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ON TWO LONG STANDING OPEN PROBLEMS ON Lp-SPACES

POPOV M.M.1,2

The present note was written during the preparation of the talk at the International Confer-

ence dedicated to 70-th anniversary of Professor O. Lopushansky, September 16-19, 2019, Ivano-

Frankivsk, Ukraine. We focus on two long standing open problems. The first one, due to Linden-

strauss and Rosenthal (1969), asks of whether every complemented infinite dimensional subspace of

L1 is isomorphic to either L1 or ℓ1. The second problem was posed by Enflo and Rosenthal in 1973:

does there exist a nonseparable space Lp(µ) with finite atomless µ and 1 < p < ∞, p 6= 2, having

an unconditional basis? We analyze partial results and discuss on some natural ideas to solve these

problems.
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1 INTRODUCTION

Investigation of the geometry of Lebesgue spaces Lp := Lp[0, 1] has long and rich history

(see [3]) due to famous mathematicians: D.E. Alspach, S. Banach, J. Bourgain, D.L. Burkholder,

L.E. Dor, P. Enflo, W.B. Johnson, M.I. Kadets, N. Kalton, J. Lindenstrauss, B. Maurey, E. Odell,

R.E.A.C. Paley, A. Pełczyński, H.P. Rosenthal, G. Schechtman, T.W. Starbird, S. Szarek,

M. Talagrand, L. Tzafriri and others. More is known on the isomorphic structure of these

classical spaces. Isomorphic embeddability of Lr(ν) into Lp is completely known. We use the

notation X →֒ Y to express that X embeds isomorphically into Y, and X ≃ Y means that the

Banach spaces X and Y are isomorphic. The relation ℓp →֒ Lp, which is easily seen, was first

noted by S. Banach [4, p. 175]. The embedding ℓ2 →֒ Lp follows from Khintchin’s inequa-

lity [30, p. 66]. It is not hard to see that ℓp 6 →֒ L2 for p 6= 2 (for the proof, see [4, p. 175]). The

relation ℓr 6 →֒ Lp for 2 < p < r and 1 ≤ r < p < 2 was proved by S. Banach [4, p. 175]. Paley’s

results [37] imply ℓr 6 →֒ Lp for 1 ≤ r < 2 < p, 2 < r < p and 1 ≤ p < 2 < r.

A special case is 1 ≤ p < r < 2, where isometric embeddings of Lr into Lp are possible.

First it was proved by P. Levy [25] that ℓr is finitely representable1 in Lp if 1 ≤ p < r < 2. Later

M.I. Kadets proved that ℓr →֒ Lp for 1 ≤ p < r < 2 [20]. Then the latter result was strengthen

to the embedding Lr →֒ Lp by J. Bretagnolle, D. Dacunha-Castelle and J. L. Krivine [9] and

independently by J. Lindenstrauss J. and A. Pełczyński [27], who proved more: if a Banach

space X is finitely representable in Lp then X →֒ Lp.

УДК 517.982
2010 Mathematics Subject Classification: Primary 46B03; secondary 46B15, 46B26.
1 A Banach space X is said to be finitely representable in a Banach space Y if for every ε > 0 and every finite

dimensional subspace F of X there exists a subspace G of Y of the same dimension such that d(F, G) < 1 + ε,

where d(F, G) denotes the Banach-Mazur distance between F and G.
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As we see, the properties of the spaces Lp are different for the cases p < 2 and p > 2.

Moreover, if 2 < p < ∞ then every subspace of Lp possesses the following properties:

− either is isomorphic to a Hilbert space or contains a complemented subspace isomorphic

to ℓp [21];

− either contains a subspace isomorphic to ℓ2 or embeds isomorphically into ℓp [19].

On the other hand, if 1 ≤ p < 2 then every subspace of Lp either contains a complemented

subspace isomorphic to ℓp or embeds isomorphically into Lr for some p < r ≤ 2 [44].

Acknowledgments. The author is grateful to W. B. Johnson and G. Schechtman for valuable

remarks.

2 COMPLEMENTED SUBSPACES OF Lp

2.1 As p goes to 1, the complementability properties of subspaces of Lp, p 6= 2, get worse

By Khintchin’s inequality, the closed linear span R of the Rademacher system in Lp is iso-

morphic to ℓ2 and is actually independent on p, as a set. Remark that R is complemented in

Lp for 1 < p < ∞ [30, p. 66] and is uncomplemented in L1, as well as any other subspace of L1

isomorphic to ℓ2 [38]. So, it became interesting, whether there exists an uncomplemented sub-

space of Lp isomorphic to ℓ2 for p > 1. If 2 < p < ∞ then every subspace X of Lp isomorphic

to ℓ2 is complemented, and, moreover, the Lp- and L2-norms2 on X are equivalent [21]. To the

contrast, if 1 < p < 2 then there exists an uncomplemented subspace of Lp isomorphic to ℓ2

(first it was proved for 1 < p < 4/3 in [42] and then for the rest of values in [5]).

It is clear that Lp contains a complemented subspace isomorphic to ℓp. If 1 ≤ p < ∞, p 6= 2,

then there is an uncomplemented subspace of Lp isomorphic to ℓp, and hence, it is not difficult

to show that there is an uncomplemented subspace of Lp isomorphic to Lp itself (first it was

proved for 2 < p < ∞ and 1 < p < 4/3 in [43], then in a different way for all 1 < p < 2 in [5],

and finally for p = 1 in [6]).

2.2 Primarity of Lp and Enflo operators

By the famous Enflo theorem, if Lp = X ⊕ Y, 1 ≤ p < ∞, is a decomposition into mutually

complemented subspaces, then at least one of the subspaces X, Y is isomorphic to Lp (first it

was announced by P. Enflo; then B. Maurey [34] published a proof, see also [2] for all p, [14]

for p = 1 and [31, p. 179] for a generalization to rearrangement invariant spaces). This nice

property of the spaces Lp is called the primarity.

Let X, Y be Banach spaces. Denote by L(X, Y) the Banach space of all continuous linear op-

erators from X to Y, and write L(X) instead of L(X, X). Recall that an operator T ∈ L(X, Y)

is said to fix a copy of a Banach space Z, if there exists a subspace X1 of X isomorphic to Z

such that the restriction T|X1
of T to X1 is an into isomorphism. An operator T ∈ L(Lp, Y),

1 ≤ p < ∞, is called an Enflo operator provided T fixes a copy of Lp. Note that every Enflo op-

erator T ∈ L(Lp) fixes a complemented copy of Lp, that is, there is a complemented subspace

X1 of X isomorphic to Lp such that the restriction T|X1
is an into isomorphism, because every

subspace X of Lp, which is isomorphic to Lp, contains a further subspace Y ⊆ X isomorphic to

2 which are well defined for these values of p
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Lp and complemented in Lp (see [18, p. 239] for p > 1 and [14] for p = 1). The Enflo theorem

implies that, if the identity operator Id on Lp is a sum of two projections Id = P + Q, then at

least one of the projections P, Q is an Enflo operator. Moreover, the range of a projection P on

Lp is isomorphic to Lp if and only if P is an Enflo operator (to prove, use the mentioned above

result from [18] and Pełczyński’s decomposition method [31, p. 54]).

2.3 Isomorphic types of complemented subspaces of Lp

How many do there exist pairwise non-isomorphic complemented subspaces of Lp for

1 ≤ p < ∞, p 6= 2? If p > 1 then there are obviously the following pairwise non-isomorphic

Banach spaces isomorphic to complemented subspaces of Lp:

Lp, ℓp, ℓ2, ℓp ⊕ ℓ2,
( ∞⊕

n=1

ℓ2

)
p
.

Further finitely many examples, different from the above obvious ones, was obtained by

H.P. Rosenthal in [43]. Later G. Schechtman provided infinitely many pairwise non-isomor-

phic examples in [48], and then J. Bourgain, H.P. Rosenthal and G. Schechtman constructed

uncountably many pairwise non-isomorphic complemented subspaces of Lp for 1 < p < ∞,

p 6= 2 in [8] (it is unknown, whether there exists continuum such subspaces).

The exceptional case is p = 1: there are only two known obvious examples of pairwise

non-isomorphic infinite dimensional subspaces of L1, they are L1 itself and ℓ1.

Problem 1 (Lindenstrauss and Rosenthal, 1969, [29]). Is every complemented infinite dimen-

sional subspace of L1 isomorphic to either L1 or ℓ1?

2.4 Progress in the solution of Problem 1

The following assertions have been established for an arbitrary complemented subspace E

of L1.

Theorem 1 (Pełczyński, 1960, [38]). E contains a subspace isomorphic to ℓ1 and complemented

in L1.

Theorem 2 (Lindenstrauss, Pełczyński, 1968, [27]). If E has an unconditional basis then E is

isomorphic to ℓ1.

Recall that the Radon-Nikodým property (RNP) for a Banach space X means that for every

finite measure space (Ω, Σ, µ) and every µ-continuous X-valued measure G : Σ → X of

bounded variation there exists g ∈ L1(µ, X) such that G(A) =
∫

A g dµ for all A ∈ Σ. One

can show that the characteristic function G(A) = 1A is an example of L1-valued such measure

for which the function g does not exist [12, p. 61]; thus, L1 does not have the RNP. However,

ℓ1 has the RNP (this can be proved directly, using the Radon-Nikodým theorem for separate

coordinates [12, p. 64]).

Theorem 3 (Lewis, Stegall, 1973, [26]). If E has the RNP then E is isomorphic to ℓ1.

A Banach space X is said to have the Schur property if the weak convergence of a sequence

in X implies its norm convergence. It is well known that ℓ1 has the Schur property.
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Theorem 4 (Rosenthal, 1975, [45]). If E does not have the Schur property then ℓ2 embeds into

E.

Theorem 5 (Enflo, Starbird, 1979, [14]). If E contains a subspace isomorphic to L1 then E is

itself isomorphic to L1.

Simultaneously, W.B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri [18] obtained the

same result as Theorem 5 asserts for Lp with 1 < p < ∞.

The next result strengthens Theorem 4.

Theorem 6 (Bourgain, 1980, [7]). If E does not have the Schur property then (
⊕∞

n=1 ℓ2)1 embeds

into E.

There is a natural idea to solve Problem 1. Obviously, the hypothesis that every comple-

mented infinite dimensional subspace of L1 is isomorphic to either L1 or ℓ1, is equivalent

to the hypothesis that the following two climes hold true.

Let E be an infinite dimensional complemented subspace of L1.

Claim 1. If E has the Schur property then E is isomorphic to ℓ1.

Claim 2. If E does not have the Schur property then E is isomorphic to L1.

As to the best of our knowledge, there is no information about Claim 1 in the literature.

Remark that there is no direct way to prove Claim 1 without taking into account peculiarity of

L1, because there exists a Banach space with the Schur property but without the RNP, and so,

not isomorphic to ℓ1 (see J. Hagler [17]).

However, Claim 2 has been considered by different mathematicians as a weak version of

Problem 1 in the sense that a positive solution to Problem 1 implies a positive answer to Prob-

lem 2.

Problem 2 ([45], [14] and [7]). Must a non-Dunford-Pettis projection P ∈ L(L1) be an Enflo

operator? Equivalently, whether each non-Schur complemented subspace of L1 is isomorphic

to L1?

The most unclear thing concerning Problem 2 is how to use the information that P is a

projection, not just a continuous linear operator. H.P. Rosenthal constructed an example of

a non-Dunford-Pettis operator T ∈ L(L1) failing to be an Enflo operator [45]. This is the so-

called biased coin convolution operator. To explain the details, recall that the Rademacher system

is defined by rn(t) = sign sin(2n+1πt) for each n ∈ N and t ∈ [0, 1]. Denote by N
<ω the set

of all finite subsets of N. The Walsh system (wI)I∈N<ω is defined by setting wI = ∏i∈I ri, where

(rn)∞
n=1 is the Rademacher system (in particular, w∅ = 1, by convention). The Walsh system

with respect to the lexicographical order w∅, w{1}, w{2}, w{1,2}, w{3}, w{1,3}, w{2,3}, w{1,2,3}, . . .

is a Schauder basis of Lp for 1 < p < ∞, an orthonormal basis of L2, a conditional basis of Lp

for p 6= 2, and a Markushevich basis of L1.

Theorem 7 (H.P. Rosenthal, [45]). There is ε0 ∈ (0, 1) such that for every ε ∈ (0, ε0) there is an

operator Rε ∈ L(L1) possessing the equality RεwI = ε|I|wI for all I ∈ N
<ω, where |I| is the

cardinality of I.

The operator Rε is called the ε-biased coin convolution operator. Since Rεrn = εrn for all

n ∈ N, the operator Rε is not Dunford-Pettis. H.P. Rosenthal proved in [45] that Rε is not an

Enflo operator.
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2.5 All operators on L1 are regular

Recall some information. Let E, F be vector lattices. An operator T : E → F is called positive

if T(E+) ⊆ F+, and T : E → F is called regular if T equals a difference of two positive operators.

Obviously, every positive (and hence, every regular) operator T : E → F is order bounded, that

is, T sends order bounded subsets of E to order bounded subsets of F. Two elements x, y ∈ E

are said to be disjoint (write x ⊥ y) if |x| ∧ |y| = 0. The notation x =
⊔n

k=1 xk means that

x = ∑
n
k=1 xk and xi ⊥ xj for i 6= j.

It is an amazing and seldom used fact on operators on L1 that all of them are regular [47,

p. 232]. More precisely, every operator T ∈ L(L1) admits the representation T = T+ − T−,

where for every x ∈ L+
1 one has

T+x = sup
{ m

∑
k=1

Txk : x =
n⊔

k=1

xk, n ∈ N

}
.

As a consequence, we obtain that for any operator T ∈ L(L1) the modulus |T| = T++ T− ∈

L(L1) exists and could be defined by setting for every x ∈ E+

|T| x = sup
{ n

∑
k=1

∣∣Txi

∣∣ : x =
n

∑
k=1

xk, xk ∈ E+, n ∈ N

}
.

Moreover, ‖|T|‖ = ‖T‖ for every T ∈ L(L1) [47, p. 232].

As was noted by H.P. Rosenthal [46], the regularity of operators T ∈ L
(

L1(µ), L1(ν)
)

is

a consequence of the following Grothendieck’s inequality [16, Corollaire, p. 67]: given any

f1, . . . , f1 ∈ L1(µ), one has
∫

Ων

max
i

|T fi | dν ≤ ‖T‖
∫

Ωµ

max
i

|T fi | dµ.

A very useful development of Grothendieck’s inequality is M. Lévy’s extension theorem

(see [24]) asserting that, for every subspace X of L1(µ) every order bounded operator

T ∈ L(X, L1(ν)) has an extension to some operator T̂ ∈ L(L1(µ), L1(ν)), which is therefore

order bounded as well. The latter fact was then generalized to regular operators from Lp(µ) to

Lp(ν) for 1 ≤ p ≤ ∞ by G. Pisier in [40].

The regularity of all operators on L1 in fact means that there are few operators on L1, only

regular ones. This explains why common subspaces of all Lp (like the closed linear span of

the Rademacher system), which are complemented in Lp for p > 1 becomes uncomplemented

in L1: they are complemented in Lp by means of non-regular projections. The same reason

makes the Haar system a conditional basis in L1. This argument made the authors of [33]

and [41, Problem 10.45] to generalize Problem1 as follows. We say that a subspace X of a

Banach lattice is regularly complemented if there is a regular projection of E onto X.

Problem 3. Let 1 ≤ p < ∞, p 6= 2. Is every regularly complemented subspace of Lp isomor-

phic to either ℓp or Lp?

2.6 Complemented subspaces of Lp for 0 < p < 1

Consider now the quasi-Banach spaces Lp for 0 < p < 1. The list of known isomorphic

types of complemented subspaces of these spaces becomes smaller by one space, namely by ℓp,

because Lp has trivial dual and hence cannot have a complemented subspace with nontrivial

dual, like those that are isomorphic to ℓp. So, the problem is as follows.
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Problem 4. Let 0 ≤ p < 1. Is every complemented subspace of Lp isomorphic to Lp?

This problem has been systematically studied by N.J. Kalton in a number of papers. The

best progress is Kalton’s theorem, which asserts that, if there exists a complemented subspace

of Lp not isomorphic to Lp, then at most one, up to an isomorphism [22].

3 UNCONDITIONAL BASES IN Lp(µ)

3.1 Preliminary information

For convenience of the reader, we recall some necessary information on bases [1, 30]. A

sequence (xn)∞
n=1 of elements of a Banach space X is called a Schauder basis (or just a basis) of

X if for every x ∈ X there is a unique sequence of scalars (an)∞
n=1 such that

x =
∞

∑
k=1

akxk. (1)

A sequence in X, which is a basis in its closed linear span, is called a basic sequence. The

partial sums Pnx = ∑
n
k=1 akxk of the expansion (1) are linear bounded projections on X with

K := supn ‖Pn‖ < ∞, and the number K is called the basis constant of (xn)∞
n=1. In particular, the

coefficients x∗k (x) := ak of the expansion (1) are elements of X∗ with supn ‖xn‖‖x∗n‖ ≤ 2K and

are called the biorthogonal functionals to (xn)∞
n=1. The best possible basis constant is 1; a basis

with basis constant 1 is said to be monotone. The biorthogonal functionals (x∗n)
∞
n=1 form a basic

sequence in X∗ with the same basis constant K. A basis (xn)∞
n=1 of X is called unconditional if for

every x ∈ X the series x = ∑
∞
k=1 x∗k (x)xk converges unconditionally; otherwise the basis is said

to be conditional. If (xn)∞
n=1 is unconditional then for every sequence of signs Θ = (θn)∞

n=1,

θn ∈ {−1, 1}, and every x ∈ X the series TΘx := ∑
∞
n=1 θnx∗n(x)xn converges and TΘ is a linear

bounded operator. Moreover, M := supΘ ‖TΘ‖ < ∞. The number M is called the unconditional

constant of the unconditional basis (xn)∞
n=1.

Let (xn)∞
n=1 be a basic sequence in X, (an)∞

n=1 be a sequence of scalars and 0 ≤ k1 < k2 < . . .

be integers. A sequence (un)∞
n=1 of nonzero elements of X of the form

un =
kn+1

∑
i=kn+1

aixi

is called a block basis of (xn)∞
n=1. It is not hard to see that (un)∞

n=1 is a basic sequence itself,

the basis constant of which does not exceed that of (xn)∞
n=1. Two basic sequences (xn)∞

n=1 in X

and (yn)∞
n=1 in Y are called λ-equivalent if there exists an isomorphism T : [xn] → [yn] between

the closed linear spans of these systems with Txn = yn for all n such that ‖T‖‖T−1‖ ≤ λ.

Basic sequences are said to be equivalent if they are λ-equivalent for some λ ∈ [1,+∞). Us-

ing the Closed Graph theorem, one can easily show that basic sequences (xn)∞
n=1 and (yn)∞

n=1

are equivalent if and only if for every sequence of scalars (an)∞
n=1 the convergence of the se-

ries ∑
∞
n=1 anxn and ∑

∞
n=1 anxn are equivalent. It is clear that if one of two λ-equivalent basic

sequences is unconditional then the other one is unconditional as well, and the basic (uncon-

ditional) constants K1, K2 are estimated as follows: λ−1K1 ≤ K2 ≤ λK1.
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3.2 The Haar system in Lp

Define the dyadic intervals by setting Ik
n = [ k−1

2n , k
2n ) for n = 0, 1, . . . and k = 1, . . . , 2n. The

L∞-normalized Haar system is the following sequence in L∞: h1 = 1 and

h2n+k = 1
I2k−1
n+1

− 1I2k
n+1

(2)

for n = 0, 1, 2, . . . and k = 1, 2, . . . , 2n (by 1A we denote the characteristic function of a set A).

The Haar system is a monotone basis of every space Lp with 1 ≤ p < ∞ [30, p. 3], and an

unconditional basis of Lp for any 1 < p < ∞ [31, p. 155] (the first fact one can obtain using a

criterium of bases, and the second fact is a deep result of Paley [36] (1932), the proof of which

was then simplified by Burkholder [11] (1985)). The unconditional constant of the Haar system

in Lp equals Kp = max{p, q} − 1, where 1/p + 1/q = 1 [10].

The Haar system possesses the following useful property, called the precise reproducibility

[28], [31, p. 158]: for every isomorphic embedding T : Lp → X, 1 ≤ p < ∞, where X is a Banach

space with a basis (xn)∞
n=1, and every ε > 0 there is a block basis (un)∞

n=1 of (xn)∞
n=1, which

is (‖T‖‖T−1‖+ ε)-equivalent to the Haar system in Lp. This gives that the Haar system is the

“best” basis: once we have an unconditional basis in Lp, the Haar system is unconditional as

well, and its unconditional constant is the minimal possible one. Since the Haar system is a

conditional basis in L1 [31, p. 156], we obtain that L1 cannot be isomorphically embedded in a

Banach space with an unconditional basis (initially this was proved by A. Pełczyński [39]).

3.3 Nonseparable Lp(µ)-spaces

There is a nice complete isomorphic classification of the spaces Lp(µ) over finite atom-

less measure spaces (Ω, Σ, µ). A canonical representative of measure spaces (Ω, Σ, µ) with3

dim Lp(µ) = ℵα for 0 < p < ∞ is
(
{−1, 1}ωα , Σωα , µωα

)
, where ωα is the cardinal of cardinality

ℵα, Σωα is the Borel σ-algebra of subsets of {−1, 1}ωα endowed with the Tykhonov topology

on the power of the discrete two-point space {−1, 1}, and µωα is the corresponding power of

the measure µ0 on the subsets of {−1, 1} defined by µ0{−1} = µ0{1} = 1/2. In other words,

µωα is the Haar measure on the compact Abelian group {−1, 1}ωα with the point-wise prod-

uct. By the famous Maharam theorem (see [32] for the original paper, and [15, 23] for different

proofs), every finite atomless measure space (Ω, Σ, µ) is isomorphic (in the sense of measure

spaces) to a unique (up to a permutation of summands) direct sum of the measure spaces⊕
α∈A

(
{−1, 1}ωα , Σωα, εαµωα

)
, where A is an at most countable set of ordinals, called the

Maharam invariants of (Ω, Σ, µ), and εα > 0 are weights with ∑α∈A εα = µ(Ω). The Lebesgue

measure space
(
[0, 1], Σ, λ

)
, where λ is the Lebesgue measure on the Borel σ-algebra Σ of sub-

sets of [0, 1], is isomorphic to
(
{−1, 1}ω0 , Σω0 , µω0

)
. As a consequence, we obtain that every

Lp(µ)-space over a finite atomless measure µ with 0 < p ≤ ∞ is isometrically isomorphic to

the ℓp-sum
(
∑α∈A Lp{−1, 1}ωα

)
p
.

A (not ordered) family (xi)i∈I of elements of a (non-separable) Banach space X is called an

unconditional basis of X if every x ∈ X admits a unique representation x = ∑i∈I aixi, where the

set of all indices i ∈ I with ai 6= 0 is at most countable, and the series converges uncondition-

ally. One can show directly, that a family (xi)i∈I with dense linear span is an unconditional

basis of X if and only if every its countable subfamily is an unconditional basic sequence. If

this is the case then the unconditional constants of countable subfamilies are bounded from

3 By dim X we mean the smallest cardinality of subsets of X with dense linear span.
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above, and their supremum equals the unconditional constant of the entire family, which is

defined similarly.

P. Enflo and H.P. Rosenthal (1973) [13] proved that, if dim Lp(µ) ≥ ℵω0 , where µ is finite

atomless and 1 < p < ∞, p 6= 2, then Lp(µ) does not embed isomorphically into a Banach

space with an unconditional basis. They proved preliminarily that, for any n ∈ N, assuming

the isomorphic embedding T : Lp{−1, 1}ωn → X into a Banach space X with an unconditional

basis (xi)i∈I , the finite Walsh system (wJ)|J|≤n is ‖T‖‖T−1‖-reproducible in (xi)i∈I , even more,

‖T‖‖T−1‖-equivalent to a suitable block basis of (xi)i∈I . As a consequence, the unconditional

constant Mn of (wJ)|J|≤n does not exceed M‖T‖‖T−1‖, where M is the unconditional constant

of (xi)i∈I . Since for every n ∈ N the space Lp{−1, 1}ωn isometrically embeds into Lp(µ), it

then remained to show that Mn → ∞ as n → ∞, which is true. Unfortunately, their method

could not give more, remaining the following problem to be open.

Problem 5 (P. Enflo and H.P. Rosenthal, 1973, [13]). Let 1 ≤ p < ∞, p 6= 2, and let (Ω, Σ, µ) be

a finite atomless measure space with ℵ0 < dim Lp(µ) < ℵω0 . Is there an unconditional basis

of Lp(µ)?

Below we describe two different possible ideas to solve this problem.

3.4 The Olevskii system

In 1966 A.M. Olevskii constructed a system of functions on [0, 1], which is a basis of L1 con-

taining the Rademacher system as a part [35]. This system, called in the literature the Olevskii

system, is a conditional basis in Lp for p 6= 2, a result of E.M. Semenov [49]. If one tries to prove

that Lp{−1, 1}ω1 (and therefore, Lp{−1, 1}ωn for each n ≥ 1) has no unconditional basis, then

it would be enough to prove that the Olevskii system is reproducible in any unconditional ba-

sis of Lp{−1, 1}ω1 . Let us present an author’s description of the Olevskii system, which may

be convenient for this purpose.

First, we represent the Haar system (2), collected by bunches, via the Rademacher system

(rn)∞
n=1 as follows:

bunch 1 : 1,

bunch 2 : r1,

bunch 3 :
r1 + 1

2
· r2,

r1 − 1

2
· r2,

bunch 4 :
r1 + 1

2
·

r2 + 1

2
· r3,

r1 + 1

2
·

r2 − 1

2
· r3,

r1 − 1

2
·

r2 + 1

2
· r3,

r1 − 1

2
·

r2 − 1

2
· r3,

. . .

The Olevskii system can be constructed using the following scheme. First, we take the

function 1. Then, to obtain the (n + 1)-th Olevskii bunch, we multiply the beginning of the

Haar system including its n-th bunch by rn.

bunch 1 : 1,

bunch 2 : r1,

bunch 3 : r2, r1 · r2,
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bunch 4 : r3, r1 · r3,
r1 + 1

2
· r2 · r3,

r1 − 1

2
· r2 · r3,

bunch 5 : r4, r1 · r4,
r1 + 1

2
· r2 · r4,

r1 − 1

2
· r2 · r4,

r1 + 1

2
·

r2 + 1

2
· r3 · r4,

r1 + 1

2
·

r2 − 1

2
· r3 · r4,

r1 − 1

2
·

r2 + 1

2
· r3 · r4,

r1 − 1

2
·

r2 − 1

2
· r3 · r4,

. . .

A partial question to this concern: is the beginning 1, r1, r2, r1 · r2 of the Olevskii sys-

tem isometrically reproducible in any unconditional basis of Lp{−1, 1}ω1? Remark that it is

isometrically reproducible in any unconditional basis of Lp{−1, 1}ω2 , by the Enflo-Rosenthal

results, because it coincides with the Walsh system of order two.

3.5 A close separable problem

Consider the following important partial case of Problem 5.

Problem 6. Let 1 ≤ p < ∞, p 6= 2. Does there exist an unconditional basis in Lp{−1, 1}ω1 ?

We now pose a separable problem and then provide arguments to show that it is close to

Problem 6. Let Ep = Lp[0, 1]2 be the Lp-space over the Lebesgue measure space of Borel subsets

of the square [0, 1]2, and let Fp be the subspace of Ep consisting of all functions depending only

on the first variable.

Problem 7. Let 1 ≤ p < ∞, p 6= 2. Does there exist an unconditional basis ( fn) ∪ (gn) in Ep

consisting of two parts such that [ fn] = Fp and the unconditional constant of ( fn) equals the

unconditional constant of the entire basis ( fn) ∪ (gn)?

Theorem 8. An affirmative answer to Problem 6 implies an affirmative answer to Problem 7.

Before the proof, we provide with some necessary information. Given an infinite set I,

i ∈ I, x ∈ {−1, 1}I\{i}, and θ ∈ {−1, 1}, we denote by θ × x the element y ∈ {−1, 1}I such

that y(i) = θ and y(j) = x(j) for all j ∈ I \ {i}. Following [13], a µI-measurable function

f : {−1, 1}I → R is said to be independent of i ∈ I, if f (1 × x) = f (−1 × x) for µI\{i}-

almost all values of x ∈ {−1, 1}I\{i}. In the opposite case we say that f depends on i. For any

measurable function f : {−1, 1}I → R, the set {i ∈ I : f depends on i} is at most countable.

By the obvious reason, the same terminology we apply to equivalence classes of measurable

functions.

Proof. Let ( fα)α<ω1 be an unconditional basis of Lp{−1, 1}ω1 with unconditional constant M.

For any α < ω1 we denote by Xα the subspace of all f ∈ Lp{−1, 1}ω1 depending on coordinates

< α only. Obviously, Xα is isometrically isomorphic to Lp{−1, 1}α, which is separable and

atomless, and hence, isometrically isomorphic to Lp.

Lemma 1. There exists a strictly increasing ω1-sequence of limited ordinals (ξγ)γ<ω1 , ξγ < ω1,

such that [ fα]α<ξγ
= Xξγ

for all γ < ω1.

Proof of Lemma 1. Since every function f ∈ Lp{−1, 1}ω1 depends on at most countable set of

ordinals α < ω1, for every separable subspace Z of Lp{−1, 1}ω1 the value ϕ(Z) = min{α <

ω1 : Z ⊆ Xα} is well defined. Then

Z ⊆ Xϕ(Z) for every separable subspace Z. (3)
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Since every function f ∈ Lp{−1, 1}ω1 has an expansion f = ∑α<ω1
aα fα, where the set

{α < ω1 : aα 6= 0} is at most countable, for every separable subspace Z of Lp{−1, 1}ω1 the

value ψ(Z) = min{β < ω1 : Z ⊆ [ fα]α<β} is well defined as well. Then

Z ⊆ [ fα]α<ψ(Z) for every separable subspace Z. (4)

Now define recursively ω1-sequences (αη)η<ω1 and (βη)η<ω1 possessing the following pro-

perties for every η < ζ < ω1:

1. αη ≤ βη < αζ ;

2. [ fα]α<αη ⊆ Xβη
⊆ [ fα]α<αζ

.

Set α0 = ω0 and β0 = max
{

ϕ
(
[ fα]α<α0

)
, ω0

}
. Then α0 ≤ β0 and [ fα ]α<α0 ⊆ Xβ0

. Given

any δ < ω1, we assume that δ-sequences (αη)η<δ and (βη)η<δ possessing 1 and 2 for every

η < ζ < δ have been already constructed. To define αδ and βδ, we consider cases.

(i) δ is an isolated ordinal, that is, δ = δ′ + 1. In this case we set

αδ = max
{

ψ(Xβδ′
), βδ′ + 1

}
and βδ = max

{
ϕ
(
[ fα]α<αδ

)
, αδ

}
.

(ii) δ is a limited ordinal. In this case we set

αδ = βδ =
⋃

η<δ

αη =
⋃

η<δ

βη

(the latter equality is guaranteed by property 1 for every η < ζ < δ).

Property 1 for η < ζ ≤ δ follows directly from the construction. To prove 2, observe

that in case (i) by (3), (4), Xβδ′
⊆ [ fα]α<ψ(Xβ

δ′
) ⊆ [ fα ]α<αδ

and [ fα]α<αδ
⊆ X[ fα]α<αδ

⊆ Xβδ
. In

case (ii) inclusions 2 are obvious. Thus, the desired ω1-sequences (αη)η<ω1 and (βη)η<ω1 are

constructed.

By (ii) and 2, for every limited ordinal δ < ω1 one has [ fα]α<αδ
= Xαδ

. By (ii), for every

limited ordinal δ < ω1, the ordinal αδ is limited as well. Since there are uncountably many

such ordinals, we can renumber them to obtain the desired ω1-sequence.

Lemma 2. Let I ⊂ J be countable subsets with J \ I infinite. Then there is an isometric isomor-

phism T : Ep → Lp{−1, 1}J such that T(Fp) equals the subspace of Lp{−1, 1}J consisting of all

functions which depend on coordinates i ∈ I only.

Proof of Lemma 2. It is straightforward that the linear span of the Walsh system (wA)A∈N<ω

coincides with that of the Haar system, hence it is dense in Lp. So, to define an isometrical

isomorphism on the entire Lp(µ), it is enough to define it on the Walsh system and prove that

it is an isometry on the linear span. Observe that the Walsh system in Ep = Lp[0, 1]2 is given

by wA(x)wB(y), where A, B are finite subsets of N.

Let I = {i1, i2, . . .} and J \ I = {j1, j2, . . .} be any numerations. Given any A, B ∈ N
<ω,

we define functions ŵ′
A, ŵ′′

B : {−1, 1}J → R by setting ŵ′
A(x) = ∏n∈A x(in) and ŵ′′

B(x) =

∏n∈B x(jn). Likewise, the Walsh system in Lp{−1, 1}J can be represented as follows:

ŵ′
A · ŵ′′

B, A, B ∈ N
<ω. Now we define T : Ep → Lp{−1, 1}J , first on the Walsh system by

TwA(x)wB(y) = ŵ′
A · ŵ′′

B for all A, B ∈ N
<ω, and then extend to the linear span of the Walsh

system W by linearity. We omit a routine proof that the obtained mapping is an isometry on

W. It remains to observe that T(Fp) = Lp{−1, 1}I .
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We continue the proof of the theorem. Take a sequence (ξγ)γ<ω1 satisfying the claims of

Lemma 1. Denote by Mγ the unconditional constant of the system ( fα)α<ξγ
. Then Mγ ↑ M.

Since there is no strictly increasing ω1-sequence of reals, we obtain that there is γ0 < ω1

such that Mγ = M for all γ0 ≤ γ < ω1. Choose by Lemma 2 an isometric isomorphism

T : Ep → Xξγ0+1
with T(Fp) = Xξγ0

. Since ( fα)α<ξγ0+1
= ( fα)α<ξγ0

∪ ( fα)ξγ0
≤α<ξγ0+1

is an un-

conditional basis of Xξγ0+1
with unconditional constant M and ( fα)α<ξγ0

is an unconditional

basis of Xξγ0
with with the same unconditional constant M, we obtain that (T−1 fα)α<ξγ0+1

=

(T−1 fα)α<ξγ0
∪ (T−1 fα)ξγ0

≤α<ξγ0+1
is an unconditional basis of T−1(Xξγ0+1

) = Ep with uncon-

ditional constant M and (T−1 fα)α<ξγ0
is an unconditional basis of T−1(Xξγ0

) = Fp with with

the same unconditional constant M.

Remarks.

1. In Problem 7, one can equivalently replace the unconditional constants of unconditional

bases with the supremum of norms of projections with respect to the bases.

2. We do not know of whether an affirmative solution to Problem 7 formally implies an

affirmative solution to Problem 6, however, an affirmative solution to Problem 7 would

give a possible way to construct an unconditional basis of Lp{−1, 1}ω1 by a recursive

procedure.
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[17] Hagler J. A counterexample to several questions about Banach spaces. Studia Math. 1977, 60, 289–308.

[18] Johnson W.B., Maurey B., Schechtman G., Tzafriri L. Symmetric structures in Banach spaces. Mem. Amer.

Math. Soc. 1979, 217.

[19] Johnson W.B., Odell E. Subspaces of Lp which embed into ℓp. Compos. Math. 1974, 28 (1), 37–49.

[20] Kadec M.I. On the linear dimension of the spaces Lp and ℓq. Uspekhi Mat. Nauk. 1958, 13 (6), 95–98. (in Russian)
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Дану замiтку написано при пiдготовцi доповiдi на мiжнароднiй конференцiї, присвяченiй

70-рiччю професора О. Лопушанського, 16-19 вересня 2019 р. Ми зосереджуємося на двох дав-

нiх вiдкритих проблемах. Перша, що належить Лiнденштраусу i Розенталю (1969 р.), форму-

люється так: чи кожний доповнювальний нескiнченновимiрний пiдпростiр простору L1 iзо-

морфний до L1 чи до ℓ1? Друга проблема була поставлена Енфло i Розенталем у 1973 р.: чи

iснує несепарабельний простiр Lp(µ) зi скiнченною безатомною мiрою µ та 1 < p < ∞, p 6= 2,

з безумовним базисом? У замiтцi наведено аналiз часткових результатiв та природних iдей

розв’язання даних проблем.

Ключовi слова i фрази: простори Lp, доповнювальний пiдпростiр, безумовний базис.


