References
- Baek C., Davis R.A., Pipiras V. Periodic dynamic factor models:
estimation approaches and applications. Electron. J. Stat. 2018,
12 (2), 4377–4411. doi:10.1214/18-EJS1518
- Basawa I.V., Lund R., Shao Q. First-order seasonal autoregressive
processes with periodically varying parameters. Statist. Probab.
Lett. 2004, 67 (4), 299–306.
doi:10.1016/j.spl.2004.02.001
- Box G.E.P., Jenkins G.M., Reinsel G.C., Ljung G.M. Time series
analysis: forecasting and control. 5rd ed., John Wiley & Sons,
Hoboken, 2016.
- Box G.E.P., Jenkins G.M. Time series analysis: forecasting and
control. Holden-Day, San Francisco, 1970.
- Dubovets’ka I.I., Moklyachuk M.P. Extrapolation of periodically
correlated processes from observations with noise. Theory Probab.
Math. Statist. 2014, 88, 67–83.
doi:10.1090/S0094-9000-2014-00919-9
- Dudek A., Hurd H., Wojtowicz W. Periodic autoregressive moving
average methods based on Fourier representation of periodic
coefficients. Wiley Interdiscip. Rev. Comput. Stat. 2016,
8 (3), 130–149. doi:10.1002/wics.1380
- Franke J. Minimax-robust prediction of discrete time series.
Z. Wahrscheinlichkeitstheor. Verw. Geb. 1985, 68 (3),
337–364. doi:10.1007/BF00532645
- Gikhman I.I., Skorokhod A.V. Introduction to the theory of random
processes. Fizmatlit, Moscow, 1965. (in Russian)
- Gladyshev E.G. Periodically correlated random sequences.
Dokl. Akad. Nauk SSSR 1961, 137 (5), 1026–1029. (in
Russian)
- Grenander U. A prediction problem in game theory. Ark. Mat.
1957, 3 (4), 371–379. doi:10.1007/BF02589429
- Hannan E.J. Multiple time series. John Wiley & Sons, New York,
1970.
- Hosoya Y. Robust linear extrapolations of second-order stationary
processes. Ann. Probab. 1978, 6 (4), 574–584.
doi:10.1214/aop/1176995479
- Johansen S., Nielsen M.O. The role of initial values in
conditional sum-of-squares estimation of nonstationary fractional time
series models. Econometric Theory 2016, 32 (5),
1095–1139. doi:10.1017/S0266466615000110
- Karhunen K. Über lineare methoden in der wahrscheinlichkeitsrechnung.
Suomalainen Tiedeakatemia, Helsinki, 1947.
- Kassam S.A. Robust hypothesis testing and robust time series
interpolation and regression. J. Time Series Anal. 1982,
3 (3), 185–194.
doi:10.1111/j.1467-9892.1982.tb00341.x
- Kassam S.A., Poor H.V. Robust techniques for signal processing: A
survey. Proc. IEEE 1985, 73 (3), 433–481.
doi:10.1109/PROC.1985.13167
- Kolmogorov A.N. Selected works of A.N. Kolmogorov. Volume II
Probability theory and mathematical statistics. In: Shiryayev A.N. (Ed.)
Mathematics and its Applications, 26. Kluwer, Dordrecht, 1992.
- Kozak P.S., Moklyachuk M.P. Estimates of functionals constructed
from random sequences with periodically stationary increments.
Theory Probab. Math. Statist. 2018, 97, 85–98.
doi:10.1090/tpms/1050
- Lund R. Choosing seasonal autocovariance structures: PARMA or SARMA?
In: Bell W.R., Holan S.H., McElroy T.S. (Eds.) Economic time series:
modelling and seasonality. 2011, Chapman and Hall, London.
- Luz M., Moklyachuk M. Minimax-robust prediction problem for
stochastic sequences with stationary increments and cointegrated
sequences. Stat. Optim. Inf. Comput. 2015, 3 (2),
160–188. doi:10.19139/soic.v3i2.132
- Luz M., Moklyachuk M. Estimation of stochastic processes with
stationary increments and cointegrated sequences. John Wiley & Sons,
New York, 2019.
- Masyutka O.Yu., Moklyachuk M.P., Sidei M.I. Filtering of
multidimensional stationary sequences with missing observations.
Carpathian Math. Publ. 2019, 11 (2), 361–378.
doi:10.15330/cmp.11.2.361-378
- Moklyachuk M.P. Minimax extrapolation and autoregressive-moving
average processes. Theory Probab. Math. Statist. 1990,
41, 77–84.
- Moklyachuk M.P. Minimax-robust estimation problems for stationary
stochastic sequences. Stat. Optim. Inf. Comput. 2015,
3 (4), 348–419. doi:10.19139/soic.v3i4.173
- Moklyachuk M.P., Masyutka A.Yu. Extrapolation of multidimensional
stationary processes. Random Oper. Stoch. Equ. 2006,
14 (3), 233–244. doi:10.1515/156939706778239819
- Moklyachuk M.P., Masyutka A.Yu. Minimax prediction problem for
multidimensional stationary stochastic processes. Comm. Statist.
Theory Methods 2011, 40 (19–20), 3700–3710.
doi:10.1080/03610926.2011.581190
- Moklyachuk M.P., Sidei M.I. Extrapolation problem for stationary
sequences with missing observations. Stat., Optim. Inf. Comput.
2017, 5 (3), 212–233. doi:10.19139/soic.v5i3.284
- Moklyachuk M.P., Sidei M.I., Masyutka O.Yu. Estimation of stochastic
processes with missing observations. Nova Science Publishers, New York,
2019.
- Napolitano A. Cyclostationarity: new trends and
applications. Signal Process. 2016, 120, 385–408.
doi:10.1016/j.sigpro.2015.09.011
- Osborn D. The implications of periodically varying coefficients
for seasonal time-series processes. J. Econometrics 1991,
48 (3), 373–384. doi:10.1016/0304-4076(91)90069-P
- Pinsker M.S., Yaglom A.M. On linear extrapolaion of random
processes with \(n\)th stationary
incremens. Dokl. Akad. Nauk SSSR. 1954, 94,
385–388. (in Russian)
- Porter-Hudak S. An application of the seasonal fractionally
differenced model to the monetary aggegrates. J. Amer. Statist.
Assoc. 1990, 85 (410), 338–344.
doi:10.1080/01621459.1990.10476206
- Reisen V.A., Zamprogno B., Palma W., Arteche J. A semiparametric
approach to estimate two seasonal fractional parameters in the SARFIMA
model. Math. Comput. Simulation 2014, 98, 1–17.
doi:10.1016/j.matcom.2013.11.001
- Reisen V.A., Monte E.Z., Franco G.C., Sgrancio A.M., Molinares
F.A.F., Bondond P., Ziegelmann F.A., Abraham B. Robust estimation of
fractional seasonal processes: modeling and forecasting daily average
\(SO_2\) concentrations. Math.
Comput. Simulation 2018, 146, 27–43.
doi:10.1016/j.matcom.2017.10.004
- Rockafellar R.T. Convex Analysis. Princeton University Press,
Princeton, 1997.
- Solci C.C., Reisen V.A., Sarnaglia A.J.Q., Bondon P. Empirical
study of robust estimation methods for PAR models with application to
the air quality area. Comm. Statist. Theory Methods 2020,
49 (1), 152–168. doi:10.1080/03610926.2018.1533970
- Vastola S.K., Poor H.V. Robust Wiener-Kolmogorov theory.
IEEE Trans. Inform. Theory 1984, 30 (2), 316–327.
doi:10.1109/TIT.1984.1056875
- Yaglom A.M. Correlation theory of stationary and related random
processes with stationary \(n\)th
increments. In: American Mathematical Society Translations: Series 2, 8.
American Mathematical Society, Providence, 1958, 87–141. (translation of
Mat. Sb. 1955, 37 (79), 141–196. (in Russian))
- Yaglom A.M. Correlation theory of stationary and related random
functions. Volume I: Basic results, Volume II: Supplementary notes and
references. Springer-Verlag, New York, 1987.