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MAXIMAL NONNEGATIVE AND 0-ACCRETIVE EXTENSIONS OF A POSITIVE
DEFINITE LINEAR RELATION

STOROZH O.G.

Let Lo be a closed linear positive definite relation (“multivalued operator”) in a complex Hilbert
space. Using the methods of the extension theory of linear transformations in a Hilbert space, in
the terms of so called boundary value spaces (boundary triplets), i.e. in the form that in the case
of differential operators leads immediately to boundary conditions, the general forms of a maximal
nonnegative, and of a proper maximal #-accretive extension of the initial relation Ly are established.
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INTRODUCTION

The theory of linear relations (multivalued operators) in Hilbert space was initiated by
R. Arens [1]. Various aspects of the extension theory of linear relations (in particular, non-
densely defined operators; first of all, Hermitian ones) were studied by a number of authors
(see, e.g. [2-5] and references therein.

Let us explain that under (closed) linear relation in H, where H is a fixed complex Hilbert
space equipped with inner product (-|-) and corresponding norm || - ||, we understand a

(closed) linear manifold in H? Yy @ H and that in the theory of linear relations every lin-
ear operator is identified with its graph. Each such relation T has the adjoint T* which is
defined as follows
T* = H2 o JT (: J(H2 o T))
(here and below @ and © are the symbols of orthogonal sum and orthogonal complement,
respectively; V hy, hy € H we define | (hy, hy) Y (—ihy, ihy)).
Through the paper we use the following notations: D(T), R(T), kerT are, respectively,

the domain, range, and kernel of a (linear) relation (in particular, operator) T. Some basic
definitions and notations are presented below:

D(T)={yc€ H|(3y €H):(yv,y) €T},
R(T)={y' € H|(Jy € H): (v,y') € T},
kerT={ye€ H|(y,0) € T};
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ker T = {(y,0):y € kerT};
ifAeCthenT—A={(y,y —A\y) | (v,y/) € T};
ker(T—A) ={y € H|(y,0) e T—-A} (={y € H|(y,Ay) € T});

ker (T—A) ™ {(y,Ay) : y € ker (T = A)};

T'={(,y) e B (yy) € T};

1x is the identity in X;

+, + are the symbols of sum and direct sum in a linear space, respectively.

If X, Y are Hilbert spaces then (-|-)x is the symbol of scalar product in X, B(X,Y) is the set

d
of linear bounded operators A : X — Y such that D(A) = X; B(X) ;fB(X, X). IfA; : X —
Y; (i = 1,2) are linear operators, then the notation A = A; & A, means Ax = ( ili ) for
2
every x € X.
Let us recall that a linear relation T in H is said to be nonnegative (denoted T > 0)
if (y'ly) > 0 for all (y,y') € T, positive definite (denoted T > 0) if, in addition,

d
infT éfinf{(u’]u) | (u,u’) € T, ||u|| =1} > 0, and self adjoint if T = T*. The linear relation
T C H?is said to be 8-accretive one (-5 <06<3%)if

N T T
Vo= (yy)eT arg(yly) e {9—5,94—5] ,

i.e.

~ SO T T
VyeT arg(my|lmy) € [9— 5,94—5] ,

where 711, 71, are the orthoprojections H> — H @ {0} and H?> — {0} @ H, respectively. If, in
addition, T has no #-accretive extensions in H we say that T is a maximal 8-accretive relation.
In the case when § = 0 (§ = 7, 0 = —7) the f-accretive relation is called accretive (dissipative,
accumulative) one.

It is well known that a closed relation T C H? is a maximal f-accretive relation if and only
if the adjoint relation T* is a (maximal) —f0-accretive one. In particular, a nonnegative relation
is a maximal one if and only if it is self adjoint.

In this paper, we assume that the closed linear positive definite relation Ly C H? is given
and we try to establish the general form of its maximal nonnegative and proper maximal
f-accretive extension (the extension L; of Ly is said to be a proper oneif Ly C L1 = L C Ly).

It is known [4] that there exist (nonnegative) self adjoint extensions Ly and Lg of Ly satis-
tying the following property:

self adjoint extension Ly of Ly is nonnegative if and only if

Ve>0 VyeH ((LF+8)_1y\y) < ((L1+e)_1y\y) < ((LK+8)_1y\y)~

For the case of densely defined operator L, this property was proved by M. Krein [9]. The ex-
tensions Lr and Lk are called the Friedrichs and Neumann-Krein extensions of L, respectively.
If L is positive definite, the first of the latter inequalities holds under € = 0 too.
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1 PRELIMINARIES

d
Assume that Ly >0, L ;f L}, and Lp is the hard (i.e. Friedrichs) extension of L. It follows
from the results proved in [4] that

Let us denote by P the skew projection L — Lr corresponding to this decomposition.

Definition 1. Let H be a Hilbert space and T'1,T, € B (L, H). The triple (H,I'1,I';) is called
hard boundary value space (BVS) of Ly if

i) RT1®T)=HOH;

ii)
Vy,ze L (7‘(2]//\’ 7'[1/2\) = (ﬂzpm 7'(1732) + (1"1?\1“22)% . (2)

Lemma 1. Hard BVS of Ly exists. It may be constructed in the following way

HO = kerL, Iy = Pm, Py, T35 = Dy,

where P is the orthoprojection H> — kerL, and P is the skew projection L — KerL correspond-
ing to the decomposition (1).

Proof. First of all, note that identifying (h,0) € H @ {0} and i € H we may assume that
kerL = ker L.

i) Suppose that /11, i, € ker L and consider the system of equations I'Vj = hy, I3 = hy, i.e.
PrtyPy = hy, Py = hy, where iy € L. Put

y\: (L;lhl,m) + (hz, 0) (G Lr %.—k/e\rL = L) .
We have
Py = (Li'h, ) = mP§ = = T% = hn; Pj=T37 = hn.
ii) Suppose that i,z € L. Since
= Py+Dy, 2=Pz+ Dz, Py, PzckerL,

the equalities
NQP]//\: 0, 7T2P/Z\: 0 (3)
are fulfilled. Therefore
(m2y|miz) = <7T273?+ 1, Py PZ + 711152> = <77273ﬂ mPZ + nlﬁi)

= (mPjimPz) + (mPilmPz) = (m2PylmP2) + (PraPyIPz)

erL
= (mPlmP2) + (19910%2) |
The equality (2) (under H = H°, I'; =T9, T, = I?Y) is proved. O

It should be noted that the conception of hard BVS (to be more exactly — positive BVS) was
initiated in [6-8,11] and found its further development, for example, in [2,3,5].
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Remark 1. (#H°, Fcl), Fg) isa BVSof Ly, i.e.
i)
wEzel (Vlz) - (v2) = (mflmz) - (mylmz) = (19910%z), , - (19910%2) - (@

ii) ker (TY ®T9) = Lo.
Proof. Indeed, let i,z € L. It follows from (1) and (3) that
(my|mz) = <7‘(173]//\+ 7'(113?\ T PZ + 7'(2132> = <7'(1739+ nlﬁﬂnﬁ)
= (mjlm2) + (m Py 7122) = (mj|m3) + <n1ﬁg|pnzz)
= (mglm2) + (1991r%z) .
and whence using (2) for the case (H,I'1,I2) = (HO, F(l), Fg) we obtain

(maflmZ) - (mflmsz) = (mPflmP2) - (mPylmPz) + (rf9ir%e),  — (1991r9), -

Since Py, Pz € Ly and L = L} we conclude that (7, Py|11Pz) = (711 Py|m2PZ), conse-
quently (4) holds.

The statement i) is proved. Let us prove ii):

(Mer)j=0eTi=0,Ti=0sV2el (V]z) - (Y1) =0eFe L’ = L.

Remark 2. i) kerl"g = L, 1i) kerl"? =Ly —T—k/\GI‘L.

Proof. Item i) follows immediately from the definition.

ii)1) Let § € Lo(C L). Then Pij = 7 € Lo. Consequently m,P7 € R(Lg) = (kerL)™, so
P, Py =0,ie Iy =0.

2) Let 7 € kerL. Then Py = 0, therefore T 9% = 0. The inclusion L +kerL C ker Y is

proved.
3) Let us show that in latter inclusion “C” may be replaced by “=". We have

ker Y NkerTY = Lo, 5)
kerT{ +kerT) =L,
Lo+ KkerL C kerT?, ©)
kerL Nker 'Y = {0},
Lp ¥ kerL = L.

It should be proved that in (6) “C” may be replaced by “=". Let us prove this. Suppose

that w € kerl"? C L= LF—T—k/e\rL. So we have w = wy + wy, where wy € Lg, wy € k/e\rL,
therefore w — wy = wq. But w € kerT’ (1), wy € kerl, C kerT (1) (see (6)), w1 € Lp, therefore

w—wy € kerF? N Lp = Lo (see (5)). Thus w = (w — wy) + wy € Ly —T— KerL. O
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Proposition 1. Let (H,T1,T7) be a BVS of Ly such that
i)kerT', = L,
i) kerTy = Lo+ kerL.

Then (H,T4,T7) is a hard BVS of Ly, in particular (2) holds.

Proof. Taking into account (3) and (4) we conclude the following:
(mafmz) = (7aP§+ maPylm Pz + mPz) = (maPylm Pz + mP2)
= (2 PylmPZ) + (Pl PZ)

= (mPylmPz) + (mPylmPz) + (rlpﬂrzﬁz)H - (rzpmrlﬁz)H
— (nzpm nlﬁz) + (rmﬂrZﬁE)H - (rzpﬂrlﬁz)H.

But I, P = 0, [, PZ = 0, consequently T, PZ = 0; T'1Pij = 0, consequently I'; P§ = I'17. Thus
(2) is proved. U

2 MAIN RESULTS

Let Lo, L, (H,T1,T2) and P be as above. We assume below that A;, A, € B(#H) and
Li(=Ly)={y€L:Al1y+ ATy =0}. (7)

Lemma 2. L] is a 0-accretive (nonnegative) relation if and only if — A1 A3 is a 0-accretive (non-
negative) operator.

Proof. At first let us consider the following situation: the operator A, defined by the equality

A (h1, hy) f A1hy + Axhy (hy, hy € H), is normally solvable one. In this case (see [12, Lemma
9, p. 182])
Li={ze€L|I3he H :T1z2= Ash, Trz = —Ajh}. (8)

Whence using (2) and (8) we see that f-accretivity (nonnegativity) of —A;A; yields 6-acc-
retivity (nonnegativity) of L] . Indeed,

vy € L1 (V'ly) = (maylmy) = (mPylmPy) + (T171T27)y
= (mPy|lmPy) + (Azh| — ATh)4,
= (7‘(27)9\‘ 7'(17)9\) + (—AlA;h‘h)rH,

consequently the f-accretivity (nonnegativity) of —A; A3 implies f-accretivity (nonnegativity)
of L].

Conversely, assume that L] is a f-accretive (nonnegative) relation while —A; A5 does not
obey to this requirement. Then due to (8) there exists z € L] such that for some ¢ > 0 and for
each A € C satisfying the inclusionarg A € [0 — ,6 + 5] (for arbitrary A > 0) the inequality

[(Th2[[22)3 — A[ > €

takes place. It follows from the definition of Friedrichs extension that there exists z; € Lo such
that

(12 (P2 —2¢) |m (P2 —Z¢)) < )

N ™
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Taking into account (2) we obtain

(72 (B~ ) | (2 — %)) = (2P (£ — 2) |mP (£ — %)) + (1 (2 — %) T2 (F— %))
= (mP(z—2) |mP(z—2)) + (].—'1/2\’1—'22)% .
From here, using (9) we can see that L] may not to be a f-accretive (nonnegative) relation.
In the general case by virtue of Lemma on triple (see e.g. [10, p. 22]) there exist C, A1, A, €
B (H) such that kerC = {0}, A; = CA; (i =1,2) and the operator A € B(H ®H,H) de-
fined by the equality A (hy,hy) = Aihy + Aghy is normally solvable. To complete the proof it

is sufficient to take into account that — A AJ is 6-accretive (nonnegative) operator if and only
if —A1Aj is a f-accretive (nonnegative) operator. O

Remark 3. By virtue of Lemma 2, if L, is a maximal 6-accretive relation, then —A A} is a
-accretive operator, i.e.

Re (ef‘)AlA;) <o. (10)
In particular, if L, is a maximal nonnegative operator, then
A1A5 <0.

Lemma 3. Suppose that A1, Ay € B(H). The inequality (10) holds if and only if there exist
contractionK € B(H) and C € B(H) such that

A =C(K—-1y), Ay=eC(K+1y). (11)

Proof. Put

C1 = <A1 + 67i9A2> ’ C= % (—Al + 67i0A2> .

N[~

Then _
Ai=C—-C, e %A, =C+C. (12)

Inserting (12) into (10) we obtain Re [(C; — C) (Cj +C*)] < 0,i.e. C;C] < CC*.

Applying mentioned above Lemma on triple we can see that there exists a contraction K €
B (H) such that C; = CK. The latter equality together with (12) implies (11). Conversely, if
K € B(H) and ||K|| < 1, then (11) implies (10). O

Theorem 1. Assume that L is a positive definite closed linear relation in H and (H,T,T?7) is
its hard BVS. Each proper maximal 6-accretive extension L of Ly may be given in the form (7),
where Ay, Ay € B (H). This extension is maximal 6-accretive one if and only if

Re (ei"AlA;) <0, ker <A1 —e_ieAz) = {0} (13)
In particular, L, is maximal nonnegative relation if and only if
AlA; < 0, ker(A1 — Az) = {0} (14)

Proof. It is proved in [6-8, 11] that in the situation, when Ly is densely defined operator, L is
maximal f-accretive if and only if there exists K € B (H) such that |K|| < 1, and

Ly={F€L:(K=1y)Taf+e” (K+13) T2 = 0} . (15)
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Similar arguments show that it is true in a general case. The first assertion of the theorem is
proved.

Further, applying mentioned above Lemma on triple, we can see that A;, A, € B (#) may
be given in the form (11), where ker C = {0}, therefore the conditions (13) are fulfilled. Con-
versely, assume that these conditions are fulfilled. Lemma 3 shows that in this case the rela-
tions (7) and (15) are equivalent, therefore L is a maximal 0-accretive relation.

In addition, under the conditions of Lemma 3 we have
Im (A1A5) = {0} © Im[C(K—1y4) (K"+14)C*] ={0} & Im (K- K") = {0}

(let us remind that ker C = {0}). In other words (see Lemma 2) the maximal nonnegativity of
the relation (15) is equivalent to the selfadjointness of the contraction K, whence it is easy to
prove the last assertion of the theorem. O

Remark 4. It is easy to prove that

i) if R(A) = H then the second of the conditions (13) (respectively (14)) may be replaced
by (A1 —e P Ay) 1eBM) (respectively (A1 — Ay) ' € B(H));

ii) if dimH < oo then each of mentioned conditions may be replaced by the condition
R(A) =H;

iii) under the investigation of maximal nonnegativity of Ly the second conditions in (14) may
be replaced by ker (A1 £iA;) = {0}.
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Hexait Ly — 3aMKHeHe AiHilfHe AOAATHO BM3HauUeHe BiaHOIIeHHsI (“baraTo3sHauHmiz oneparop”) y
KOMIIAKCHOMY I'iAbOepPTOBOMY IIPOCTOPi. 3aCTOCOBYIOUNM METOAM TEOPii pO3IIMpeHb AiHIVHMX Tepe-
TBOPEHb Y IiAbOEPTOBOMY IIPOCTOpI, y TepMiHax Tak 3BaHMX IIPOCTOPIB IPaHMUHIX 3HAUEHb (IpaHy-
YHMIX TPillOK), TOOTO y BUTASIAL, KV y BUIIAAKY AMcpepeHITiaAbHIX OIIepaTOpiB IPMBOAMTD He3mo-
CepeAHbO AO KpalOBMX YMOB, BCTAHOBAEHO 3araAbHMIA BUTASIA MAKCMMaABHO HeBiA'€MHOTO Ta BAa-
CHOTO MaKCMMAABHO f-aKpeTUBHOTO PO3LIMPEeHHsI II0YaTKOBOTO BiAHOLIEHHS L.

Kntouosi cniosa i ppasu: TiabbepTiB MpOCTip, BiAHOIIIEHHS, OllepaTOpP, aKPETUBHIIA, PO3IIMPEHHS,
IIPOCTip TPaHMYHMX 3HaYeHb.



