References
-
Adams R.A.
Sobolev Spaces.
Academic Press, New York, 1975.
-
Antontsev S.N., Rodrigues J.F.
On stationary thermo-rheological viscous flows.
Ann. Univ. Ferrara Sez. VII Sci. Mat. 2006, 52 (1), 19-36.
doi: 10.1007/s11565-006-0002-9
-
Berestycki H., Nirenberg L.
Some qualitive properties of solutions of semilinear elliptic equations in cylindrical domains.
Analysis, Academic Press Boston, 1990.
-
Brezis H.
Points critiques dans les problémes variationnels sans compacité.
Séminaire Bourbaki 1989, 698 (5), 239-256.
-
Chen Y., Levine S., Rao M.
Variable exponent, linear growth functionals in image restoration.
SIAM J. Appl. Math. 2006, 66 (4), 1383-1406.
doi: 10.1137/050624522
-
Diening L., Harjulehto P., Hastö P., Ružička M.
Lebesgue and Sobolev Spaces with Variable Exponents.
Lecture Notes in Mathematics, Springer, Heidelberg 2011.
doi: 10.1007/978-3-642-18363-8
-
Dubinskiĩ Yu.A.
Weak convergence in nonlinear elliptic and parabolic equations.
Mat. Sb., 1965, 67 (109), 609-642.
-
Dubinskiĩ Yu.A.
Nonlinear elliptic and parabolic equations.
J. Math. Sci. 1979, 12, 475-554.
doi: 10.1007/BF01089137
(translation of Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. 1976, 9, 5-130. (in Russian))
-
Fan X., Zhao D.
On the spaces $L^{p\left( x\right) }(\Omega)$ and $W^{k,p\left( x\right)}(\Omega)$.
J. Math. Anal. Appl. 2001, 263 (2), 424-446.
doi: 10.1006/jmaa.2000.7617
-
Kováčik O., Rákosnĩk J.
On spaces $L^{p\left( x\right)}$ and $W^{k,p\left( x\right) }$.
Czechoslovak Math. J. 1991, 41 (4), 592-618.
-
Lions J.L.
Quelques méthodes de résolution des probl\`emes aux limites non linéaires.
Dunod and Gauthier-Villars, Paris, 1969.
-
Luckhaus S., Passo R. Dal.
A degenerate diffusion problem not in divergence form.
J. Differential Equations 1987, 69 (1), 1-14.
-
Musielak J.
Orlicz Spaces and Modular Spaces.
Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1983.
doi: 10.1007/BFb0072210
-
Oleĩnik O.A.
The mathematical problems of the theory of the boundary layer.
Russ. Math. Surv. 1968, 23 (3), 3-65. (in Russian)
-
Pohozaev S.I.
Nonlinear operators which have a weakly closed range of values and quasilinear elliptic equations.
Mat. Sb. 1969, 78, 237-259.
-
Rao M.M.
Measure Theory And Integration.
John Wiley & Sons, New York, 1984.
-
Ruzicka M.
Electrorheological Fluids: Modeling and Mathematical Theory.
In Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2000.
doi: 10.1007/BFb0104029
-
Samokhin B.N.
The system of equations of a boundary layer of a pseudoplastic fluid.
Dokl. Akad. Nauk SSSR 1973, 210 (5), 1043-1046. (in Russian)
-
Sert U., Soltanov K.N.
On Solvability of a Class of Nonlinear Elliptic type Equation with Variable Exponent.
J. Appl. Anal. Comput. 2017, 7 (3), 1139-1160.
doi: 10.11948/2017071
-
Sert U., Soltanov K.N.
Solvability of nonlinear elliptic type equation with two unrelated non standard growths.
J. Korean Math. Soc. 2018, 55 (6), 1337-1358.
doi: 10.4134/JKMS.j170691
-
Soltanov K.N.
Imbedding theorems of the nonlinear spaces and solvability some nonlinear noncoercive equations.
Preprint, VINITI, N3696-B 91, Moscow, 1991, 71 pp. (in Russian)
-
Soltanov K.N. Some embedding theorems and its applications to nonlinear equations.
Differ. Uravn. 1984, 20 (12), 2181-2184. (in Russian)
-
Soltanov K.N.
Some applications of the nonlinear analysis to the differential equations.
ELM, Baku, 2002. (in Russian)
-
Soltanov K.N.
Periodic solutions some nonlinear parabolic equations with implicit degenerate.
Dokl. Akad. Nauk SSSR 1975, 222 (2), 291-294. (in Russian)
-
Soltanov K.N.
Embedding theorems for nonlinear spaces and solvability of some nonlinear noncoercive equations.
Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 1996, 5, 72-103. (in Russian)
-
Soltanov K.N.
Some nonlinear equations of the nonstable filtration type and embedding theorems.
Nonlinear Anal. 2006, 65 (11), 2103-2134.
doi: 10.1016/j.na.2005.11.053
-
Soltanov K.N. Existence and nonexistence of the global solutions some nonlinear elliptic-parabolic equations.
Differ. Uravn. 1993, 29 (4), 646-661. (in Russian)
-
Soltanov K.N.
On nonlinear equations of the form $ F\left( x,u,Du,\Delta u\right) =0$.
Sb. Math. 1995, 80 (2), 367-392.
-
Soltanov K.N.
Solvability nonlinear equations with operators the form of sum the pseudomonotone and weakly compact.
Dokl. Akad. Nauk 1992, 324 (5), 944-948.
-
Soltanov K.N.
Solvability of certain parabolic problems with faster-growing-than-power nonlinearities.
Mat. Zametki 1982, 32 (6), 909-923.
-
Soltanov K.N.
Smooth solvability some quasielliptic problems.
Izv. Akad. Nauk Azerbaĩdzhan. 1979, 2, 61-67. (in Russian)
-
Soltanov K.N.
Some Boundary Problem for Emden-Fowler Type Equations, Function Spaces.
Differential Operators and Nonlinear Analysis, ``FSDONA'', Praha, Czech
Republic, May, 2005, Math. Inst. Acad. Sci., Praha, Czech Republic, 2005, 311-318.
-
Soltanov K.N., Akmedov M.
Solvability of Equation of Prandtl-von Mises type, Theorems of Embedding.
Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 2017, 37 (1), 143-168.
-
Soltanov K.N., Sprekels J.
Nonlinear equations in nonreflexive Banach spaces and fully nonlinear equations.
Adv. Math. Sci. Appl. 1999, 9 (2), 939-972.
-
Tsutsumi T., Ishiwata M.
Regional blow-up of solutions to initial boundary value problem for $u_{t}=u^{\delta }\left( \Delta u+u\right) $.
Proc. Roy. Soc. Edinburgh Sect. A 1997, 127 (4), 871-887.
-
Walter W. Existence and convergence theorems for the boundary layer equations based on the line method.
Arch. Ration. Mech. Anal. 1970, 39 (3), 169-188.
-
Wiegner M.
A degenerate diffusion equation with a nonlinear source term.
Nonlinear Anal. 1997, 28 (12), 1977-1995.
doi: 10.1016/S0362-546X(96)00027-2
-
Zhikov V.V.
On some variational problems.
Russ. J. Math. Phys. 1997, 5 (1), 105-116.