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In this paper we study the semigroup foz/ (N) of partial co-finite almost monotone bijective
transformations of the set of positive integers N. We show that the semigroup .#2"(N) has
algebraic properties similar to the bicyclic semigroup: it is bisimple and all of its non-trivial
group homomorphisms are either isomorphisms or group homomorphisms. Also we prove that
every Baire topology 7 on .7 (N) such that (#2'(N),7) is a semitopological semigroup is
discrete, describe the closure of (£ (N),7) in a topological semigroup and construct non-
discrete Hausdorff semigroup topologies on .7 (N).

INTRODUCTION AND PRELIMINARIES

In this paper all spaces are assumed to be Hausdorff. Furthermore we shall follow the
terminology of [6, 7, 10, 27]. By w we shall denote the first infinite cardinal.

An algebraic semigroup S is called inverse if for any element z € S there exists the
unique 2! € S such that 227 'z = 2 and 27 'zz~! = 2!, The element z~! is called the
inverse of v € S. If S is an inverse semigroup, then the function inv: S — S which assigns
to every element x of S its inverse element 27! is called an inversion.

If S is a semigroup, then by FE(S) we shall denote the band (i. e. the subset of idempo-
tents) of S. If the band F(S) is a non-empty subset of S, then the semigroup operation on
S determines the partial order < on E(S): e < f if and only if ef = fe = e. This order is
called natural. A semilattice is a commutative semigroup of idempotents. A semilattice E is
called linearly ordered or chain if the semilattice operation admits a linear natural order on
E. A mazimal chain of a semilattice E is a chain which is properly contained in no other
chain of E. The Axiom of Choice implies the existence of maximal chains in any partially
ordered set. According to |25, Definition I1.5.12] chain L is called w-chain if L is isomorphic

to {0, —1,—2,—3, ...} with the usual order <. Let E be a semilattice and e € E. We denote
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le={feFE|f<etandTe={fe€ E|e< f}. By (Z.,(N),C) we shall denote the free
semilattice with identity over the set of positive integers N.
If S is a semigroup, then by Z, £, 2 and . the Green relations on S (see [7]):

ab if and only if aS' = bS*;
a.Zb if and only if S'a = S'b;
D=L oRR=XoL,
H=LNX.

A semigroup S is called simple if S does not contain proper two-sided ideals and bisimple if
all elements of S are Z-equivalent.

A semitopological (resp. topological) semigroup is a topological space together with a
separately (resp. jointly) continuous semigroup operation.

Let .#\ denote the set of all partial one-to-one transformations of a set X of cardinality
A together with the following semigroup operation: x(af) = (za)f if z € dom(af) = {y €
doma | ya € dom g}, for a, f € #,. The semigroup %, is called the symmetric inverse
semigroup over the set X (see [7]). The symmetric inverse semigroup was introduced by
Wagner [29] and it plays a major role in the theory of semigroups.

We denote £ = {a € £, | ranka < n}, for n = 1,2,3,.... Obviously, .#" (n =
1,2,3,...) is an inverse semigroup, .#" is an ideal of .#, for each n = 1,2,3,.... Further,
we shall call the semigroup #\' the symmetric inverse semigroup of finite transformations
of the rank n.

Let N be the set of all positive integers. By #{(N) we shall denote the semigroup of
monotone, non-decreasing, injective partial transformations of N such that the sets N\ dom ¢
and N\ rank ¢ are finite for all ¢ € £ (N). Obviously, #{ (N) is an inverse subsemigroup
of the semigroup .#,,. The semigroup £ (N) is called the semigroup of co-finite monotone
partial bijections of N [19].

We shall denote every element a of the semigroup .%, by ( v s T )
mi; Mg M3 My
and this means that o maps the positive integer n; into m; for all 7+ = 1,2, 3,.... We observe

that an element a of the semigroup .#, is an element of the semigroup .#{ (N) if and only
if it satisfies the following conditions:

(1) the sets N\ {ny,no,n3,ny,...} and N\ {mq, mg, mg,my, ...} are finite;
(1i)) ny <ng<ng<mng<...andmg <mg<mzg<mg<....

A partial map a: N — N is called almost monotone if there exists a finite subset A of N
such that the restriction « [y\a: N\ A — N is a monotone partial map.

By .27 (N) we shall denote the semigroup of monotone, almost non-decreasing, injective
partial transformations of N such that the sets N\ dom ¢ and N\ rank ¢ are finite for all
¢ € 7 (N). Obviously, .#7(N) is an inverse subsemigroup of the semigroup ., and the
semigroup .#Z (N) is an inverse subsemigroup of .#7(N) too. The semigroup .7 (N) is
called the semigroup of co-finite almost monotone partial bijections of N. We observe that
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an element « of the semigroup .7, is an element of the semigroup .#7(N) if and only if it
satisfies conditions (i) and (z4i):

(731) there exists a positive integer i such that n, < n;1 < mio < niyg < ... and
My < Migpg < My < Mygpg < ...

Further by I we shall denote the identity of the semigroup £ (N).

The bicyclic semigroup % (p, ¢) is the semigroup with the identity 1 generated by elements
p and ¢ subject only to the condition p¢g = 1. The bicyclic semigroup is bisimple and
every one of its congruences is either trivial or a group congruence. Moreover, every non-
annihilating homomorphism h of the bicyclic semigroup is either an isomorphism or the
image of € (p, q) under h is a cyclic group (see |7, Corollary 1.32]). The bicyclic semigroup
plays an important role in algebraic theory of semigroups and in the theory of topological
semigroups. For example the well-known result of Andersen [1] states that a (0-)simple
semigroup is completely (0-)simple if and only if it does not contain the bicyclic semigroup.
The bicyclic semigroup admits only the discrete topology and a topological semigroup S
can contain % (p,q) only as an open subset [9]. Neither stable nor I'-compact topological
semigroups can contain a copy of the bicyclic semigroup |2, 21]. Also, the bicyclic semigroup
does not embed into a countably compact topological inverse semigroup [18|. Moreover, in [3|
and [4] the conditions were given when a countable compact or pseudocompact topological
semigroup does not contain the bicyclic semigroup. However, Banakh, Dimitrova and Gutik
constructed with set-theoretic assumptions (Continuum Hypothesis or Martin Axiom) an
example of a Tychonoff countable compact topological semigroup which contains the bicyclic
semigroup [4].

Many semigroup theorists have considered a topological semigroup of (continuous) trans-
formations of an arbitrary topological space. Beida [5], Orlov [23, 24|, and Subbiah [28] have
considered semigroup and inverse semigroup topologies of semigroups of partial homeomor-
phisms of some classes of topological spaces.

Gutik and Pavlyk [14] considered the special case of the semigroup .#y": an infinite
topological semigroup of A\ x A-matrix units B,. They showed that an infinite topological
semigroup of A X A-matrix units B) does not embed into a compact topological semigroup
and that B, is algebraically h-closed in the class of topological inverse semigroups. They
also described the Bohr compactification of By, minimal semigroup and minimal semigroup
inverse topologies on B).

Gutik, Lawson and Repovs [13] introduced the notion of a semigroup with a tight ideal
series and investigated their closures in semitopological semigroups, particularly inverse semi-
groups with continuous inversion. As a corollary they showed that the symmetric inverse
semigroup of finite transformations .#* of infinite cardinal A is algebraically closed in the
class of (semi)topological inverse semigroups with continuous inversion. They also derived
related results about the nonexistence of (partial) compactifications of classes of considered
semigroups.

Gutik and Reiter [16] showed that the topological inverse semigroup .#}" is algebraically
h-closed in the class of topological inverse semigroups. They also proved that a topological
semigroup S with countably compact square S x S does not contain the semigroup .#)
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for infinite cardinals A\ and showed that the Bohr compactification of an infinite topological
semigroup .#" is the trivial semigroup.

In [17] Gutik and Reiter showed that the symmetric inverse semigroup of finite trans-
formations .#)' of infinite cardinal A is algebraically closed in the class of semitopological
inverse semigroups with continuous inversion. There they described all congruences on the
semigroup ;" and all compact and countably compact topologies 7 on .#;" such that ()", 7)
is a semitopological semigroup.

Gutik, Pavlyk and Reiter [15] showed that a topological semigroup of finite partial bijec-
tions .#" of infinite set with a compact subsemigroup of idempotents is absolutely H-closed.
They proved that no Hausdorff countably compact topological semigroup and no Tychonoff
topological semigroup with pseudocompact square contain .#' as a subsemigroup. They
proved that every continuous homomorphism from topological semigroup .#}" into a Haus-
dorff countably compact topological semigroup or Tychonoff topological semigroup with
pseudocompact square is annihilating. Also they gave sufficient conditions for a topological
semigroup .} to be non-H-closed and showed that the topological inverse semigroup .#,! is
absolutely H-closed if and only if the band E(.#)) is compact [15].

In [19] Gutik and Repovs studied the semigroup .#{ (N) of partial cofinite monotone
bijective transformations of the set of positive integers N. They showed that the semigroup
#{ (N) has algebraic properties similar to the bicyclic semigroup: it is bisimple and all
of its non-trivial group homomorphisms are either isomorphisms or group homomorphisms.
They proved that every locally compact topology 7 on £ (N) such that (£ (N),7) is
a topological inverse semigroup, is discrete and describe the closure of (.#{(N),7) in a
topological semigroup.

We remark that the bicyclic semigroup is isomorphic to the semigroup (7, o) which
is generated by partial transformations m and o of the set of positive integers N, defined as
follows:

mr=n+1 ifn>1, and (njo=n—1 1if n>1.

Therefore the semigroup .#{ (N) contains an isomorphic copy of the bicyclic semigroup
%(p. q).

In the present paper we study the semigroup .7 (N) of partial co-finite almost monotone
bijective transformations of the set of positive integers N. We show that the semigroup
#7(N) has algebraic properties similar to the bicyclic semigroup: it is bisimple and all of its
non-trivial group homomorphisms are either isomorphisms or group homomorphisms. Also
we prove that every Baire topology 7 on £ (N) such that (.7 (N), 7) is a semitopological
semigroup is discrete, describe the closure of (£ (N),7) in a topological semigroup and
construct non-discrete Hausdorff semigroup topologies on .77 (N).

1 ALGEBRAIC PROPERTIES OF THE SEMIGROUP £/ (N)

Proposition 1.1. (i) An element o of the semigroup .7 (N) is an idempotent if and
only if (z)a = x for every € dom a, and hence E(.#) (N)) = E(.%{ (N)).

(ii) Ife,. € E(#7(N)), then ¢ < ¢ if and only if dome C dom .
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(iii) The semilattice E(.#) (N)) is isomorphic to (2, (N),C) under the mapping (¢)h =
N\ dome.

(iv) Every maximal chain in E(.#7 (N)) is an w-chain.
(v) Foreverye,. € E(.#7(N)) there exists « € £ (N) such that aa™! = ¢ and a o = .
(vi) Y (N) is a simple semigroup.
(vii) aZB in £7 (N) if and only if dom o = dom 3.
(viii) a3 in 7 (N) if and only if rank a = rank 3.
(i) aB in #7(N) if and only if dom o = dom 8 and rank a = rank 3.
() #Y(N) is a bisimple semigroup.

Proof. Statements (i) — (iv) are trivial and their proofs follow from the definition of the
semigroup .77 (N).

(v) For the idempotents ¢ = ( N ) and ¢ = ( holy s by )

my Mg M3 My ... i Iy I3 1y ...
mip Mgy M3 My
bl I3 Uy
(vi) Let a = < R ) and 3 = (kl Ra kg ko ) be any el-
my Mg M3z My ... Loy I3 1y ...
ements of the semigroup £ (N), where n;,m; ki, l; € N for i = 1,2,3,... . We put
v o= (kl ko ks Ky ) and § = (ml Mz Mg T ) Then we have that
ny Ng N3 Ng ... LWl I3 Iy ...

yad = B. Therefore .#7 (N)-a- £ (N) = #7(N) for any a € £/ (N) and hence £ (N)
is a simple semigroup.

(vii) Let o, 8 € £7(N) be such that aZf3. Since a7 (N) = 3.2 (N) and .7 (N) is
an inverse semigroup, Theorem 1.17 [7] implies that a2 (N) = aa"'.Z7(N), .27 (N) =
BB 177 (N) and aa~! = 837L. Hence dom o = dom 3.

Conversely, let «, € JOZ/(N) be such that doma = dom 3. Then aa™! = 837!, Since
#7(N) is an inverse semigroup, Theorem 1.17 [7] implies that o) (N) = aa 1.7 (N) =
LY (N) and hence a.?” (N) = 377 (N).

The proof of statement (vii7) is similar to (viz).

Weputa:( '”).ThenaalzgandozlozzL.

Statement (iz) follows from (vii) and (viii).
(x) By statements (vii) and (viii) it is sufficient to show that every distinct idempotents of
my Mo Mg My ... )

the semigroup £ (N) are Z-equivalent. For idempotents ¢ = (
my Mo Mg MMy

and 1 = bty ls by we put o = M e s T . Then by statements
by Iy I3 1y ... R > SR VR

(vii) and (viii) we have that eZa and a.Zt, and hence € Z.. O
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Proposition 1.2. For every o, € #£Y(N), both sets {x € ZZ(N) | a-x = B} and
{x € Z(N) | x - a = 8} are finite. Consequently, every right translation and every left
translation by an element of the semigroup .#7 (N) is a finite-to-one map.

Proof. Wedenote A ={xy € 7 (N)|a-x=8}and B={x € £V (N) |at-a-x =a 1. 3}.
Then A C B and the restriction of any partial map x € B to dom(a™!-«) coincides with the
partial map a~!- 3. Since every partial map from the semigroup .#”"(N) is almost monotone
(i. e., almost non-decreasing) and co-finite, the set B is finite and hence so is A. ]

For an arbitrary non-empty set X we denote by S..(X) the group of all bijective transfor-
mations of X with finite supports (i. e., @ € S (X) if and only if the set {z € X | (x)a # z}
is finite).

The definition of the semigroup .77 (N) implies the following proposition:

Proposition 1.3. Every maximal subgroup of the semigroup .7 (N) is isomorphic to
Seo(N).

The semigroup £ (N) contains .#{ (N) as a subsemigroup and Theorem 2.9 of [19]
states that if S is a semigroup and h: £ (N) — S is a non-annihilating homomorphism,
then either h is a monomorphism or (.#Z (N))h is a cyclic subgroup of S. This arises the
following problem: To describe all homomorphisms of the semigroup £ (N).

The definition of the semigroup .#7 (N) implies the following proposition:

Proposition 1.4. For every v € £ (N) there exists n, € N such that i —n., = (i)a— (n,)«
for alli > n,, 1 € N.

Lemma 1.1. For every v € #7(N) there exists an idempotent ¢ € éy(m,0) such that
v e, € Gn(m, o). Consequently, for every idempotent 1 € £) (N) there exists gy €
E(én(m,0)) such that 1 - ey = eg - L = &o.

Proof. Let n,€N be such as in the statement of Proposition 1.4. We put m.,=max{n., (n,)vy}

and define
. my my+1 m,+2 -
N my my+1 m,+2 '

Then we have that v -, -y € én(m,0).

Let ¢ be an arbitrary idempotent of the semigroup .77 (N). By the first assertion of the
lemma there exists ¢ € F(%y(m,0)) such that ¢ - & € Gy(m, o). Since the semigroup .#7 (N)
is inverse Theorem 1.17 [7]| implies that g = ¢-& = ¢ - ¢ is an idempotent of 6y(7m, o). Hence
we have that ¢-cy =¢¢ -t = &g. O

Lemma 1.2. Let S be a semigroup and h: .7 (N) — S be a non-annihilating homomor-
phism such that the set (E(éx(m,0)))h is singleton. Then (2.7 (N))h = (¢i(r,0))h.

Proof. Suppose that (E(%én(m,0)))h = {e}. Since .#7(N) is an inverse semigroup and
E(#7 (N)) = E(%n(m,0)) we conclude that e is a unique idempotent in (.#.7'(N))h. Fix
an arbitrary element + of .#7(N). Let ¢ be such as in Lemma 1.1. Then we have
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(Mh=0H-7Dh=Nh- (v Nh=(h-()h = (v-e)h € (6u(r,0))h,
the assertion of the lemma holds. O
We need the following theorem from [19]:

Theorem 1 (|19, Theorem 2.9]). Let S be a semigroup and h: #{(N) — S a non-
annihilating homomorphism. Then either h is a monomorphism or (%4 (N))h is a cyclic
subgroup of S.

Lemma 1.3. Let S be a semigroup and h: £ (N) — S be a homomorphism such that
the restriction h|g(ro): €n(m,0) — (én(m,0))h C S is an isomorphism. Then h is an
isomorphism.

Proof. Suppose to the contrary that the map h: .7 (N) — S is not an isomorphism. Then
by Theorem 1 we have that the restriction h| ;- IL(N) — (FL(N))h C S is an iso-
morphism. Since .#7'(N) is an inverse semigroup we conclude that if (a)h = (3)h for some
a, 3 € Y (N) then aZ3. Otherwise if a and 3 are not J#-equivalent and (a)h # (8)h
then (a')h # (371 and therefore either (aa™')h # (867 1)h or (a ta)h # (B718)h, a
contradiction to the assumption that the restriction h|f§>(N) : L (N) — (FL(N))h C Sisan
isomorphism. Thus by the Green Theorem (see |7, Theorem 2.20]) without loss of generality
we can assume that (I)h = (a)h for some o € H(I). Since the group S, (N) has only one
proper normal subgroup and such subgroup is the group A, (N) of even permutations of N
(see [22] and [12, pp. 313-314, Example|) we conclude that (A (N))h = (I)h. We denote

5 1 2345 .« n - nd o 345 .. p ...
“\23145 - n - 2=\1 45 .. n .. )"
Then € Ao (N). Therefore we have that

(6172)h = (8172 . ]I)h = (6172)h . (H)h = (6172)h . (5)h = (6172 . ﬁ)h

and similarly (e12)h = (5 - £12)h. Since

29 4 5 o . 345 .. o o
5'8172_(3 45 ... n ) and 5172'6_(1 45 ... n )

we conclude that 8- ¢e19,612 - 3 € #L(N). Hence by Theorem 1 the set (.#£ (N))h contains
only one idempotent and therefore the assertions of Lemma 1.2 hold. This completes the
proof of the lemma. O

Theorem 1 and Lemmas 1.2 and 1.3 imply the following theorem:

Theorem 2. Let S be a semigroup and h: .7 (N) — S a non-annihilating homomorphism.
Then either h is a monomorphism or (£ (N))h is a cyclic subgroup of S.
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2 TOPOLOGIZATIONS OF SOME CLASSES OF COUNTABLE SEMIGROUPS

Definition 2.1. We shall say that a semigroup S has:
e an S-property if for every a,b € S there exist c¢,d € S such that c-a-d = b;

e an F-property if for every a,b,c,d € S* thesets {x € S | a-x =b} and {x € S | x-c = d}
are finite or empty;

e an FS-property if S has F- and S-properties.
Remark 2.1. We observe that
1) every simple (resp., left simple, right simple) semigroup has S-property;
2) every free (Abelian) semigroup has F-property;
3) #7(N), #/(N) and the bicyclic semigroup have FS-property.

Lemma 2.1. Let S be a Hausdorff semitopological semigroup with FS-property. If S has
an isolated point then S is the discrete topological space.

Proof. Let t be an isolated point in S. Since the semigroup S has the FS-property we conclude
that for every s € S there exist a,b € S* such that a-s-b =t and the equation a-x-b =1
has a finite set of solutions. Therefore the continuity of translations in (.S, 7) implies that
the element s has a finite open neighbourhood, and hence Hausdorffness of (S, 7) implies
that s is an isolated point of (S, 7). This completes the proof of the lemma. [

A topological space X is called Baire if for each sequence A;, As, ..., A;,... of nowhere

dense subsets of X the union U A; is a co-dense subset of X [10].

i=1
Theorem 3. Let S be a countable semigroup with FS-property. Then every Baire topology
7 on S such that (S, 7) is a Hausdorff semitopological semigroup is discrete.

Proof. We consider countable cover I' = {s | s € S} of the Baire space (5, 7). Then there
exists an isolated point ¢ in S. By Lemma 2.1 the topological space is discrete. O

A Tychonoff space X is called Cech complete if fot every compactification ¢X of X the
remainder c¢X \ ¢(X) is an F,-set in ¢X [10].

Since every Cech complete space (and hence every locally compact space) is Baire, The-
orem 3 implies the following:

Corollary 2.1. Every Hausdorff Cech complete (locally compact) countable semitopological
semigroup with FS-property is discrete.

A topological space X is called hereditary Baire if every closed subset of X is a Baire
space [10]. Every Cech complete (and hence locally compact) space is hereditary Baire
(see [10, Theorem 3.9.6]). We shall say that a Hausdorff semitopological semigroup S is an
I-Baire space if either sS or Ss is a Baire space for every s € S.
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Remark 2.2. We observe that every left ideal Ss and every right ideal sS of a regular
semigroup S are generated by some idempotents of S. Therefore every principal left or right
ideal of a regular Hausdorff semitopological semigroup S is a closed subset of S. Hence every
regular Hausdorff hereditary Baire semitopological semigroup is the I-Baire space.

Theorem 4. Let S be a countable semilattice with F-property. Then every I-Baire topology
7 on S such that (S, 7) is a Hausdorff semitopological semilattice is discrete.

Proof. Let s be an arbitrary element of the semilattice S. We consider a countable cover
I'={e| e € sS}of sS. Since (S,7) is an [-Baire space we conclude that there exists an
isolated point ¢ in sS. Since S is a semilattice we have that s-¢ =¢. Then 7,4t = {x € sS5 |
x-t =t} is a finite subset of S which contains s and by Proposition VI-1.13 [11] we get that
T4st is an open subset of sS. Hence there exists an open neighbourhood U(s) of s in S such
that U(s) NsS = {s}. The continuity of translations in S implies that there exists an open
neighbourhood V'(s) C U(s) such that V(s) C {z € S| z-s = s}. Since the semilattice S is
Hausdorff and has F-property we have that s is an isolated point of S. O]

Theorem 4 implies the following:

Corollary 2.2. Every [-Baire topology T on the countable free semilattice F'SL,, such that
(F'SL,,T) is a Hausdorff semitopological semilattice is discrete.

3 ON TOPOLOGIZATIONS AND CLOSURES OF THE SEMIGROUP £ (N)

Theorem 3 implies the following two corollaries:

Corollary 3.1. Every Baire topology 7 on .7 (N) such that (#7 (N),7) is a Hausdorff
semitopological semigroup is discrete.

Corollary 3.2. Every Baire topology 7 on .4 (N) such that (.#{(N),7) is a Hausdorff
semitopological semigroup is discrete.

We observe that Corollary 3.2 generalizes Theorem 3.3 from [19].
The following example shows that there exists a non-discrete topology 77 on the semi-
group £/ (N) such that (.#7(N), 7x) is a Tychonoff topological inverse semigroup.

Example 3.1. We define a topology 7r on the semigroup .#.Y (N) as follows. For every
a € £ (N) we define a family

PBr(a) ={U,(F) | F is a finite subset of dom o},
where
Uy(F)={8 € #7(N) | doma = dom 8,ran o = ran # and (x)3 = (z)o for all z € F}.

Since conditions (BP1)-(BP3) [10] hold for the family {%r(a)}
the family {Br(a)}

acsl (v We conclude that

(v 18 the base of the topology 7r on the semigroup I (N).

aeﬂg
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Proposition 3.1. (£ (N), 7x) is a Tychonoff topological inverse semigroup.

Proof. Let o and 3 be arbitrary elements of the semigroup .#7" (N). We put v = o3 and let
F = {nq,...,n;} be a finite subset of dom~. We denote m; = (n)a,...,m; = (n;)o and
ki = (n1)7,..., ki = (n;)y. Then we get that (my)8 = ki,...,(m;)8 = k;. Hence we have
that

Us({n1,...,n:}) - Us({ma,...,m;}) CU,({n1,...,n;})

and
-1

(Uy({n1,-..,n})) " CU~({k,... . ki}).
Therefore the semigroup operation and the inversion are continuous in (£ (N), 7p).

We observe that the group of units H(I) of the semigroup .7 (N) with the induced
topology 7r(H (I)) from (£Y (N), 1) is a topological group (see [12, pp. 313-314, Example]
and [22|) and the definition of the topology 77 implies that every J#-class of the semigroup
#7 (N) is an open-and-closed subset of the topological space (£ (N), 7). Therefore Theo-
rem 2.20 [7] implies that the topological space (.#7 (N), 1) is homeomorphic to a countable
topological sum of topological copies of (H(I), 7(H(I))). Since every Ty-topological group
is a Tychonoff topological space (see |26, Theorem 3.10]) we conclude that the topological
space (£ (N), 1) is Tychonoff too. This completes the proof of the proposition. O

Remark 3.1. We observe that the topology 7 on £ (N) induces discrete topologies on
the subsemigroups .#{ (N) and E(.#) (N)).

Example 3.2. We define a topology Twr on the semigroup £ (N) as follows. For every
a € 7Y (N) we define a family

PBwr(a) = {U(F) | F is a finite subset of dom a},
where
Ul(F)={8 € #7(N) | dom 8 C doma and (z)3 = (z)a for all z € F}.

Since conditions (BP1)—(BP3) [10] hold for the family {%Wp(a)}aejy(N) we conclude that
the family {Pwr(a)},c v g is the base of the topology Twr on the semigroup JY(N).

Proposition 3.2. (£ (N), 7yr) is a Hausdorff topological inverse semigroup.

Proof. Let a and 3 be arbitrary elements of the semigroup .7 (N). We put v = a3 and let
F = {ny,...,n;} be a finite subset of dom~. We denote m; = (n1)a,...,m; = (n;)a and
ki = (n1)y,...,k = (n;)y. Then we get that (my)3 = kq,...,(m;)3 = k;. Hence we have
that
Us({n1,...,n:}) - Usg({ma,...,m;}) CU,({n1,...,n;})
and
(U, ({n1, ;)" C U (ks Ki))
Therefore the semigroup operation and the inversion are continuous in (.Z7 (N), Tz ).

Later we shall show that the topology mwr is Hausdorff. Let o and ( be arbitrary distinct
points of the space (£ (N), 7wr). Then only one of the following conditions holds:
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(1) doma = dom f3;
(77) dom «a # dom S.

In case dom av = dom 3 we have that there exists € dom « such that (z)a # (z)3. The
definition of the topology Twr implies that U, ({z}) N Us({z}) = @.
If dom a # dom 3, then only one of the following conditions holds:

(a) doma & dom 3;
(b) dom 8 G doma;
(¢) doma \ dom 3 # @ and dom 3\ dom «v # @.

Suppose that case (a) holds. Let z € dom 8\ dom« and y € dom . The definition of
the topology mwr implies that U,({y}) N Us({z}) = @.

Case (b) is similar to (a).

Suppose that case (¢) holds. Let z € dom( \ doma and y € doma \ dom 3. The
definition of the topology mywr implies that U, ({y}) N Us({z}) = @.

This completes the proof of the proposition. n

Remark 3.2. We observe that the topology Twr on £ (N) induces non-discrete topologies
on the semigroup %4 (N) and the semilattice E(.#. (N)). Moreover, every -class of the
semigroup (Y (N), 7wr) is homeomorphic to every J#-class of the semigroup (£ (N), )

The proof of the following proposition is similar to Theorem 3:

Proposition 3.3. Every Hausdorff Baire topology T on a countable group G such that left
(right) translations in (G, T) are continuous is discrete.

Theorem 5. Let S be a topological semigroup which contains an infinite dense discrete
subspace A such that every equations a - x = b and y - ¢ = d have finitely many solutions in
A. Then I = S\ A is an ideal of S.

Proof. Suppose that I is not an ideal of S. Then at least one of the following conditions
holds:
1) IAZ I, 2) AI ¢ I, or 3)IT ¢ I

Since A is a discrete dense subspace of S, Theorem 3.5.8 [10] implies that A is an open
subspace of S. Suppose there exist a € A and b € I such that b-a = ¢ ¢ I. Since A is
a dense open discrete subspace of S the continuity of the semigroup operation in S implies
that there exists an open neighbourhood U(b) of b in S such that U(b) - {a} = {c}. But by
Proposition 1.2 the equation x - a = ¢ has finitely many solutions in A. This contradicts the
assumption that b € S\ A. Therefore b-a = ¢ € I and hence TA C I. The proof of the
inclusion Al C [ is similar.

Suppose there exist a,b € I such that a-b = c ¢ I. Since A is a dense open discrete
subspace of S the continuity of the semigroup operation in S implies that there exist open
neighbourhoods U(a) and U(b) of a and b in S, respectively, such that U(a) - U(b) = {c}.



130 CHUCHMAN [.YA., GuTik O.V.

But by Proposition 1.2 the equations = - ay = ¢ and by - y = ¢ have finitely many solutions
in A. This contradicts the assumption that a,b € S\ A. Therefore a-b = ¢ € I and hence
I1C1. O

Theorem 5 implies Corollaries 3.3 and 3.4:

Corollary 3.3. Let S be a topological semigroup which contains a dense discrete subsemi-
group SV (N). If I = S\ £7 (N) # & then I is an ideal of S.

Corollary 3.4 ([19]). Let S be a topological semigroup which contains a dense discrete
subsemigroup 9 (N). If [ = S\ #{(N) # & then [ is an ideal of S.

Proposition 3.4. Let S be a topological semigroup which contains a dense discrete sub-
semigroup .#7 (N). Then for every c € .Y (N) the set

D(A) = {(z,y) € ZL(N) x L (N) |z -y = ¢}
is a closed-and-open subset of S x S.

Proof. Since .#7'(N) is a discrete subspace of S we have that D.(A) is an open subset of
S xS.

Suppose that there exists ¢ € 7 (N) such that D,(A) is a non-closed subset of S x S.
Then there exists an accumulation point (a,b) € Sx.S of the set D.(A). The continuity of the
semigroup operation in S implies that a-b = c. But #7(N) x .27 (N) is a discrete subspace
of S x S and hence by Corollary 3.3 the points a and b belong to the ideal I = S\ .27 (N)
and hence p-q € S\ £Z(N) cannot be equal to c. O

A topological space X is defined to be pseudocompact if each locally finite open cover of
X is finite. According to [10, Theorem 3.10.22] a Tychonoff topological space X is pseudo-
compact if and only if each continuous real-valued function on X is bounded.

Theorem 6. If a topological semigroup S contains £/ (N) as a dense discrete subsemigroup
then the square S x S is not pseudocompact.

Proof. Since the square S x S contains an infinite closed-and-open discrete subspace D.(A),
we conclude that S x S fails to be pseudocompact (see [10, Ex. 3.10.F(d)] or [8]). O

Remark 3.3. Recall that, a topological semigroup S is called I'-compact if for every x € S
the closure of the set {x, 2% x3,...} is a compactum in S (see [21]). Since the semigroup
I (N) contains the bicyclic semigroup as a subsemigroup the results obtained in [2], [3],
[4], [18], [21] imply that if a topological semigroup S satisfies one of the following condi-
tions: (z) S is compact; (i7) S is ['-compact; (i77) the square S x S is countably compact;
(iv) S is a countably compact topological inverse semigroup; or (v) the square S x S is a
Tychonoff pseudocompact space, then S does not contain the semigroup .# (N) and hence
the semigroup .77 (N).

The proof of the following theorem is similar to Theorem 6:

Theorem 7. If a topological semigroup S contains .#4 (N) as a dense discrete subsemigroup
then the square S x S is not pseudocompact.



10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

TOPOLOGICAL MONOIDS OF ALMOST MONOTONE INJECTIVE CO-FINITE PARTIAL SELFMAPS 131

REFERENCES

Andersen O. Fin Bericht iber die Struktur abstrakter Halbgruppen, PhD Thesis, Hamburg, 1952.

Anderson L.W., Hunter R.P., Koch R.J. Some results on stability in semigroups, Trans. Amer. Math.
Soc., 117 (1965), 521—529.

Banakh T., Dimitrova S., Gutik O. The Rees-Suschkiewitsch Theorem for simple topological semigroups,
Mat. Stud., 31, 2 (2009), 211—218.

Banakh T., Dimitrova S., Gutik O. Embedding the bicyclic semigroup into countably compact topological
semigroups, Topology Appl. (to appear) (arXiv:0811.4276).

Beida A.A. Continuous inverse semigroups of open partial homeomorphisms, Izv. Vyssh. Uchebn. Zaved.
Mat., 1 (1980), 64—65 (in Russian).

Carruth J.H., Hildebrant J.A., Koch R.J. The Theory of Topological Semigroups, Vol. I, Marcel Dekker,
Inc., New York and Basel, 1983; Vol. II, Marcel Dekker, Inc., New York and Basel, 1986.

Clifford A.H., PrestonG.B. The Algebraic Theory of Semigroups, Vol. 1., Amer. Math. Soc. Surveys 7,
Providence, R.I., 1961; Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.

Colmez J. Sur les espaces précompacts, C. R. Acad. Paris, 233 (1951), 1552—1553.

Eberhart C., Selden J. On the closure of the bicyclic semigroup, Trans. Amer. Math. Soc., 144 (1969),
115—-126.

Engelking R. General Topology, 2nd ed., Heldermann, Berlin, 1989.

Gierz G., Hofmann K.H., Keimel K., Lawson J.D., Mislove M.W., Scott D.S. Continuous Lattices and
Domains, Cambridge Univ. Press, Cambridge, 2003.

Guran LI. Topology of an infinite symmetric group and condensation, Comment. Math. Univ. Carol.,
22, 2 (1981), 311316 (in Russian).

Gutik O., Lawson J., Repovs D. Semigroup closures of finite rank symmetric inverse semigroups, Semi-
group Forum, 78, 2 (2009), 326—336.

Gutik O.V., Pavlyk K.P. On topological semigroups of matriz units, Semigroup Forum, 71, 3 (2005),
389—400.

Gutik O., Pavlyk K., Reiter A. Topological semigroups of matriz units and countably compact Brandt
A\-extensions, Mat. Stud., 32, 2 (2009), 115—131.

Gutik O.V., Reiter A.R. Symmetric inverse topological semigroups of finite rank < n, Mat. Metody
Phis.-Mech. Polya., 53, 3 (2009), 7—14.

Gutik O., Reiter A. On semitopological symmetric inverse semigroups of a bounded finite rank, Visnyk
Lviv Univ. Ser. Mech.-Math. (to appear).

Gutik O., Repovs D. On countably compact 0-simple topological inverse semigroups, Semigroup Forum,
75, 2 (2007), 464—469.

Gutik O., Repovs D. Topological monoids of monotone, injective partial selfmaps of N having cofinite
domain and image, Stud. Sci. Math. Hungar. (to appear).

Hewitt E., Ross K.A. Abstract Harmonic Analysis, Vol. 1, Springer, Berlin, 1963.

Hildebrant J.A., Koch R.J. Swelling actions of T'-compact semigroups, Semigroup Forum, 33 (1988),
65—85.

Karras A., Solitar D. Some remarks on the infinite symmetric groups, Math. Z., 66 (1956), 64—69.



132 CHUCHMAN [.YA., GuTik O.V.

23. Orlov S.D. Topologization of the generalized group of open partial homeomorphisms of a locally compact
Hausdorff space, Izv. Vyssh. Uchebn. Zaved. Mat., 11 (1974), 61—68 (in Russian).

24. Orlov S.D. On the theory of generalized topological groups, Theory of Semigroups and its Applications,
Sratov Univ. Press, 3 (1974), 80—85 (in Russian).

25. Petrich M. Inverse Semigroups, John Wiley & Sons, New York, 1984.
26. Pontryagin L.S. Topological Groups, Gordon & Breach, New York ets, 1966.

27. Ruppert W. Compact Semitopological Semigroups: An Intrinsic Theory, Lecture Notes in Mathematics,
Vol. 1079, Springer, Berlin, 1984.

28. Subbiah S. The compact-open topology for semigroups of continuous self-maps, Semigroup Forum, 35,
1 (1987), 29—33.

29. Wagner V.V. Generalized groups, Dokl. Akad. Nauk SSSR, 84 (1952), 1119—1122 (in Russian).

Ivan Franko Lviv National University,
Lviv, Ukraine.
chuchman_i@mail.ru,

o_gutik@franko.lviv.ua, ovgutik@yahoo.com

Received 24.06.2010

Yyaman L., Tyrik O.B. Tonoaoziuni monoidu matiorce MOHOMOWHUL TH EXKMUBHUL KOCKIH-
YEHHUT YACTNKOSUT NEPEMBOPEHD MHONCUHY HAMyparbHut wucen // Kapnarcpki maremarndmni
nybmikarii. — 2010. — T.2; Nel. — C. 119-132.

V crarti Buuaerhes namiprpyna #7 (N) Maiize MOHOTOHHUX iH'€KTHBHIX KOCKIHUEHHIX
YaCTKOBHUX II€PETBOPEHb MHOXKUHU HATypaJbHHUX 4uces. JloBeseHo, 1o HamiBpyna JOZ/ (N)
Mage ajirebpaldHi BJIACTUBOCTI OJIM3BKI 0 BJIACTHBOCTEN OMIMKJINYHOI HAIIBIPYyIU: BOHA € Oi-
mopdizmanu. Jloseseno, 1o koxua 6episebka Tomosoris T wa £ (N) raka, mo (£7 (N),7) -
HATIBTOIIOJIOT YA HAIIBIPYA € JMCKPETHOIO Ta olmucano 3aMukanns Hamisrpymn (.£7 (N), 1)

B TOIOJIOTiYHIN HaIiBrpyIi.

Yyuman W.5A., T'yrux O.B. Tonosoeuueckue mornoudve noumu MOHOMOHHBIT UHBEKMUSHHLT
KOKOHEUHDT “ACTUNHOIT NPeobpadosanutdl muodicecmsea wamypasvhux wucesa // Kapuarckue
maremarndeckue mybiukarun. — 2010. — T.2; Nel. — C. 119-132.

B pa6otre mzyuaercs noayrpymma .#.7 (N) 09T MOHOTOHHBIX MHBHEKTHBHBIX KOKOHETHDHIX
YACTUYHBIX MMPEOOPA30BAHUI MHOYKECTBa HATYPAJIbHBIX dncesl. J[oOKaszaHo, YTO MOJIyrpyIna
fg (N) umeer anreGpamdeckue CBoiicTBa OIM3KHE K CBOHCTBAM GUIMKIMIECKOH MOIYTPYIIIIbL:
OHa OWIIPOCTA U BCE €€ HeTPUBHAJbHBIE TOMOMOP(MU3MBI ABJIAIOTCS WU N30MOP(MU3MAME, WU
rPyHnoBbIME TOMOMOpduU3MamMu. Jloka3zaHo, 9T0 Kaxk1as 63IPOBCKasi TOMOJIOTHUS T Ha ﬂoz/ (N)
takas, ato (Y (N), T) — HOJTyTONOIOTIYecKast TTOIyIPYIIIIa JUCKPETHA I OIIACAHO 3aMBIKAHIE
nomyrpyrmer (.77 (N),7) B TOmoIOrIYecKoit moTyTrpyITe.



