Generalizations of ss-supplemented modules

Soydan İ., Türkmen E.

We introduce the concept of (strongly) ss-radical supplemented modules. We prove that if a submodule \(N \) of \(M \) is strongly ss-radical supplemented and \(\text{Rad}(M/N) = M/N \), then \(M \) is strongly ss-radical supplemented. For a left good ring \(R \), we show that \(\text{Rad}(R) \subseteq \text{Soc}(R) \) if and only if every left \(R \)-module is ss-radical supplemented. We characterize the rings over which all modules are strongly ss-radical supplemented. We also prove that over a left \(WV \)-ring every supplemented module is ss-supplemented.

Key words and phrases: semisimple module, (strongly) ss-radical supplemented module, \(WV \)-ring.

1 Introduction

Throughout the paper, all rings are associative with identity and all modules are unitary left modules. Let \(R \) be a ring and \(M \) be an \(R \)-module. By \(\text{Rad}(M) \) and \(\text{Soc}(M) \), we will denote the radical of \(M \) and the socle of \(M \), respectively. A submodule \(K \subseteq M \) is called small in \(M \), written \(K \ll M \), if for every submodule \(N \subseteq M \) the equality \(M = N + K \) implies \(N = M \).

In [9], D.X. Zhou and X.R. Zhang introduced the concept of socle of a module \(M \) to that of \(\text{Soc}_s(M) = \sum\{N \ll M | N \text{ is simple}\} \). It is clear that \(\text{Soc}_s(M) \subseteq \text{Rad}(M) \) and \(\text{Soc}_s(M) \subseteq \text{Soc}(M) \). A module \(M \) is called supplemented if every submodule \(N \) of \(M \) has a supplement, i.e. a submodule \(K \) minimal with respect to \(M = N + K \). \(K \) is a supplement of \(N \) in \(M \) if and only if \(M = N + K \) and \(N \cap K \ll K \).

For more properties of supplemented modules we refer to [3]. In [10], H. Zöschinger introduced a notion of modules whose radical has supplements and called them radical supplemented. In the same paper and in [11], he determined the structure of radical supplemented modules. In [2], E. Büyükaşık and E. Türkmen call a module \(M \) strongly radical supplemented if every submodule containing the radical has a supplement in \(M \). In [6], E. Kaynar, E. Türkmen and H. Çalışçı call a submodule \(V \) an ss-supplement of \(U \) in \(M \) if and only if \(M = U + V \) and \(U \cap V \subseteq \text{Soc}_s(V) \).

A module \(M \) is ss-supplemented if every submodule \(U \) of \(M \) has an ss-supplement in \(M \). It is shown in [6, Theorem 3.30] that a ring \(R \) is semiperfect and \(\text{Rad}(R) \subseteq \text{Soc}_s(R) \) if and only if every left \(R \)-module is ss-supplemented. Motivated by these results, we call a module ss-radical supplemented if \(\text{Rad}(M) \) has an ss-supplement in \(M \) and we call a module strongly ss-radical supplemented if every submodule containing the radical has an ss-supplement in \(M \).
Also we obtain the various properties of (strongly) ss-radical supplemented modules. We show that homomorphic images of strongly ss-radical supplemented modules are strongly ss-radical supplemented (Proposition 3) and for a left good ring R, we prove that \(\text{Rad}(R) \subseteq \text{Soc}_R(R) \) if and only if every left R-module is ss-radical supplemented. If \(R \) is a left \(WV \)-ring, then \(R \) is a left good ring and every left \(R \)-module is ss-radical supplemented. We have characterized the rings over which all modules are strongly ss-radical supplemented, by Theorem 3. We study on (strongly) ss-radical supplemented modules over Dedekind domains.

2 ss-Radical supplemented and strongly ss-radical supplemented modules

In this section, we give some properties of the (strongly) ss-radical supplemented modules. In particular, we provide characterizations of some classes of rings.

Recall that a module \(M \) is called radical if \(M \) has no maximal submodules, i.e. \(\text{Rad}(M) = M \).

Proposition 1. Let \(M \) be radical module. Then \(M \) is a strongly ss-radical supplemented module.

Proof. It is clear that \(\text{Rad}(M) \) has the trivial ss-supplement 0 in \(M \). Thus \(M \) is strongly ss-radical supplemented.

Let \(M \) be a module. By \(P(M) \) we denote the sum of all radical submodules of \(M \). Then \(P(M) \) is the largest radical submodule of \(M \).

Corollary 1. \(P(M) \) is strongly ss-radical supplemented for every module \(M \).

Example 1. (1) Consider the \(\mathbb{Z} \)-module \(M = \mathbb{Z} \). Then \(\mathbb{Z} \) is an ss-radical supplemented module because \(\text{Rad}(\mathbb{Z}) = 0 \).

(2) Let \(R \) be a commutative domain and \(K(R) \) be the fractions field of \(R \). It follows from Proposition 1 that \(K(R) \) is a strongly ss-radical supplemented \(R \)-module.

It is well known that every module with small radical is radical supplemented. The following example shows that a module with small radical need to be ss-radical supplemented. Firstly we need the following facts.

Lemma 1. Let \(M \) be a module and \(\text{Rad}(M) \subseteq \text{Soc}(M) \). Then \(M \) is ss-radical supplemented.

Proof. Obviously, \(M = M + \text{Rad}(M) \) and \(M \cap \text{Rad}(M) = \text{Rad}(M) \subseteq \text{Soc}(M) \). Therefore \(\text{Rad}(M) \) is semisimple and so \(M \) is an ss-supplement of \(\text{Rad}(M) \) in \(M \). Hence \(M \) is ss-radical supplemented.

Using Lemma 1, we obtain the following Corollary 2 and Corollary 3.

Corollary 2. Let \(M \) be a module and \(\text{Rad}(M) \ll M \). Then \(M \) is an ss-radical supplemented module if and only if \(\text{Rad}(M) \subseteq \text{Soc}(M) \).

Proof. By Lemma 1 and by [6, Corollary 3.3].

Example 2. Consider the \(\mathbb{Z} \)-module \(M = \mathbb{Z}_p \), where \(p \) is any prime integer. Then \(\text{Rad}(M) = < \overline{p} > \ll M \). Since \(\text{Rad}(M) \) is not semisimple, by Corollary 2, \(M \) is not ss-radical supplemented.
Let R be a ring. R is said to be a left max ring if every non-zero left R-module has a maximal submodule.

Corollary 3. Let R be a left max ring and M be an R-module. Then M is ss-radical supplemented if and only if $\text{Rad}(M) \subseteq \text{Soc}(M)$.

Proof. Since R is a left max ring, M has a small radical. By Corollary 2, the proof follows.

Recall that a module M is coatomic if every proper submodule of M is contained in some maximal submodule of M.

Proposition 2. Let R be a semilocal ring and M be an ss-radical supplemented module. Then, every ss-supplement of $\text{Rad}(M)$ in M is coatomic.

Proof. If $M = \text{Rad}(M)$, the proof is clear. Assume that $M \neq \text{Rad}(M)$. Let V be an ss-supplement of $\text{Rad}(M)$ in M. Then $\text{Rad}(M) \cap V = \text{Rad}(V)$ is semisimple and so $\text{Rad}(V)$ is coatomic. Since R is semilocal, it follows from [7, Theorem 3.5] that

$$
\frac{M}{\text{Rad}(M)} \cong \frac{V}{\text{Rad}(M) \cap V} = \frac{V}{\text{Rad}(V)}
$$

is semisimple. By [10, Lemma 3], we get that V is coatomic.

Proposition 3. Every homomorphic image of a strongly ss-radical supplemented module is a strongly ss-radical supplemented module.

Proof. Let M be a strongly ss-radical supplemented module and $L \subseteq N \subseteq M$ with $\text{Rad}(\frac{M}{L}) \subseteq \frac{N}{L}$. Consider the canonical projection $\pi : M \rightarrow \frac{M}{L}$. Then $\pi(\text{Rad}(M)) = \frac{\text{Rad}(M)}{L} \subseteq \frac{\text{Rad}(M)}{L} \subseteq \frac{N}{L}$ and so $\text{Rad}(M) \subseteq N$. By the hypothesis, N has an ss-supplement, say K, in M. Clearly, we can write $\frac{M}{L} = \frac{N}{L} + \frac{K+L}{L}$. By [8, 19.3 (4)], we obtain that $\pi(N \cap K) = \frac{N \cap K + L}{L} = \frac{N \cap K}{L} \ll \pi(K) = \frac{K+L}{L}$ and $\pi(N \cap K) = \frac{N \cap K + L}{L}$ is semisimple. Hence M is strongly ss-radical supplemented.

Corollary 4. Let M be a strongly ss-radical supplemented module. Then $\frac{M}{\text{Rad}(M)}$ is semisimple.

Proof. By Proposition 3, $\frac{M}{\text{Rad}(M)}$ is strongly ss-radical supplemented. Since $\text{Rad}(\frac{M}{\text{Rad}(M)}) = 0$, we get that $\frac{M}{\text{Rad}(M)}$ is semisimple.

Proposition 4. Let M be a strongly ss-radical supplemented module and $\text{Rad}(M) \subseteq U$. Then every ss-supplement of U in M is coatomic.

Proof. Let V be an ss-supplement of U in M. Then, we can write $M = U + V$, $U \cap V \ll V$ and $U \cap V$ is semisimple. Therefore, $U \cap V$ is coatomic. Note that $\frac{M}{\text{Rad}(M)} \cong \frac{M}{U}$, thus, $\frac{M}{U}$ is semisimple by Corollary 4. It follows that $\frac{M}{U} \cong \frac{V}{U \cap V}$ is semisimple. By [10, Lemma 3], we obtain that V is coatomic.

In the following example, we show that a factor module of an ss-radical supplemented module need not be ss-radical supplemented, in general.

Example 3. Put $M = \mathbb{Z}/2\mathbb{Z}$. Clearly, M is ss-radical supplemented. Consider the factor module $\frac{\mathbb{Z}}{2\mathbb{Z}}$ of M. Then $\text{Rad}(\frac{\mathbb{Z}}{2\mathbb{Z}}) = 2\mathbb{Z} \ll \mathbb{Z}$. Hence, $\frac{\mathbb{Z}}{2\mathbb{Z}}$ is not ss-radical supplemented by Corollary 2.
Proposition 5. Let M be an ss-radical supplemented module and $N \subseteq \text{Rad}(M)$. Then, $\frac{M}{N}$ is ss-radical supplemented.

Proof. Consider the canonical $\pi : M \rightarrow \frac{M}{N}$. Since $N \subseteq \text{Rad}(M)$, $\pi(\text{Rad}(M)) = \frac{\text{Rad}(M) + N}{N} = \text{Rad}(\frac{M}{N})$ by [8, 19.3 (4)]. By the assumption, we can write $M = \text{Rad}(M) + V$, $\text{Rad}(M) \cap V \ll V$ and $\text{Rad}(M) \cap V$ semisimple for some submodule V of M. By a similar discussion in the proof of Proposition 3, we deduce that $\frac{V + N}{N}$ is an ss-supplement of $\text{Rad}(\frac{M}{N})$ in $\frac{M}{N}$.

Let M be a module. M is called a good module if

$$f(\text{Rad}(M)) = \text{Rad}(f(M))$$

for any homomorphism $f : M \rightarrow N$.

For a good module M, we have the following fact.

Proposition 6. Let M be a good module. If M is ss-radical supplemented, $\frac{M}{N}$ is ss-radical supplemented for every submodule N of M.

Proof. Since M is a good module, we can write $\text{Rad}(\frac{M}{N}) = \frac{\text{Rad}(M) + N}{N}$. By similar discussion in the proof of Proposition 3, we get that $\frac{M}{N}$ is ss-radical supplemented.

Proposition 7. Let M be a module and N be a submodule of M. Then, if N is strongly ss-radical supplemented and $\text{Rad}(\frac{M}{N}) = \frac{M}{N}$, M is strongly ss-radical supplemented.

Proof. Let U be submodule of M with $\text{Rad}(M) \subseteq U \subseteq M$. Since $\text{Rad}(\frac{M}{N}) = \frac{M}{N}$, $\text{Rad}(M) + N = M$ and so $U + N = M$. Since $\text{Rad}(N) \subseteq \text{Rad}(M) \subseteq U$ and $\text{Rad}(N) \subseteq N$, we can write $\text{Rad}(N) \subseteq (U \cap N)$. Since N is strongly ss-radical supplemented, there exists submodule V of M such that $(U \cap N) + V = N$, $U \cap V \ll V$ and $U \cap V$ semisimple. Hence, we have $M = U + N = U + (U \cap N) + V = U + V$. That is, M is strongly ss-radical supplemented.

Lemma 2. Let M be a module, M_1, $N \subseteq M$ and $\text{Rad}(M) \subseteq N$. If M_1 is a strongly ss-radical supplemented module and $M_1 + N$ has an ss-supplement in M, then N has an ss-supplement in M.

Proof. Suppose that L is an ss-supplement of $M_1 + N$ in M and K is an ss-supplement of $(L + N) \cap M_1$ in M_1. Then $M = L + K + N$ and $(L + K) \cap N \ll L + K$. Thus $L \cap (K + N)$ is semisimple. $K \cap (L + N) \cap M_1 = K \cap (L + N)$ is semisimple and, by [5, 8.1(5)], $(L + K) \cap N$ is semisimple. Then $K + L$ is an ss-supplement of N in M.

Proposition 8. Let M_1, M_2 be any submodules of a module M such that $M = M_1 + M_2$. Then if M_1 and M_2 are strongly ss-radical supplemented, M is strongly ss-radical supplemented.

Proof. Suppose that $N \subseteq M$ with $\text{Rad}(M) \subseteq N$. Clearly $M_1 + M_2 + N$ has the trivial ss-supplement 0 in M, so by Lemma 2, $M_1 + N$ has an ss-supplement in M. Applying the lemma once more, we obtain an ss-supplement for N in M.

Corollary 5. Every finite sum of strongly ss-radical supplemented modules is a strongly ss-radical supplemented module.

Proposition 9. Let M be a module with small radical. Then M is strongly ss-radical supplemented if and only if it is ss-supplemented.
Generalizations of ss-supplemented modules

Proof. (\Longrightarrow) Let U be a submodule of M. Then $\text{Rad}(M) \subseteq \text{Rad}(M) + U$ and $\text{Rad}(M) + U$ has an ss-supplement, say V, in M. So $M = \text{Rad}(M) + U + V$, $[\text{Rad}(M) + U] \cap V \ll V$ and $[\text{Rad}(M) + U] \cap V$ is semisimple. Since $\text{Rad}(M) \ll M$, we have $M = U + V$ and also $U \cap V \subseteq [\text{Rad}(M) + U] \cap V$. Hence, U has an ss-supplement V in M. Thus, M is an ss-supplemented module.

(\Longleftarrow) Clear.

Corollary 6. Let M be a coatomic module. Then M is ss-supplemented if and only if M is a strongly ss-radical supplemented module.

Theorem 1. Let M be a module with $\text{Rad}(M) \ll M$. The following statements are equivalent.

1. M is ss-supplemented.
2. M is supplemented and M is ss-radical supplemented.
3. M is strongly radical supplemented and $\text{Rad}(M) \subseteq \text{Soc}(M)$.
4. M is strongly ss-radical supplemented.

Proof. (1) \implies (2) Clear.
(2) \implies (3) It follows from Corollary 2.
(3) \implies (4) Suppose that $U \subseteq M$ with $\text{Rad}(M) \subseteq U$. Since M is strongly radical supplemented, we have V supplement with $M = U + V$ and $U \cap V \ll V$. Since $U \cap V \subseteq \text{Rad}(V) \subseteq \text{Rad}(M) \subseteq \text{Soc}(M)$, M is strongly ss-radical supplemented.
(4) \implies (1) By Proposition 9.

The following result is a direct consequence of Theorem 1.

Corollary 7. Let R be a left max ring. Then every strongly ss-radical supplemented R-module is ss-supplemented.

Let M be a module. M is called strongly local if it is local and $\text{Rad}(M) \subseteq \text{Soc}(M)$ [6].

Corollary 8. Let M be a local module. Then the following statements are equivalent.

1. M is strongly local.
2. M is ss-supplemented.
3. M is ss-radical supplemented.

Proof. Since local modules have small radical, the proof follows from Theorem 1 and [6, Proposition 3 (4)].

Now, we shall characterize the rings over which all modules are strongly ss-radical supplemented.

Proposition 10. The following statements are equivalent for a ring R.

1. Every projective left R-module is ss-radical supplemented.
2. Every free left R-module is ss-radical supplemented.
(3) Every finitely generated free left R-module is ss-radical supplemented.

(4) $\text{Rad}(R) \subseteq \text{Soc}(RR)$.

Proof. (1) \implies (2) and (2) \implies (3) are clear.
(3) \implies (4) By (3), RR is ss-radical supplemented. It follows from [6, Theorem 3(30)] that $\text{Rad}(R) \subseteq \text{Soc}(RR)$.

(4) \implies (1) Let P be any projective left R-module. Then, by [8, 21.17 (2)], $\text{Rad}(P) = \text{Rad}(R)P \subseteq \text{Soc}(RR)P = \text{Soc}(P)$ and so $\text{Rad}(P)$ is small in P. Applying [8, 21.17 (2)], we obtain that P is ss-radical supplemented.

Example 4. Given the ring \mathbb{Z}. It is well known that $\text{Rad}(\mathbb{Z}) = \text{Soc}(\mathbb{Z} \mathbb{Z}) = 0$. Consider the \mathbb{Z}-module $M = \mathbb{Z} \mathbb{Z}_16$. Note that M is not projective. Then, $\text{Rad}(M) \ll M$ and M is not ss-radical supplemented by Corollary 2.

A ring R is called a left good ring if RR is a good module.

Theorem 2. Let R be a left good ring. Then $\text{Rad}(R) \subseteq \text{Soc}(RR)$ if and only if every left R-module is ss-radical supplemented.

Proof. Let M be a left R-module and $\text{Rad}(R) \subseteq \text{Soc}(RR)$. Since R is a left good ring, we can write $\text{Rad}(M) = \text{Rad}(R)$, $M \subseteq \text{Soc}(RR)$, $M \subseteq \text{Soc}(M)$ by [7]. Hence, M is ss-radical supplemented by Lemma 1. The converse follows from Corollary 2.

Let R be a ring. R is called a left WV-ring if every simple R-module is R/I-injective, where $R \not\cong R$ and I is any ideal of R. Clearly, left WV-rings are a generalization of V-rings [4].

Lemma 3. Let R be a left WV-ring. Then R is a left good ring and a left max ring.

Proof. If R is a left V-ring, then R is a left good ring and a left max ring. Assume that R is not a left V-ring. By [4, Corollary 6 (8)], $\frac{R}{\text{Rad}(R)}$ is a left V-ring. It follows from [8, 23 (2)] that R is a left good ring. Let $M \neq 0$. Since R is a left good ring, $\text{Rad}(M) = \text{Rad}(R)$, $M \subseteq \text{Soc}(RR)$, $M \subseteq \text{Soc}(M)$ and so $\text{Rad}(M)$ is semisimple. It means that $\text{Rad}(M) \neq M$. Hence, R is a left max ring.

Note that, in general, a left max ring and a left good ring need not be a left WV-ring. For example, the $R = \mathbb{Z}_8$ is an Artinian ring which is not a left WV-ring.

Corollary 9. Let R be a left WV-ring. Then

(1) every left R-module is ss-radical supplemented;

(2) every supplemented left R-module is ss-supplemented.

Proof. (1) By Theorem 2 and Lemma 3.

(2) Let M be a supplemented module. Since R is a left WV-ring, by Lemma 3, $\text{Rad}(M) \subseteq \text{Soc}(M)$. It follows from Theorem 1 that M is ss-supplemented.
Theorem 3. For a ring R, following statements are equivalent.

1. Every left R-module is strongly ss-radical supplemented.

2. Every finitely generated left R-module is strongly ss-radical supplemented.

3. R is strongly ss-radical supplemented.

4. R is ss-supplemented.

5. R is semilocal and $\text{Rad}(R) \subseteq \text{Soc}(R)$.

Proof. (1) \implies (2), (2) \implies (3) and (3) \implies (4) are clear.

(4) \implies (5) and (5) \implies (1) by [6, Theorem 3 (30)].

It is well known that, over an Artinian ring, every left R-module is supplemented and so every module is strongly radical supplemented. However, any module over an Artinian ring need not be strongly ss-radical supplemented. For example, consider the ring \mathbb{Z}_8. Then R is not strongly ss-radical supplemented.

Unless stated otherwise, here in after, we assume that every ring is a Dedekind domain which is not field.

For a module M, $P(M)$ indicates the sum of all radical submodules of M. If $P(M) = 0$, then M is called reduced. Note that $P(M)$ is the largest radical submodule of M. Let R be a Dedekind domain and let M be an R-module. Since R is a Dedekind domain, $P(M)$ is the divisible part of M. By [1, Lemma 4 (4)], $P(M)$ is (divisible) injective and so there exists a submodule N of M such that $M = P(M) \oplus N$. Here N is called the reduced part of M.

Proposition 11. Let R be a Dedekind domain and let M be an R-module. Then M is a strongly ss-radical supplemented module if and only if N is strongly ss-radical supplemented, where N is reduced part of M.

Proof. N is a strongly ss-radical supplemented module as a homomorphic image of M by Proposition 3. The converse is by Proposition 8.

Lemma 4. Let R be a Dedekind domain and M be a torsion-free R-module. Then, the following statements are equivalent.

1. M is strongly ss-radical supplemented.

2. M is injective.

Proof. (1) \implies (2) Let U be a maximal submodule of M. Then, U has an ss-supplement, say V, in M. By [8, 41.1 (3)], V is local and so $V \subseteq T(M) = 0$. Therefore $V = 0$. Hence, M has no maximal submodules, i.e. $M = \text{Rad}(M)$. By [1, Lemma 4 (4)], M is injective.

(2) \implies (1) By [1, Lemma 4 (4)] $\text{Rad}(M) = M$ and so, by Proposition 1, M is strongly ss-radical supplemented.

Corollary 10. Let R be a Dedekind domain and M be a strongly ss-radical supplemented module. Then, $\frac{M}{T(M)}$ is injective.
Proposition 12. Let R be a Dedekind domain, M be an R-module and $T(M)$ is strongly ss-radical supplemented. Then, M is strongly ss-radical supplemented if and only if $\frac{M}{T(M)}$ is injective.

Proof. (\implies) Since M is strongly ss-radical supplemented it follows from Proposition 3 that $\frac{M}{T(M)}$ is strongly ss-radical supplemented. Hence, $\frac{M}{T(M)}$ is injective.

(\impliedby) Since $\frac{M}{T(M)}$ is injective, we can write $\text{Rad} \left(\frac{M}{T(M)} \right) = \frac{M}{T(M)}$ by [1, Lemma 4 (4)]. Therefore, this can be proved by taking $N = T(M)$ in the Proposition 7 and hypothesis.

References

Received 02.05.2020