References
- Acar Ö., Altun I. A fixed point theorem for multivalued mappings
with \(\delta\)-distance. Abstr.
Appl. Anal. 2014, article ID 497092. doi:10.1155/2014/497092
- Agarwal R.P., O’Regan D., Sahu D.R. Fixed Point Theory for
Lipschitzian-type Mappings with Applications, Springer-Verlag, New York,
2009.
- Altun I. Fixed point theorems for generalized \(\varphi\)-weak contractive multivalued maps
on metric and ordered metric spaces. Arab. J. Sci. Eng. 2011,
36 (8), 1471–1483. doi:10.1007/s13369-011-0135-8
- Banach S. Sur les opérations dans les ensembles abstraits et leur
application aux équations intégrales. Fund. Math. 1922,
3 (1), 133–181.
- Berinde V. On the approximation of fixed points of weak
contractive mappings. Carpathian J. Math. 2003,19
(1), 7–22.
- Berinde V., Pacurar M. The role of the Pompeiu-Hausdorff metric
in fixed point theory. Creat. Math. Inform. 2013,
22 (2), 143–150.
- Branciari A. A fixed point theorem formappings satisfying a
general contractive condition of integral type. Int. J. Math. Math.
Sci. 2002, 29 (9), 531–536, article ID 641824.
doi:10.1155/S0161171202007524
- Ćirić Lj.B. A generalization of Banach’s contraction
principle. Proc. Amer. Math. Soc. 1974, 45 (2),
267–273. doi:10.2307/2040075
- Ćirić Lj.B. Multi-valued nonlinear contraction mappings.
Nonlinear Anal. 2009, 71 (7–8) 2716–2723. doi:10.1016/j.na.2009.01.116
- Hardy G.E., Rogers T.D. A generalization of a fixed point theorem
of Reich. Canad. Math. Bull. 1973, 16 (2),
201–206. doi:10.4153/CMB-1973-036-0
- Klim D., Wardowski D. Fixed point theorems for set-valued
contractions in complete metric spaces. J. Math. Anal. Appl. 2007,
334 (1), 132–139. doi:10.1016/j.jmaa.2006.12.012
- Mizoguchi N., Takahashi W. Fixed point theorems for multivalued
mappings on complete metric spaces. J. Math. Anal. Appl. 1989,
141 (1), 177–188. doi:10.1016/0022-247X(89)90214-X
- Nadler S.B. Multi-valued contraction mappings. Pacific J.
Math. 1969, 30 (2), 475–488.
- Acar Ö., Durmaz G., Mınak G. Generalized multivalued \(F\)-contractions on complete metric
spaces. Bull. Iranian Math. Soc. 2014, 40 (6),
1469–1478.
- Reich S. Fixed points of contractive functions. Boll. Unione
Mat. Ital. 1972, 5, 26–42.
- Reich S. Some fixed point problems. Atti Accad. Naz. Lincei
Rend. Lincei Mat. Appl. 1974, 57 (3–4), 194–198.
- Suzuki T. A generalized Banach contraction principle that
characterizes metric completeness. Proc. Amer. Math. Soc. 2008,
136 (5), 1861–1869.
doi:10.1090/S0002-9939-07-09055-7
- Suzuki T. Mizoguchi-Takahashi’s fixed point theorem is a real
generalization of Nadler’s. J. Math. Anal. Appl. 2008,
340 (1), 752–755. doi:10.1016/j.jmaa.2007.08.022
- Wardowski D. Fixed points of a new type of contractive mappings
in complete metric spaces Fixed Point Theory Appl. 2012, article
number 94 (2012). doi:10.1186/1687-1812-2012-94