(p —1);

2) x = ax1 + bxy + cx3 is an invertible element if and only if x; Z 0 (mod p).

Proof. Assume that [RT : L| = p!, t > 1. Since R = R* U L, it follows that

|R*| _ |R| . |L| _ pm+n+d _ pm+n+d—t — pm+n+d—t(pt . 1).

According to Lemma 7, the group R* is isomorphic to the subgroup A of the automorphism
group of R™ and so |R*| divides |Aut(R")|. According to statement 1) of Lemma 4 it is possible
onlyif t =2 and m = n.

Assume that |[RT : L| = p?and m = n. If d = 1, then it is impossible because of [9, Theorem
2]. Now letd > 1. Since |[R* : ®(R")| = p? and Corollary 4, we have L = ®(R"). Hence
by Lemma 7, we get RT = ad U ®(R™"), which is impossible by Lemma 5. This contradiction
shows that our assumption is false and so |[R* : L| = p.

It is clear that R/L is a nearfield and so the factor-group R /L" is an elementary abelian
p-group. Thus fora ¢ L wehaveap € Land so L = (a- p) + (b) + (c). Therefore R* = R\ L
and hence

R* = {ax;+bxy+cx3|x1 0 (mod p)}.

O

Applying statement (1) of Theorem 2 to Lemma 8, we get the following formula for multi-
plying elements x = ax; + bxy + cx3 and y = ay; + by, + cy3 in the local nearring R.

Corollary 5. If x,y € Rwith1 < d <n < m and xb = an(x) + bp(x) + c¢y(x), then

xy = a(x1y1 +y20(x)) + b(xay1 +y28(x)) + c< — X1%2 <y21>
_ <y22> a(x)B(x) — xay1y20(x) + X351 + Y2y (%) + x1y38(x) — Xzygrx(x)),

where mappings a: R — Zyn, p: R = Zpn and v: R — Z,: and the following statements
hold

(0) a(0) = 0 (mod p™), B(0) = 0 (mod p") and ¥(0) =0 (mod p) if and only if the

nearring R is zero-symmetric;

(1) a(x) =0 (mod p);

() if B(x) =0 (mod p), then x; = 0 (mod p);

3 a(xy) = xa(y) + a(x)B(y) (mod p™);

@ B(xy) = xoa(y) + B(x)B(y) (mod p" );
) -

(6) v(xy) = —01x0:(*"Y) — a(x)B(x) (*Y) = xa(2)a(y)By) +x30(y) +7(x)B(y)
+x18(x)7(y) — x2a(x)7(y) (mod p* ).
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Proof. Indeed, statements (0), (3)—(5) repeat statements (0)-(4) of Lemma 8. Since L = (a - p) +
(b) + (c) by Theorem 2 and L is an (R, R)-subgroup in R by statement 2) [1, Lemma 3.2], it
follows that xb € L and hence a(x) = 0 (mod p), proving statement (1). Taking y = ¢, we
have xc = c¢(x18(x) — xpa(x)). Thus, if (x) = 0 (mod p), then xc = 0 (mod p), and so x € L.
Thus x; = 0 (mod p) by Theorem 2, proving statement (2). O

The following theorem shows the conditions given in Theorem 2 are sufficient for existing
of finite local nearrings on G(p™, p", p?). Moreover, each group G(p™, p", p*) is the additive
group of a nearring with identity.

Theorem 3. For each prime p and positive integers m, n and d with1 < d < n < m there exists
a local nearring R whose additive group R* is isomorphic to the group G(p™, p", p*).

Proof. Let R be an additively written group G(p™, p", p?) with generators a, b and c satisfy-
ing the relations |a| = p™, |b| = p", |c| = p%, b"'ab = ac and a~'ca = b~'ch = c. Then
G = (a) + (b) + (c) and each element x € R is uniquely written in the form x = ax; + bxy + cx3
with coefficients 0 < x; <p™,0 < x; <p"and 0 < x3 < pd. In order to define a multiplication
“.” on R in such a manner that (R, +, -) is a local nearring.

Assume that 1 < d < n < m and let the mappings from Corollary 5 be defined by the
congruences (x) =0 (mod p™), B(x) = x; (mod p") and y(x) = 0 (mod p?) for each
x € G. Then

x -y = axiyy + b(xoy1 + x1y2) + C< — X1X2 <y21> + X3y1 + x%yg).

It suffices to show that the mappingsa : G = Zyn, p: G = Zpr and vy : G = Z,a with
respect to the multiplication “-” satisfy statements (0)—(5) of Corollary 5.

Indeed, «(0) = 0 (mod p™), B(0) = 0 (mod p") and (0) =0 (mod p*) by the de-
finition. Since 0-y =a-0+4+b-0+4c¢-0=0 for each y € G, this implies that a multiplica-
tion “-” is zero-symmetric and so, proving statement (0) of Corollary 5. Indeed, we have
a(x) =0 (mod p) and x; = 0 (mod p), if B(x) =0 (mod p), so that statements (1) and (2) of
Corollary 5 hold. Clearly, we derive statements (3)—(5) of Corollary 5. O

As corollary we have the following assertion.

Corollary 6. FEach group G(p™, p", p) is the additive group of a nearring with identity.
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AoBeaeHO, ITI0 AASL p > 2 KOXHA CKiHUeHHa HeMeTallKAIUHa 2-TIOpOAKeHa p-TpyIIa 3i CTyIleHeM
HiABIIOTEHTHOCTI PiBHMM 2 3 IUKAIUHMM KOMYTaHTOM € aAUTMBHOIO IPYTOI0 AESIKOIO AOKAABHOTO
MarvbKe-KiABIIsI, 30KpeMa, MaliXe-KiabIIs 3 oauHMIEI0. [TokasaHo, mo marpyma Bcix Heo60pOTHMX
€AeMEHTIB IIbOrO AOKaABHOTO MaviXe-KiAbLIST Ma€ iHAEKC p B JIOTO aAMTMBHIN TpyIIi.

Kntouosi cnosa i ¢ppasu: ckiHdeHHa p-TPyIHIa, AOKaAbHe MaliKe-KiAbIle.



