References

  1. Baek C., Davis R.A., Pipiras V. Periodic dynamic factor models: estimation approaches and applications. Electron. J. Stat. 2018, 12 (2), 4377–4411. doi:10.1214/18-EJS1518
  2. Basawa I.V., Lund R., Shao Q. First-order seasonal autoregressive processes with periodically varying parameters. Statist. Probab. Lett. 2004, 67 (4), 299–306. doi:10.1016/j.spl.2004.02.001
  3. Box G.E.P., Jenkins G.M., Reinsel G.C., Ljung G.M. Time series analysis: forecasting and control. 5rd ed., John Wiley & Sons, Hoboken, 2016.
  4. Box G.E.P., Jenkins G.M. Time series analysis: forecasting and control. Holden-Day, San Francisco, 1970.
  5. Dubovets’ka I.I., Moklyachuk M.P. Extrapolation of periodically correlated processes from observations with noise. Theory Probab. Math. Statist. 2014, 88, 67–83. doi:10.1090/S0094-9000-2014-00919-9
  6. Dudek A., Hurd H., Wojtowicz W. Periodic autoregressive moving average methods based on Fourier representation of periodic coefficients. Wiley Interdiscip. Rev. Comput. Stat. 2016, 8 (3), 130–149. doi:10.1002/wics.1380
  7. Franke J. Minimax-robust prediction of discrete time series. Z. Wahrscheinlichkeitstheor. Verw. Geb. 1985, 68 (3), 337–364. doi:10.1007/BF00532645
  8. Gikhman I.I., Skorokhod A.V. Introduction to the theory of random processes. Fizmatlit, Moscow, 1965. (in Russian)
  9. Gladyshev E.G. Periodically correlated random sequences. Dokl. Akad. Nauk SSSR 1961, 137 (5), 1026–1029. (in Russian)
  10. Grenander U. A prediction problem in game theory. Ark. Mat. 1957, 3 (4), 371–379. doi:10.1007/BF02589429
  11. Hannan E.J. Multiple time series. John Wiley & Sons, New York, 1970.
  12. Hosoya Y. Robust linear extrapolations of second-order stationary processes. Ann. Probab. 1978, 6 (4), 574–584. doi:10.1214/aop/1176995479
  13. Johansen S., Nielsen M.O. The role of initial values in conditional sum-of-squares estimation of nonstationary fractional time series models. Econometric Theory 2016, 32 (5), 1095–1139. doi:10.1017/S0266466615000110
  14. Karhunen K. Über lineare methoden in der wahrscheinlichkeitsrechnung. Suomalainen Tiedeakatemia, Helsinki, 1947.
  15. Kassam S.A. Robust hypothesis testing and robust time series interpolation and regression. J. Time Series Anal. 1982, 3 (3), 185–194. doi:10.1111/j.1467-9892.1982.tb00341.x
  16. Kassam S.A., Poor H.V. Robust techniques for signal processing: A survey. Proc. IEEE 1985, 73 (3), 433–481. doi:10.1109/PROC.1985.13167
  17. Kolmogorov A.N. Selected works of A.N. Kolmogorov. Volume II Probability theory and mathematical statistics. In: Shiryayev A.N. (Ed.) Mathematics and its Applications, 26. Kluwer, Dordrecht, 1992.
  18. Kozak P.S., Moklyachuk M.P. Estimates of functionals constructed from random sequences with periodically stationary increments. Theory Probab. Math. Statist. 2018, 97, 85–98. doi:10.1090/tpms/1050
  19. Lund R. Choosing seasonal autocovariance structures: PARMA or SARMA? In: Bell W.R., Holan S.H., McElroy T.S. (Eds.) Economic time series: modelling and seasonality. 2011, Chapman and Hall, London.
  20. Luz M., Moklyachuk M. Minimax-robust prediction problem for stochastic sequences with stationary increments and cointegrated sequences. Stat. Optim. Inf. Comput. 2015, 3 (2), 160–188. doi:10.19139/soic.v3i2.132
  21. Luz M., Moklyachuk M. Estimation of stochastic processes with stationary increments and cointegrated sequences. John Wiley & Sons, New York, 2019.
  22. Masyutka O.Yu., Moklyachuk M.P., Sidei M.I. Filtering of multidimensional stationary sequences with missing observations. Carpathian Math. Publ. 2019, 11 (2), 361–378. doi:10.15330/cmp.11.2.361-378
  23. Moklyachuk M.P. Minimax extrapolation and autoregressive-moving average processes. Theory Probab. Math. Statist. 1990, 41, 77–84.
  24. Moklyachuk M.P. Minimax-robust estimation problems for stationary stochastic sequences. Stat. Optim. Inf. Comput. 2015, 3 (4), 348–419. doi:10.19139/soic.v3i4.173
  25. Moklyachuk M.P., Masyutka A.Yu. Extrapolation of multidimensional stationary processes. Random Oper. Stoch. Equ. 2006, 14 (3), 233–244. doi:10.1515/156939706778239819
  26. Moklyachuk M.P., Masyutka A.Yu. Minimax prediction problem for multidimensional stationary stochastic processes. Comm. Statist. Theory Methods 2011, 40 (19–20), 3700–3710. doi:10.1080/03610926.2011.581190
  27. Moklyachuk M.P., Sidei M.I. Extrapolation problem for stationary sequences with missing observations. Stat., Optim. Inf. Comput. 2017, 5 (3), 212–233. doi:10.19139/soic.v5i3.284
  28. Moklyachuk M.P., Sidei M.I., Masyutka O.Yu. Estimation of stochastic processes with missing observations. Nova Science Publishers, New York, 2019.
  29. Napolitano A. Cyclostationarity: new trends and applications. Signal Process. 2016, 120, 385–408. doi:10.1016/j.sigpro.2015.09.011
  30. Osborn D. The implications of periodically varying coefficients for seasonal time-series processes. J. Econometrics 1991, 48 (3), 373–384. doi:10.1016/0304-4076(91)90069-P
  31. Pinsker M.S., Yaglom A.M. On linear extrapolaion of random processes with \(n\)th stationary incremens. Dokl. Akad. Nauk SSSR. 1954, 94, 385–388. (in Russian)
  32. Porter-Hudak S. An application of the seasonal fractionally differenced model to the monetary aggegrates. J. Amer. Statist. Assoc. 1990, 85 (410), 338–344. doi:10.1080/01621459.1990.10476206
  33. Reisen V.A., Zamprogno B., Palma W., Arteche J. A semiparametric approach to estimate two seasonal fractional parameters in the SARFIMA model. Math. Comput. Simulation 2014, 98, 1–17. doi:10.1016/j.matcom.2013.11.001
  34. Reisen V.A., Monte E.Z., Franco G.C., Sgrancio A.M., Molinares F.A.F., Bondond P., Ziegelmann F.A., Abraham B. Robust estimation of fractional seasonal processes: modeling and forecasting daily average \(SO_2\) concentrations. Math. Comput. Simulation 2018, 146, 27–43. doi:10.1016/j.matcom.2017.10.004
  35. Rockafellar R.T. Convex Analysis. Princeton University Press, Princeton, 1997.
  36. Solci C.C., Reisen V.A., Sarnaglia A.J.Q., Bondon P. Empirical study of robust estimation methods for PAR models with application to the air quality area. Comm. Statist. Theory Methods 2020, 49 (1), 152–168. doi:10.1080/03610926.2018.1533970
  37. Vastola S.K., Poor H.V. Robust Wiener-Kolmogorov theory. IEEE Trans. Inform. Theory 1984, 30 (2), 316–327. doi:10.1109/TIT.1984.1056875
  38. Yaglom A.M. Correlation theory of stationary and related random processes with stationary \(n\)th increments. In: American Mathematical Society Translations: Series 2, 8. American Mathematical Society, Providence, 1958, 87–141. (translation of Mat. Sb. 1955, 37 (79), 141–196. (in Russian))
  39. Yaglom A.M. Correlation theory of stationary and related random functions. Volume I: Basic results, Volume II: Supplementary notes and references. Springer-Verlag, New York, 1987.