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MAXIMAL NONNEGATIVE AND θ-ACCRETIVE EXTENSIONS OF A POSITIVE

DEFINITE LINEAR RELATION

STOROZH O.G.

Let L0 be a closed linear positive definite relation (“multivalued operator”) in a complex Hilbert

space. Using the methods of the extension theory of linear transformations in a Hilbert space, in

the terms of so called boundary value spaces (boundary triplets), i.e. in the form that in the case

of differential operators leads immediately to boundary conditions, the general forms of a maximal

nonnegative, and of a proper maximal θ-accretive extension of the initial relation L0 are established.
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INTRODUCTION

The theory of linear relations (multivalued operators) in Hilbert space was initiated by

R. Arens [1]. Various aspects of the extension theory of linear relations (in particular, non-

densely defined operators; first of all, Hermitian ones) were studied by a number of authors

(see, e.g. [2–5] and references therein.

Let us explain that under (closed) linear relation in H, where H is a fixed complex Hilbert

space equipped with inner product (·|·) and corresponding norm ‖ · ‖, we understand a

(closed) linear manifold in H2 de f
= H ⊕ H and that in the theory of linear relations every lin-

ear operator is identified with its graph. Each such relation T has the adjoint T∗ which is

defined as follows

T∗ = H2 ⊖ JT
(
= J(H2 ⊖ T)

)

(here and below ⊕ and ⊖ are the symbols of orthogonal sum and orthogonal complement,

respectively; ∀ h1, h2 ∈ H we define J (h1, h2)
de f
= (−ih2, ih1)).

Through the paper we use the following notations: D(T), R(T), ker T are, respectively,

the domain, range, and kernel of a (linear) relation (in particular, operator) T. Some basic

definitions and notations are presented below:

D(T) = {y ∈ H | (∃ y′ ∈ H) : (y, y′) ∈ T} ,

R(T) = {y′ ∈ H | (∃ y ∈ H) : (y, y′) ∈ T} ,

ker T = {y ∈ H | (y, 0) ∈ T};
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k̂er T = {(y, 0) : y ∈ ker T} ;

if λ ∈ C then T − λ = {(y, y′ − λy) | (y, y′) ∈ T} ;

ker(T − λ) = {y ∈ H | (y, 0) ∈ T − λ} (= {y ∈ H | (y, λy) ∈ T});

k̂er (T − λ)
de f
= {(y, λy) : y ∈ ker (T − λ)} ;

T−1 =
{
(y′, y) ∈ H2| (y, y′) ∈ T

}
;

1X is the identity in X;

+,
•
+ are the symbols of sum and direct sum in a linear space, respectively.

If X, Y are Hilbert spaces then (·|·)X is the symbol of scalar product in X, B(X, Y) is the set

of linear bounded operators A : X → Y such that D(A) = X; B(X)
de f
= B(X, X). If Ai : X →

Yi (i = 1, 2) are linear operators, then the notation A = A1 ⊕ A2 means Ax =

(
A1x

A2x

)
for

every x ∈ X.

Let us recall that a linear relation T in H is said to be nonnegative (denoted T ≥ 0)

if (y′|y) ≥ 0 for all (y, y′) ∈ T, positive definite (denoted T ≫ 0) if, in addition,

inf T
de f
= inf {(u′|u) | (u, u′) ∈ T, ‖u‖ = 1} > 0, and self adjoint if T = T∗. The linear relation

T ⊂ H2 is said to be θ-accretive one
(
−π

2 ≤ θ ≤ π

2

)
if

∀ŷ =
(
y, y′

)
∈ T arg

(
y′|y

)
∈
[
θ −

π

2
, θ +

π

2

]
,

i.e.

∀ŷ ∈ T arg (π2ŷ|π1ŷ) ∈
[
θ −

π

2
, θ +

π

2

]
,

where π1, π2 are the orthoprojections H2 → H ⊕ {0} and H2 → {0} ⊕ H, respectively. If, in

addition, T has no θ-accretive extensions in H we say that T is a maximal θ-accretive relation.

In the case when θ = 0 (θ = π

2 , θ = −π

2 ) the θ-accretive relation is called accretive (dissipative,

accumulative) one.

It is well known that a closed relation T ⊂ H2 is a maximal θ-accretive relation if and only

if the adjoint relation T∗ is a (maximal) −θ-accretive one. In particular, a nonnegative relation

is a maximal one if and only if it is self adjoint.

In this paper, we assume that the closed linear positive definite relation L0 ⊂ H2 is given

and we try to establish the general form of its maximal nonnegative and proper maximal

θ-accretive extension (the extension L1 of L0 is said to be a proper one if L0 ⊂ L1 = L1 ⊂ L∗
0).

It is known [4] that there exist (nonnegative) self adjoint extensions LF and LK of L0 satis-

fying the following property:

self adjoint extension L1 of L0 is nonnegative if and only if

∀ε > 0 ∀y ∈ H
(
(LF + ε)−1 y|y

)
≤

(
(L1 + ε)−1 y|y

)
≤

(
(LK + ε)−1 y|y

)
.

For the case of densely defined operator L0, this property was proved by M. Krein [9]. The ex-

tensions LF and LK are called the Friedrichs and Neumann-Krein extensions of L0, respectively.

If L0 is positive definite, the first of the latter inequalities holds under ε = 0 too.
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1 PRELIMINARIES

Assume that L0 ≫ 0, L
de f
= L∗

0 , and LF is the hard (i.e. Friedrichs) extension of L0. It follows

from the results proved in [4] that

L = LF

•
+ k̂er L. (1)

Let us denote by P the skew projection L → LF corresponding to this decomposition.

Definition 1. Let H be a Hilbert space and Γ1, Γ2 ∈ B (L,H) . The triple (H, Γ1, Γ2) is called

hard boundary value space (BVS) of L0 if

i) R (Γ1 ⊕ Γ2) = H⊕H;

ii)

∀ŷ, ẑ ∈ L (π2ŷ|π1ẑ) = (π2P ŷ|π1P ẑ) + (Γ1ŷ|Γ2ẑ)H . (2)

Lemma 1. Hard BVS of L0 exists. It may be constructed in the following way

H0 = k̂erL, Γ
0
1ŷ = Pπ2P ŷ, Γ

0
2ŷ = P̃ŷ,

where P is the orthoprojection H2 → k̂erL, and P̃ is the skew projection L → k̂erL correspond-

ing to the decomposition (1).

Proof. First of all, note that identifying (h, 0) ∈ H ⊕ {0} and h ∈ H we may assume that

k̂erL = ker L.

i) Suppose that h1, h2 ∈ ker L and consider the system of equations Γ
0
1ŷ = h1, Γ

0
2ŷ = h2, i.e.

Pπ2P ŷ = h1, P̃ŷ = h2, where ŷ ∈ L. Put

ŷ =
(

L−1
F h1, h1

)
+ (h2, 0)

(
∈ LF

•
+ k̂erL = L

)
.

We have

P ŷ =
(

L−1
F h1, h1

)
⇒ π2P ŷ = h1 ⇒ Γ

0
1ŷ = h1; P̃ŷ = Γ

0
2ŷ = h2.

ii) Suppose that ŷ, ẑ ∈ L. Since

ŷ = P ŷ + P̃ŷ, ẑ = P ẑ + P̃ẑ, P̃ŷ, P̃ẑ ∈ k̂erL,

the equalities

π2P̃ŷ = 0, π2P̃ẑ = 0 (3)

are fulfilled. Therefore

(π2ŷ|π1 ẑ) =
(

π2P ŷ + π2P̃ŷ|π1P ẑ + π1P̃ẑ
)
=

(
π2P ŷ|π1P ẑ + π1P̃ẑ

)

= (π2P ŷ|π1P ẑ) +
(

π2P ŷ|π1P̃ẑ
)
= (π2P ŷ|π1P ẑ) +

(
Pπ2P ŷ|P̃ẑ

)
k̂erL

= (π2P ŷ|π1P ẑ) +
(

Γ
0
1ŷ|Γ0

2ẑ
)
H0.

The equality (2) (under H = H0, Γ1 = Γ
0
1, Γ2 = Γ

0
2) is proved.

It should be noted that the conception of hard BVS (to be more exactly – positive BVS) was

initiated in [6–8, 11] and found its further development, for example, in [2, 3, 5].
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Remark 1. (H0, Γ
0
1, Γ

0
2) is a BVS of L0, i.e.

i)

∀ŷ, ẑ ∈ L
(
y′|z

)
−

(
y|z′

)
≡ (π2ŷ|π1 ẑ)− (π1ŷ|π2 ẑ) =

(
Γ

0
1ŷ|Γ0

2ẑ
)
H0

−
(

Γ
0
2ŷ|Γ0

1ẑ
)
H0

. (4)

ii) ker
(
Γ

0
1 ⊕ Γ

0
2

)
= L0.

Proof. Indeed, let ŷ, ẑ ∈ L. It follows from (1) and (3) that

(π1ŷ|π2 ẑ) =
(

π1P ŷ + π1P̃ŷ|π2P ẑ + π2P̃ẑ
)
=

(
π1P ŷ + π1P̃ŷ|π2 ẑ

)

= (π1ŷ|π2ẑ) +
(

π1P̃ŷ|π2 ẑ
)
= (π1ŷ|π2ẑ) +

(
π1P̃ŷ|Pπ2 ẑ

)

= (π1ŷ|π2ẑ) +
(

Γ
0
2ŷ|Γ0

1ẑ
)
H0,

,

and whence using (2) for the case (H, Γ1, Γ2) =
(
H0, Γ

0
1, Γ

0
2

)
we obtain

(π2ŷ|π1 ẑ)− (π1ŷ|π2ẑ) = (π2P ŷ|π1P ẑ)− (π1P ŷ|π2P ẑ) +
(

Γ
0
1ŷ|Γ0

2ẑ
)
H0

−
(

Γ
0
2ŷ|Γ0

1ẑ
)
H0

.

Since P ŷ, P ẑ ∈ LF and LF = L∗
F we conclude that (π2P ŷ|π1P ẑ) = (π1P ŷ|π2P ẑ), conse-

quently (4) holds.

The statement i) is proved. Let us prove ii):

(
Γ

0
1 ⊕ Γ

0
2

)
ŷ = 0 ⇔ Γ

0
1ŷ = 0, Γ

0
2ŷ = 0 ⇔ ∀ẑ ∈ L

(
y′|z

)
−

(
y|z′

)
= 0 ⇔ ŷ ∈ L∗ = L0.

Remark 2. i) ker Γ
0
2 = LF; ii) ker Γ

0
1 = L0

•
+ k̂erL.

Proof. Item i) follows immediately from the definition.

ii) 1) Let ŷ ∈ L0(⊂ LF). Then P ŷ = ŷ ∈ L0. Consequently π2P ŷ ∈ R(L0) = (ker L)⊥, so

Pπ2P ŷ = 0, i.e. Γ
0
1ŷ = 0.

2) Let ŷ ∈ k̂erL. Then P ŷ = 0, therefore Γ
0
1ŷ = 0. The inclusion L0

•
+ k̂erL ⊂ ker Γ

0
1 is

proved.

3) Let us show that in latter inclusion “⊂” may be replaced by “=”. We have

ker Γ
0
1 ∩ ker Γ

0
2 = L0, (5)

ker Γ
0
1 + ker Γ

0
2 = L,

L0

•
+ k̂erL ⊂ ker Γ

0
1, (6)

k̂erL ∩ ker Γ
0
2 = {0},

LF

•
+ k̂erL = L.

It should be proved that in (6) “⊂” may be replaced by “=”. Let us prove this. Suppose

that w ∈ ker Γ
0
1 ⊂ L = LF

•
+ k̂erL. So we have w = w1 + w2, where w1 ∈ LF, w2 ∈ k̂erL,

therefore w − w2 = w1. But w ∈ ker Γ
0
1, w2 ∈ k̂erL ⊂ ker Γ

0
1 (see (6)), w1 ∈ LF, therefore

w − w2 ∈ ker Γ
0
1 ∩ LF = L0 (see (5)). Thus w = (w − w2) + w2 ∈ L0

•
+ k̂erL.
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Proposition 1. Let (H, Γ1, Γ2) be a BVS of L0 such that

i) ker Γ2 = LF,

ii) ker Γ1 = L0

•
+ k̂erL.

Then (H, Γ1, Γ2) is a hard BVS of L0, in particular (2) holds.

Proof. Taking into account (3) and (4) we conclude the following:

(π2ŷ|π1ẑ) =
(

π2P ŷ + π2P̃ŷ|π1P ẑ + π1P̃ẑ
)
=

(
π2P ŷ|π1P ẑ + π1P̃ẑ

)

= (π2P ŷ|π1P ẑ) +
(

π2P ŷ|π1P̃ẑ
)

= (π2P ŷ|π1P ẑ) +
(

π1P ŷ|π2P̃ẑ
)
+

(
Γ1P ŷ|Γ2P̃ẑ

)
H
−

(
Γ2P ŷ|Γ1P̃ẑ

)
H

=
(

π2P ŷ|π1P̃ẑ
)
+

(
Γ1P ŷ|Γ2P̃ẑ

)
H
−

(
Γ2P ŷ|Γ1P̃ẑ

)
H

.

But Γ2P ŷ = 0, Γ2P ẑ = 0, consequently Γ2P̃ẑ = 0; Γ1P̃ŷ = 0, consequently Γ1P ŷ = Γ1ŷ. Thus

(2) is proved.

2 MAIN RESULTS

Let L0, L, (H, Γ1, Γ2) and P be as above. We assume below that A1, A2 ∈ B (H) and

L1 (≡ LA) = {ŷ ∈ L : A1Γ1ŷ + A2Γ2ŷ = 0} . (7)

Lemma 2. L∗
1 is a θ-accretive (nonnegative) relation if and only if −A1 A∗

2 is a θ-accretive (non-

negative) operator.

Proof. At first let us consider the following situation: the operator A, defined by the equality

A (h1, h2)
de f
= A1h1 + A2h2 (h1, h2 ∈ H), is normally solvable one. In this case (see [12, Lemma

9, p. 182])

L∗
1 = {ẑ ∈ L|∃ h ∈ H : Γ1ẑ = A∗

2h, Γ2ẑ = −A∗
1h} . (8)

Whence using (2) and (8) we see that θ-accretivity (nonnegativity) of −A1 A∗
2 yields θ-acc-

retivity (nonnegativity) of L∗
1 . Indeed,

∀ŷ ∈ L∗
1

(
y′|y

)
= (π2ŷ|π1ŷ) = (π2P ŷ|π1P ŷ) + (Γ1ŷ|Γ2ŷ)H
= (π2P ŷ|π1P ŷ) + (A∗

2h| − A∗
1h)H

= (π2P ŷ|π1P ŷ) + (−A1 A∗
2h|h)H ,

consequently the θ-accretivity (nonnegativity) of −A1 A∗
2 implies θ-accretivity (nonnegativity)

of L∗
1.

Conversely, assume that L∗
1 is a θ-accretive (nonnegative) relation while −A1 A∗

2 does not

obey to this requirement. Then due to (8) there exists ẑ ∈ L∗
1 such that for some ε > 0 and for

each λ ∈ C satisfying the inclusion arg λ ∈
[
θ − π

2 , θ + π

2

]
(for arbitrary λ ≥ 0) the inequality

|(Γ1ẑ|Γ2ẑ)H − λ| ≥ ε

takes place. It follows from the definition of Friedrichs extension that there exists ẑε ∈ L0 such

that

(π2 (P ẑ − ẑε) |π1 (P ẑ − ẑε)) <
ε

2
. (9)
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Taking into account (2) we obtain

(π2 (ẑ − ẑε) |π1 (ẑ − ẑε)) = (π2P (ẑ − ẑε) |π1P (ẑ − ẑε)) + (Γ1 (ẑ − ẑε) |Γ2 (ẑ − ẑε))H
= (π2P (ẑ − ẑε) |π1P (ẑ − ẑε)) + (Γ1ẑ|Γ2ẑ)H .

From here, using (9) we can see that L∗
1 may not to be a θ-accretive (nonnegative) relation.

In the general case by virtue of Lemma on triple (see e.g. [10, p. 22]) there exist C, Ã1, Ã2 ∈

B (H) such that ker C = {0} , Ai = CÃi (i = 1, 2) and the operator Ã ∈ B (H⊕H,H) de-

fined by the equality Ã (h1, h2) = Ã1h1 + Ã2h2 is normally solvable. To complete the proof it

is sufficient to take into account that −A1 A∗
2 is θ-accretive (nonnegative) operator if and only

if −Ã1 Ã∗
2 is a θ-accretive (nonnegative) operator.

Remark 3. By virtue of Lemma 2, if L1 is a maximal θ-accretive relation, then −A1 A∗
2 is a

θ-accretive operator, i.e.

Re
(

eiθ A1 A∗
2

)
≤ 0. (10)

In particular, if L1 is a maximal nonnegative operator, then

A1A∗
2 ≤ 0.

Lemma 3. Suppose that A1, A2 ∈ B (H). The inequality (10) holds if and only if there exist

contraction K ∈ B (H) and C ∈ B (H) such that

A1 = C (K − 1H) , A2 = eiθC (K + 1H) . (11)

Proof. Put

C1 =
1

2

(
A1 + e−iθ A2

)
, C =

1

2

(
−A1 + e−iθ A2

)
.

Then

A1 = C1 − C, e−iθ A2 = C1 + C. (12)

Inserting (12) into (10) we obtain Re [(C1 − C) (C∗
1 + C∗)] ≤ 0, i.e. C1C∗

1 ≤ CC∗.

Applying mentioned above Lemma on triple we can see that there exists a contraction K ∈

B (H) such that C1 = CK. The latter equality together with (12) implies (11). Conversely, if

K ∈ B (H) and ‖K‖ ≤ 1, then (11) implies (10).

Theorem 1. Assume that L0 is a positive definite closed linear relation in H and (H, Γ1, Γ2) is

its hard BVS. Each proper maximal θ-accretive extension L1 of L0 may be given in the form (7),

where A1, A2 ∈ B (H). This extension is maximal θ-accretive one if and only if

Re
(

eiθ A1 A∗
2

)
≤ 0, ker

(
A1 − e−iθ A2

)
= {0} . (13)

In particular, L1 is maximal nonnegative relation if and only if

A1 A∗
2 ≤ 0, ker(A1 − A2) = {0}. (14)

Proof. It is proved in [6–8, 11] that in the situation, when L0 is densely defined operator, L1 is

maximal θ-accretive if and only if there exists K ∈ B (H) such that ‖K‖ ≤ 1, and

L1 =
{

ŷ ∈ L : (K − 1H) Γ1ŷ + eiθ (K + 1H) Γ2ŷ = 0
}

. (15)
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Similar arguments show that it is true in a general case. The first assertion of the theorem is

proved.

Further, applying mentioned above Lemma on triple, we can see that A1, A2 ∈ B (H) may

be given in the form (11), where ker C = {0} , therefore the conditions (13) are fulfilled. Con-

versely, assume that these conditions are fulfilled. Lemma 3 shows that in this case the rela-

tions (7) and (15) are equivalent, therefore L1 is a maximal θ-accretive relation.

In addition, under the conditions of Lemma 3 we have

Im (A1 A∗
2) = {0} ⇔ Im [C (K − 1H) (K

∗ + 1H) C∗] = {0} ⇔ Im (K − K∗) = {0}

(let us remind that ker C = {0}). In other words (see Lemma 2) the maximal nonnegativity of

the relation (15) is equivalent to the selfadjointness of the contraction K, whence it is easy to

prove the last assertion of the theorem.

Remark 4. It is easy to prove that

i) if R(A) = H then the second of the conditions (13) (respectively (14)) may be replaced

by
(

A1 − e−iθ A2

)−1
∈ B (H) (respectively (A1 − A2)

−1 ∈ B (H));

ii) if dimH < ∞ then each of mentioned conditions may be replaced by the condition

R(A) = H;

iii) under the investigation of maximal nonnegativity of L1 the second conditions in (14) may

be replaced by ker (A1 ± iA2) = {0} .
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Нехай L0 — замкнене лiнiйне додатно визначене вiдношення (“багатозначний оператор”) у

комплексному гiльбертовому просторi. Застосовуючи методи теорiї розширень лiнiйних пере-

творень у гiльбертовому просторi, у термiнах так званих просторiв граничних значень (грани-

чних трiйок), тобто у виглядi, який у випадку диференцiальних операторiв приводить безпо-

середньо до крайових умов, встановлено загальний вигляд максимально невiд’ємного та вла-

сного максимально θ-акретивного розширення початкового вiдношення L0.

Ключовi слова i фрази: гiльбертiв простiр, вiдношення, оператор, акретивний, розширення,

простiр граничних значень.


