ISSN 2075-9827 e-ISSN 2313-0210 https://journals.pnu.edu.ua/index.php/cmp
Carpathian Math. Publ. 2021, 13 (2), 433-451 KapmnaTcpki maTem. my6a. 2021, T.13, Ne2, C.433-451
doi:10.15330/cmp.13.2.433-451

\J

u-statistical convergence and the space of functions p-stat
continuous on the segment
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In this work, the concept of a point p-statistical density is defined. Basing on this notion, the
concept of p-statistical limit, generated by some Borel measure y (-), is defined at a point. We also
introduce the concept of y-statistical fundamentality at a point, and prove its equivalence to the
concept of u-stat convergence. The classification of discontinuity points is transferred to this case.
The appropriate space of y-stat continuous functions on the segment with sup-norm is defined. It
is proved that this space is a Banach space and the relationship between this space and the spaces
of continuous and Lebesgue summable functions is considered.
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Introduction

Actually, the concept of statistical convergence of the sequences of complex numbers has
long been known as “almost convergence” (see, e.g., the monograph of A. Zygmund [44]). It
was introduced in the study of pointwise convergence of the Fourier series of summable func-
tions. Equivalent definition for this concept was given by H. Fast in [14] (see also H. Steinhaus
[43]), where it was (for the first time) referred to as “statistical convergence”. In [16,17,38,42],
the basic properties of statistically convergent sequences are investigated and are mainly gen-
eralized in two directions. The first direction included the generalizations of the concept of
statistical convergence itself, so there arose I-convergence (ideal convergence), .# -convergence
(filter convergence), lacunar convergence, etc. (see, e.g., [9-11,18-21,30, 33, 37,40]).

The second direction treated these kinds of convergence in various mathematical structures
(see [1-6,12,13,22-24,27,28,31,39,41]). In [26,34,36], the statistical convergence was generalized
for double sequences, and the properties of this convergence were studied. The number of all
relevant works is too big, and it should be noted that it is impossible to name all of them here.

Quite naturally, there arises the question about the existence of a continuous analog of the
concept of statistical convergence for number sequences (or for elements of other mathematical
structures). The first step in this direction was made by F. Moricz [32], who introduced the
concepts of statistical limit and statistical fundamentality for measurable functions at infinity
and at a finite point, generated by the Lebesgue measure. F. Moricz proved the equivalence of
these concepts and studied some of their properties. He also studied the relationship between
this kind of convergence and the one of Fourier series. But, this concept is not a generalization
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of the similar concept for sequences, because it does not imply, as a special case, the concept of
statistical convergence for sequences.

The direct generalization of the concept of statistical convergence in continuous case was
first carried out by B.T. Bilalov and S.R. Sadigova [7]. They introduced the concepts of y-stat
convergence and p-stat fundamentality, proved their equivalence and studied some of their
properties. They also introduced the concept of p-stat continuity. u-stat convergence is a di-
rect generalization of the statistical convergence in continuous case, as it turns out from this
concept as a special case.

It should be noted that the concept of a density point and approximately continuity at
a point are known with respect to the Lebesgue measure. In the main, some properties of
Lebesgue measurable functions in connection with these concepts are studied, Luzin type,
Denjoy type theorems, theorems on belonging to Baire class etc. are proved. More details on
this information can be considered in monographs [8,15,25]. In [29], these concepts are con-
sidered with respect to an arbitrary measure. It is proved that any approximately continuous
function has the property of Baire. The connection between such functions and measurable
functions is found.

We introduce the concepts of p-stat limit, p-stat fundamentality and u-stat continuity,
which are the direct generalizations to the continuous case (or to the case of measurable spaces
with measure) of the corresponding concepts of the statistical limit and the statistical funda-
mentality of the sequences of elements. Therefore, we retained these names, in contrast to the
name of approximately continuous, and we study the problems dictated by the discrete case.

In the present paper, the concept of a point p-statistical density is defined. Basing on this
notion, the concept of p-statistical limit, generated by some Borel measure y (-), is defined
at a point, in contrast to similar concepts [7]. We also introduce the concept of y-statistical
fundamentality at a point, and prove its equivalence to the concept of u-stat convergence. The
classification of discontinuity points is transferred to this case. The appropriate space of p-stat
continuous functions on the segment with sup-norm is defined. It is proved that this space
is a Banach space and the relationship between this space and the spaces of continuous and
Lebesgue summable functions is considered.

1 p-stat limit

We will use the standard notations: IN will be the set of all positive integers; R is the set of
all real numbers; 3 means “there exist(s)”; 3! means “there exists a unique”; = will denote “it
follows”; < will stand for equivalence.

Let ] C R be some segment, & be o-algebra of all Borel subsets and yt : Z — R := [0, +0)
be a Borel measure. Let M € % be some set. Put Os (x) = J N (x — J,x + ).

Throughout this paper we assume that the measure y (-) satisfies the following condition:

) u(Os(x))>0&u({x})=0 Vxe], V3s>0.
We say that the point xg € | is a point p-stat density for M, if

lim ‘M N Og (JC())‘

550 |00 (x0)] =L

where |A| = 1 (A) and OY (xg) = O; (x0) \ {x0}-
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Let f : ] = R be some (]; #)-measurable function and & > 0 be some number. For a given
number / € R assume

A (1) ={xe]:|f(x)—1| <e}.

Denote by st (xg) the family of all sets of %, which xj is the point of y-stat density.

Definition 1. We say that [ is u-stat limit of the function f at a point xo, if A¢ (f;1) € Jst (x0),
Ve>0,ie. .
A (F;D)NO
lim |Ae (f 2) 5 (x0)]
0—0 ‘OzS (JC())}

=1. (1)

This limit will be denoted as y-st xh—>nx1 f(x)=1
0
For M € % assume M® = J\M. Thus, it is clear that
0§ (x0) = (A (i) NOF (x0) ) U (A2 (£1) N OF (x0) ),
where AS (f;1) = J\Ae (f;1) ={x € J:|f (x) — 1| > &}. Consequently
A (£:1) 109 (x0)| + A< (£:1) N O3 ()] _
105 (xo)|
This immediately implies that the relation (1) is equivalent to

188 (75D 008 (x0)|
6—0 ‘Og (JC())}

=0.

Let us show that p-stat limit [ is unique. Assume the opposite: there are two y-stat limits
I; and I,. Take ¢ such that 0 < & < 1 |I; — I|. We have

[(AE (f:1)NOY (xo)) U <Ag (f;1) N OY (xo))] c 09 (xo).

Consequently

Ae (f;11) N1O§ (x0) | +

A (f312) N 0§ (x0)| < |OF (x0)|
Hence we arrive at a contradiction

A (F;11)NOY
‘ e (f 10) 5<x0)‘+lim
05 (XO)‘ 0—0

A (f;12) N OF (x0)|
OF (x0)| =1

2 =lim

It is absolutely obvious that, if xlgr;() f(x)=1,then3 p-st xlgr;() f (x) and p-st xlgg{lo f(x)=1

The converse is not always true. For example, let u be a Lebesgue measure and consider the
Dirichlet function on |
0, x € J\Qy,
D -
(x) { 1, x e Q],

where Q) are rational numbers from J. It is absolutely obvious that for all xg € J\Q; we have
p-st lim f (x) = 0, but for xo € Qj a y-stat limit does not exist.

X—X0
Since

A£0: {x:|Af(x) = Al > ¢} & {x:yf(x)—zy 2|€7|}
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then it is clear that

p-st lim (A f (x)) = A (y—st lim f(x)) .

X— X0 X—X0

Let y-st lim fi (x) = I, k = 1, 2. It is absolutely obvious that

X— X0

FA@TLE -Gt zg c[{x:[A@-n=5fu{x: 1@ -k > 3}].

Consequently

[{x:1fi+ fo = (h+ )] 2 e} N OY(x0)|
< [{x:lfi—hl 2 2} n0Yxo)| + | {x:1fo =l = 5 } N OY(xo)|.

Hence it directly follows that p-st xlgr; (fi(x)+ fa(x)) =1+
0

Thus, (J; #)-measurable functions with p-stat limit at the point xy € ] form a linear space
over a field K, and we denote this space by % (xo) .
Similarly we define the concepts of one-sided p-stat limits at a point xo. Denote

O; (XO) = (XO,XO +(5) nJ.
Definition 2. We say that / is a right-hand p-stat limit of a function f at a point x if

o 2 (D 0107 (x0)| _
0—0 }O; (JC())}

We say that x¢ € ] is a point of right-hand p-stat density for the set M € Z if

lim [M005 ()|
6—0 }O; (XO)}
By J.i (xp) we denote the family of all subsets of %, for which the point xg is a point of right-
hand yu-stat density.
Similarly, we define the concept of the point of left-hand and right-hand p-stat density and
the family |, (xo).
Assume that the measure y (-) additionally satisfies the condition

Let M € Jst (x0). Assume |Of (x0)| = As|O5 (x0)|. It is clear that A; — A holds as § — 0.

We have
IMNOY(x0)]  |[MNOJ (x)| |IM N Oy (x0)|

|03 (x0)]| (1 +)»5‘1) 0f (xg)]  (1+A5) |05 (x0)|

Let
+ }MﬂO} (xo)}

705 (v0)]
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We have 0 < aiF <1,Vé >0, and

a; + % —1, 6—0 (2)
T+A;0 144 '
Hence it directly follows that atsjE — 1as d — 0. Indeed, let there exists {3} C (0, +o0) such
that 4, — 0 and a(;: — a < 1asn — oo. Then from (2) we obtain

ag. ay as, 1 a 1 1 1

- < =1
1+Agﬂ1+1—|—)»5,1_1+)\(;1+1+)t5n 1+A*1+1+A 1+A*1+1+A

And this contradicts the relation (2). Thus, if the measure y (-) satisfies the condition f),
then M € J (x0) = M € ] (x).
Conversely, suppose that

MNOF
fim (MO05 o)l _
0—0 }Oﬁ (JC())}
holds. We have
MNOYxo)| _ IMNOF ()| 0 (xo)l MNO; ()| |05 (x0)
|05 (x0)] 05 (x0)| 105 (x0)| + 05 (x0)] 05 (x0)| 105 (x0)| + 05 (x0)]|
If the condition ) is valid, hence we obtain
MNOY MNOf MNOjy
>| 05(x0)|:‘ +5(x0)’ 1_1+‘ _5(750)‘ 1 N 1_1+ 1 1
09(x0)] 07 )l 1447 105 (x)| 1+As  14ATI+A

as &6 — 0. Consequently, M € Js (xp). So, the following proposition is true.
Proposition 1. Let the measure y (-) satisfy the conditions «) and pB). Then
M € Jit (x0) & M € ] (x0).

Proceeding from these concepts p-stat one-sided limits of the function f (-) at the point x
are defined. Namely, we say that the function f () has a p-stat right-hand (left-hand) limit
equal to / at a point x if

Ac (f:1) € Iy (x0) (Ae (fi1) € Tt (x0)), Ve >0,

and this fact will be denoted as

p-st lim f(x) =1 (u-st lim Of (x) =1).

x—x9+0 X—X0—
Similarly to the case of p-stat limit, it is proved that these concepts are correct, i.e. if one-
sided u-stat limits exist, then they are unique.
Itis clear that if pu-st lim f (x), then Ju-st lim f (x) and
X—X0 x—x0£0
p-st lim f (x) = p-st lim f(x) =pu-st lim f(x).
x—x0+0 x—x0—0

X—X0

Now, let there exist one-sided p-stat limits and they are equal, i.e.

p-st lim f(x) =u-st lim f(x) =1
x—x0—0

x—x0+0

Take Ve > 0. We have A, (f;1) € J& (x0). Then it follows from Proposition 1 that if the

condition B) is fulfilled, then A (f;1) € J,; (xo). From the arbitrariness of A, (f;e) € I (x),

it follows that there exists p-stat limit at the point xy and u-st xh_>nx1 f (x) = L. So, it is valid the
0

following assertion.
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Proposition 2. Let the measure ji (-) satisfy the conditions «) and B). If at the point x there
exist one-sided p-stat limits, that are equal to y-stat limit and conversely, then there exists a
u-stat limit of the function f (-) at this point.

Theorem 1. Let the measure i (-) satisfy the conditions «) and B). Then the following state-
ments are equivalent to each other:

i) 3 P"St,}ij&‘ f(x)=1
i) AM € Jot (x0) : lim f (x) =1.

X—X0
xeM
Proof. Let
M e Jg (xo) A\ xh—>nx10f (x) =1 (3)
xeM

be fulfilled. Take Ve > 0. Then we have
36 >0V6€(0,8) |f(x)—I<e VxeMnOY(x).
Let t > 0 be an arbitrary fixed number. Assume
M; (x9) = MNOY (xg) &M (x0) = M\M; (x0) .
Consequently M N OY (xg) = (Mg (x0) N O (x0)) U (M (x0) N O (x0)), and, as a result
M 0§ (x0)| = | M (x0) N OF (x0)| + | M (x0) N OF (x0)] - @

It is absolutely obvious that for § < ¢ the following (M; (x9) N O (xg)) = M N OY (xp) is true

and therefore 0
M Nno
lim ‘ t(xoz) o (xo)} =1,
0—0 ‘OzS (JC())}

as M € Jqt (xp). As a result, we obtain that the following inclusion M; (xg) € Js (xp) is true for
all t > 0. Then it follows from (4) that

(5)

lim ‘M? (JC()) N Og (XO)}

lim \Og (XO)} =0, Vt>0.

We have A; (f;1) D M; (xp) forall t € (0, dp). Consequently, from (5) we obtain
|Ae (f;1) N OY (x0)| S | M (x9) NOY (x0)|

> —1, 6§ —» 0.
105 (x0)] 105 (x0)]
Hence it directly follows that
lim 2 (f;l?)ﬂog o)l _ g
5—0 ‘O(S (XO)}
And this in turn means that
p-st lim f (x) =1. (6)

X—Xp

Thus, if 3M € Js (xp) such that the relation (3) holds, then there exists y-stat limit at the point
X0, and the relation (6) is true.
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Now, to the contrary, assume that the relation (6) is true. Then

L 18 (75 N0 (o)

lim }Og (xo)} =1, Ve>D0.

Let
1
Mn:{xe]:|f(x)—A|<E}, neN, I} = (xo,x), Yx>x
and assume M, = M, N {x > x}. We have

lim [ Ma O

S ] v TrEN

Hence it follows that for all n € IN there exists x;7 € J N {x > xp} such that x > xJ > ...,
x;7 — x9+0asn — coand

M, NI >n2—1

‘I;,‘ - nz 7 vxe (x()/x}jl._}/ (7)
is valid. We have
(M) N L |M, NI n2—-1 1
#: —ng— n2 :F, VVLE]N (8)

Denote Mt = |J A, where A7 =[x, x7) N M}, ¥n € N. Let us show that
n=1
im IMTOL]

x—xp+0 }Ijﬂ =1

Letny =min{n:x € [x} |, x)}. Wehave

n+1’

ML = M0 [ ) [ U U A

nx+1'
k=ny+1
MO = M [ )|+ L A ©)
k=ny+1

Let k > ny + 1 be an arbitrary number. It holds

M0 [ ) = [ME 0 [efond ) U M0 (00 [t

= AU M0 (M) [ )]

1481 = a0 s 8| - P 0 s )|

So
(M) N st € (M+)Cm+} and || 2|10 < L
K k1 X K)o g R I S N V=3 [
5
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Paying attention to (7), we have

(M0 [fx)| | L

k417 1
< —.
I B T
Thus
c c
M M) 0 )] MO 0[] 1
B R R
and, as a result
+ .t
|Af| ’Mi n [karl'xk )‘ 1
Then from the relation (9) it follows
IM*T NI ‘Mﬁ: N |:x7—/:_x+1’x> ‘ N Lk=n,+1 ‘Mnt N [xal,x;) ‘ B Z 1
Ll I I i
It is easy to see that the relation
(M, NIF) = [ M0 x40 uk_yﬂ M50 [
is valid. Then from the previous inequality we have
MPO LM NG 1
IR e
From (7) it follows
MO ng—1 1
I | - n3 k_%—i-l K2 -

MtNIF 2 _1 1
1> gim MO oy Ly
X—00 “x ny—oo 1 nx_mok:nx—i-l k

Hence, it is proved that M € ]} (xo).

Let us show that lim+0 f (x) = A. Lete > 0 be an arbitrary number. Let 19 € IN be such
X—XQ
xeMt

that nlo < &. Then forall x € (xo, nlo) we have
(MY NI € (MNE) = (1)~ Al < - <, Vye (MP ),
0

that is lim+O f (x) = A. Thus, if the measure y (-) satisfies the condition ) and (6) holds,
X—X0
xeMt

then
+ et R _
dM™ €] (%) : xi1£?+0 f(x)=1L
xeMt
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In the same way we prove that if the measure y (-) satisfies the condition ) and (6) holds,
then
dM™ €], (x): Im f(x)=1L

x—x9—0
xeM—
Let M = M~ UMT™. Proposition 1 implies M € [y (xo) and itis clear that xh_>nx1 f(x)=1 0O
0
xeM

Following the works [7,16,38], let us define the next concept.

Definition 3. We say that st lim a, = a, if
n—o00

Y kX (e (K
hm—iii@LZ:L Ve 0,

n—oo n

wherea (¢) = {k € N : |ap —a| > €}, xm (-) is the characteristic function of the set M.

Definition 4. We say that the function f : | — IR has a statistical limit A at the point
a € J,if st lgn f (an) = A for all {a,},.n C ] such that st lgn a, = a. This fact will be
n—oo n—oo

denoted as st chlg}zf (x) = A.

Theorem 2. Let the measure y (-) satisfy the condition «). Then if EIst}lcig}Z f (x), then

Ju-st lign f (x) and they are equal. The converse is generally not true.
X—a

Proof. Consider the following function

f () { =
X) = . 1
X, x €| 1'1]\{”};16]1\1 .
As u (-) we take a Lebesgue measure on [—1, 1]. It is easy to see that u-st lil’% f(x)=0,in
x—

this case st lim f (x) does not exist. This example shows that the Definitions 1 and 2 are not
X—a

equivalent, from the first definition does not follow the second.
Now;, to the contrary, assume that 3 st liin f (x) = A. Let the relation p-st liin f(x)=A
X—a X—a

does not hold. Consequently, 3¢y > 0 such that the relation
o 185, () N0) @)
o)
does not hold, where A¢ (f; A) = J\A,, (f;A) = {x € ] :|f (x) — A| > eo}. Thus there exist
0o > 0and {0, },cp such thaté; > 0, > ..., 8, = 0,and
A%, (f;4) N0, (a)

9, @)

2 (50, ie.

A%, (f;4)N 08, (a)| = &

o (a)‘ >0, VneN. (11)

It follows directly from the condition a) that |A{ (f; A) N Ogn (a) ‘ — 0asn — oo,

Then from (11) we obtain
3 {ahien € A5, (;4)NOY, (a) Aa € OF, (@)\OF, (a).

"k+1
It is obvious that lim a; = 4, but on the other hand |f(ax) — A| > ¢ for all k € N. Thus, the

k—o0
relation st 1211 f (an) = Aisnot true. The resulting contradiction proves the theorem. O
n—oo
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2 p-stat fundamentality

Let us define the concept of y-statistical fundamentality.

Definition 5. We say that the function f : | — R is fundamental at a point a € ]| if for any
€ > 0 there exists x, € | such that

A N0 )
5—0 }Og (a)}

where A (f;xe) = {x € J:|f (x) — f(xe)| < ¢}

Assume that the measure y (-) satisfies the conditions ), ) and 3 p-st lim f (x) = A. Then

X—a

=1,

by Theorem 1

dME Ji(a): lim f (x)=A.

li
M>x—a
Hence, we obtain that for all ¢ > 0 there exists §. > 0 such that
f ()= f(y)|<e VYxye MNO](a), V6 <4

Take Vx. € MNOJ (a). We have |f(x) — f(x:)| < eforallx € MNOY(a) and 6 < 4.
Consequently (M NOY (a)) C A(f;x), and, as a result

IMNOY(a)| _ |A(f;x) NOY(a)]

< , Vo < b (12)
0§ ()] 0§ (a)] 8
From M € J (a) it follows that
MNOY
th—TiEn:L
5—0 }Od (ll)}
Then from (12) we obtain that
A (f;x:) NOY
lim ‘ (f xgg 0 (a)} =1.
5—0 }Oé (a)}

We will also need the following lemma.
Lemma 1. Let My € Js (a), k = 1,2, then M1 N My € Js (a).

Proof. We have M1 N My = (M U M) \ (M1AM;), where M1AM, = (Mp\M1) U (M1\My) is
a symmetric difference of sets M; and M,. Consequently,

Min M, 0% (a) = [(M1 U My) N OY (a)] \ [(MlAMz) noY (a)] . (13)

We have
(M1AM2) 1 0% (a) = [(M2\M1) N OF (a)| U [(M1\M2) 1 O (a) ]

We pay attention to the fact that

(M2\M;) N O§ (a) = M{N O (a), (14)
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where M¢ = J\M is a complement of a set M in J. From M; € Ji (a) it follows that

lim M5 N OY (a) _
5—0 }Og (a)}

0 0
Then from (14) we obtain W — 0,0 — 0. Similarly we establish W —0,
o 4
0 —0. Thus, it is valid .
M{AM;) N O3
My 5) (@ 50, 50 (15)
|03 (a)]
It is obvious that ‘ ( ) 0 (0) ‘
MiUM;)N O(S a
}Oo(a)} —1, 6—0.
5
. . [(MinMz)NOY(a) (M1UM,)N0%(a) (M1AM,)NO0Y(a) .
From (13) we directly obtain | |ng(a)| b@| _ Jon |ng(a)| s@] v |022(a)| g | Taking
into account (14) and (15) we have
M; N M) N OY
|(1 1 Ma) N O (4)| 1, 60, ie. MiNM € Jq(a).
|05 (a)]
The lemma is proved. 0

Theorem 3. Let the measure u (-) satisfies the conditions «) and B). Then the function
f ] = R is y-stat fundamental at a pointa € R if and only if 3 p-st lgnf (x).
X—a

Proof. Let us assume that the function f : | — R is a u-statistical fundamental at a pointa € J.
Then for e; = 1 there exists x; € | such that

lim |A(f; X13 NOY (a)|

6—0 }Oé (a)}
where A (f;x¢) = {xeJ:|f(x)—f(xx)| <e}, k € N. Consequently, A (f;x1) € Jst (a).
Similarly, for e = 1 there exists x € ] such that A (f;x2) € Js (a). By Lemma 1, we obtain

A(fix1) NA(fixz) =1 € Jst (a).

=1,

Let
1 1
Ry={f(ixeh)  and b= |f(u)- g Sty
It is clear that Rj, C I.
Similarly, we define A (f; x4) = {x € J:|f(x)— fxg)|< 411}' and consider [, = J1 NA (f; x4).
Again, by Lemma 1, we have |, € [ (a). Put R, = {f (x) : x € Jo}. Let

R b= (|7 =g f e+ 3] ).

Continuing this process, we obtain a sequence of segments I and sets R;, C Ipi, with the
following properties

1
12131223..., d(Izn)SF,

Ry, ={f(x): x € Ju} C I,
Jn—1 EA(f;xnfl)mA(f}xn),
Jn € st (ﬂ>, Vn e,



444 Sadigova S.R.

where d (I) is the length of the segment I.
Absolutely obvious that 3!' A € N .
Let us show that y-st 31(11{}1 f (x) = A. Let e > 0 be an arbitrary number. It is clear that there
exists ny € IN such that
€ €
" — = = > 11p.
In C <A 2,A—|—2> . Y>>
Thus, we have
1 1
Ry, C I = [f (x210) = 50, f (x2m0) + %} M L1

On the other hand R]no = {f (%) : x € Ju,}, and, due to the structure of J,, € Js (a), where
Jng = Jng—1 DA (f; Xm0 ), we have

A(frxpo) = {x € T 1f (¥) — f (eo)| < gy 1

Choose 1y from the condition < 5. We have

2

[f (x) = A< [f (%) = f (x2m0) | + [ f (x2m0) = Al < [f (%) = f (x20)[ + %

Hence it directly follows that

[xe]:|f ()~ f(epo)| < g } C €T [f () —Al <6}, e A(fixam) CA(fA).

Since, A (f; xom) € Jst (a), from the previous inclusion follows that A (f; A) € Js (a). From
the arbitrariness of ¢ > 0, we obtain p-st lign f (x) = A. Thus, the theorem is proved. O
X—a

Definition 6. The functions f;g : | — R are called u-statistical equivalent at a pointa € | if
Jf.¢ € Ist (a), where
Jpg={xe]: f(x) =g ()}

This fact will be denoted as f 2 g, X —a.

Assume that 3 p-stlim f (x) = A. Then by Theorem 1, there exists M € i (a) such that

X—a

lim f (x) = A. Define

M>x—a
_ f(x), xeM,
g(x)_{A,xEM".

Itis clear that M C J,, = Jf,q € Jst (a) = frs\ég, x — a. Clearly, liing (x) = A.
X—a
Vice versa, let
limg (x) = A/\frs\ég, X —a.

X—a

Then it is easy to see that p-st th f (x) = A. As aresult, the following assertion is valid.
X—a

Theorem 4. Let the measure y (-) satisfies the conditions «) and ). Then for the function
f : ] — R the following statements are equivalent to each other:
1)3psstlim £ (v),
2) f is u-stat fundamental at the point x = a,
3)3¢g: ] —+RA3 lig1g (x)Afrs\th, X —a.
X—a
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3 The space of u-stat continuous functions

Similar to the classical case, if

p-st lim f(x) = p-st lim f(x) # f (x0),

x—x9—0 x—x0+0

then x is called p-stat removable discontinuity point. If 3 y-st limiO f (x) and
X—X0

p-st  lim . f(x) # y-stx_lggbrof (x),

X—X0—

then xy is called p-stat discontinuity of the first kind and the quantity

A;t (x9) = p-st lim f(x) —p-st lim Of (x)

x—x9+0 X—X0—

is called a p-stat jump of the function f at xo.
In other cases, x is called a p-stat discontinuity point of the second kind.

Example 1. Let (R; %; 1) be a measurable space with a Lebesgue measure. Consider the func-
tion
fx) =

where Q are rational numbers in R. The point xo = 0 is a pu-stat discontinuity of the first kind
and A;t (0) = 2. All other points are p-stat continuity points.

sinx, x€qQ,
signx, x € R\Q,

If
p-st lim f(x) =p-st lim f(x)=f(x0),

x—x0—0 x—x0+0

holds, then f () is called a p-stat continuous at the point xj.
Let f : [a,b] = R be some function. It is clear that if f € C|[a,b], then f (-) is a p-stat
continuous on [a, b]. The following question arises naturally.

Question 1. Let f : [a,b] — R be a u-stat continuous on [a, b]. Is it continuous on [a, b]?

It is obvious that if f (-) has a discontinuity of the first kind at the point xy € (a,b), then x
is also a p-stat discontinuity point of the first kind and moreover p-st f (xo £0) = f (x9 £ 0).
Therefore, if f (-) has a discontinuity of the first kind at the point x, then it can not be a p-stat
continuous at this point.

Denote the linear space of y-stat continuous functions on [a, b] over the field K (K = C or
R) by Cst [a, b]. Tt is absolutely clear that the pointwise limit of the sequence of y-stat continu-
ous functions may not be p-stat continuous on |[a, b].

Let us give an example of a function on the interval E = [—1, 1], which is not continuous
on E, but at the same time, is p-statistical continuous on E.

Lemma 2. The strict embedding C [a,b] C Cs [a,b], Cst [a,b] \C [a,b] # @, holds true.

Proof. The embedding C[a,b] C Cs|a,b] is obvious. So, we will prove the validity of
Cst [a,b] \ C[a, b] # @. Consider the following series

(9]

ar, o >0, Vk €N, (16)
k=1
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such that the remainder terms satisfy the conditions

1
Un S 37/
(n+1)

(17)

where 0, =Y 17 .
As [a, b] we take [—1, 1]. Let u be a Lebesgue measure and Oy (x) = (x — J,x+6) N [—1,1].

Denote by i,, C < l) an arbitrary interval of length a,,, i.e. |iy| = p (in) = an, n € N.

1
n+1’n

0

W= 4+
Ni—
N

=

S

=

—

Figure 1

Let x,, € i, be the middle of the interval i, = (a,,b,). Consider the points (1;0), (b3;0),
(x1;1), (a1;0), (bp;0),..., and connect them with the broken lines (see Figure 1). Denote the
function generated by this graph and the interval [—1,0] by f (x). Itis clear that f ¢ C[—1,1],
because there does not exist f (+0). Let us show that f € Cs[—1,1]. Obviously, f(-) is
continuous at every point xg # 0, and therefore it is yu-stat continuous at these points. Let
us show that f (-) is y-stat continuous at the point x = 0 too. To do so, it suffices to show that
there exist one-sided statistical limits at the point x = 0 and they are equal to each other.

Let ¢ > 0 be an arbitrary number. It is sufficient to prove that

@:vamzwmqmw
0, )

Sn —0, n— oo,

where |{ - }| is a Lebesgue measure of the set { - }. So, it is easy to see that

(tx:1f @ = ey n0,0) € Ui
k=n

and therefore

{x:[f ()] >e}n0L (0)| < |Uik| = Y il =0n < :
‘ " ’ k=n k=n (n+1)3
Consequently
n
S, (6) < ———— — 0, n— oo
(€)= 2(n+1)°

This immediately implies that

S5 (e) = [ ’f(ﬁ)(‘)ig)ﬁmoﬁ (0) -0, 06—=0,

and, as a result f (-) is a p-stat continuous at x = 0 and hence f € Cs[—1,1]. The lemma is
proved. O
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Similarly, we can give an example of non-bounded function on the interval [—1, 1], which
is a p-stat continuous on [—1, 1].

Lemma 3. The relations Cs [a,b] \Ly (a,b) # @ and L, (a,b) \Cst [a,b] # @, Vp € [1,+00),
hold true.

Proof. The relation L, (a,b) \Cs; [a,b] # @ is obvious, since the function having a removable
discontinuity point does not belong to Cs; [a, b]. Let us prove C [a,b] \L, (a,b) # @.
Consider the series (16), satisfying the condition (17). Similarly to the previous case, we

consider the intervals
in = (11 by) < : ]i ‘ =«
n — nr¥n ]/ . ny — Y“n,s

and let x, = @. Consider the points (1;0), (b1;0), (x;a;%), (a1;0), (b2;0), (x50, %), ... .
Let us connect them by segments. Denote by f (x) the function obtained by these segments
and the segment [—1,0]. From previous arguments it follows that f € Cs [—1, 1]. We have

(9]

S rlax =Y [ 1 ldr= ¥ e (50 = 5 o1 = oo
1 =1 i 2 24

- k=1
Thus, f € L, (0,1), Vp € [1,400). It is obvious that
Cla,b] C (Cst[a,b]N Ly (a,b)) ,Vp € [1,+00).

The lemma is proved. O

The previous example shows that C [4, b] is not dense in Cy [a, b] with respect to the norm
|- I ,- The following question arises naturally.
Question 2. Is there such a metric or such convergence, with respect to which the space
Cst [a, b] is complete?

Let

Cala bl ={f € Calat]: fll < +eo}, where [, = suplf ()]
a,
It is clear that the following strict embeddings hold true
Cla,b] € CL[a,b] C L, (a,b), ¥p € (0,+00).

Under L, (a, b) we understand the space of measurable (with respect to the Lebesgue measure)
functions on (a,b), for p € (0,1), with finite integral

/b|f(t)|”dt<+oo.

Theorem 5. Let (IR; %; u) be a measurable space with a o-finite measure ji on the o-algebra of
Borel sets % and

p (=00, %0)) = p ((x0, +00)) = +00
for some xg € R. Then the embeddings:
i)Cla,b) C (Cst[a,b] N Ly (a,b)), Vp € (0,+00),
ii)C[a,b] C (cgt la,b] C L, (a,b)) , Vp € (0,40),
hold true, and they are strict.
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Theorem 6. The space C/, [a,b] is a Banach space with respect to the norm || - ..

Proof. Let us show that the space Cgt [a,b] is complete with respect to the norm of C [a,b] C
(Cstla,b] N Ly (a,b)), Vp € (0,+00). Let {fu},en C Cs]t [a, b] be some fundamental sequence,
ie. ||fn — fulloe — 0asn,m— co.

Fixing Vx € [a, b], we obtain that {f, (x)},cp is a fundamental sequence and, as a result,
it converges to a certain value f (x). Let us show that f € Cgt [a,b]. Let e > 0 be an arbitrary
number and xg € [4, b] be an arbitrary point. Take Vn € N and let

Ene)={x: ()~ o) 25}, Enl(fie)={x:1f ()~ fa (¥) = 5}
We have

f () = f(x0)| < [f (%) = fu ()] 4 [ fu (%) = fu (x0)| + [ f (x0) = f (x0) ] (18)

It is obvious that || f, — f]|, — 0 as n — oo. Therefore, it is clear that

fo () = f ()] < 5, Vx € [ab].

Then from (18) it follows that {x : |f (x) — f (x0)| > €} C E, (¢), Vn > n,. Since, otherwise
F() = F ()] < 2e+ 1 () = i (x0)] < 2+ e =
Consequently ({x : |f (x) — f (x0)| > €} NOs(x9)) C (En (e) NOs(xp)), and, as a result
{1 () — £ (x0)] = €} 105 (x0)] < [En (6) N0 (x0)], ¥n = e (19)
Take Vn > n and fix it. So, f,, € CS]t [a, b], then from (19) we obtain

[{x:1f (5) = £ (x0)| = €} NOs ()| _ 1. [En () NOs (x0)l _

T
6&% ‘Og (X())‘ 6—0 05 (xo)
From the arbitrariness of x it follows that f € C S{t [a,b]. Theorem is proved. O

Finally, compare the concept of u-stat continuity with the concept of approximate continu-
ity. Let us recall the definition of approximate continuity.
Let E C R be some measurable (with respect to the Lebesgue measure) set and assume

E (xp;h) =EN|[xo—h,xo+h| = E[xo —h,xo+ h].

Definition 7. The limit E (x0;h)
.. ML (Xg,

D, ,E =lim ——~

o o 2n

(in case it exists) is called a density of the set E at the point x.

If Dy,E = 1, then xq is a point of density for the set E, and if Dy,E = 0, then xj is a
rarefaction point of E.

In our case, x( is a point of m-stat density for the set E, where m is a Lebesgue measure.
The following theorem is known.
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Theorem 7. Almost all points of measurable set E are its density points.
More details about the following concept can be found in [35].

Definition 8. Let the function f (x) be given on the segment [a, b] and xy € [a, ]. If there exists
a measurable set E C [a, b] with a density point x( such that f (x) is continuous along E at the
point x, then f (x) is said to be approximate continuous at the point x.

In our case, the concept of approximate continuity coincides with the one of m-stat conti-
nuity at the point xp . Let us recall the following Denjoy theorem.

Theorem 8 (Denjoy). If f (x) is a measurable and almost everywhere finite function in [a,b],
then it is approximate continuous at almost every point in [a, b].

Consequently, if f () is measurable and almost everywhere finite in [a, b], then it is m-stat
continuous almost everywhere in [a, b].
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Y il cTaTTi BBEACHO MOHSITTSI TOYKOBOI }{-CTaTUCTMYHOI IIIABHOCTi, Ha OCHOBi UOTrO BM3Hade-
HO TIOHSITTSI TOUKOBOI }{-CTaTHCTUYHOI TPaHNMI, III0 TeHePYEThCs AestKoio Miporo Bopeast y (-). Ta-
KOX MM BBOAVIMO TIOHSITTSI }{-CTaTUCTUIHOI (PYHAAMEHTaABHOCTI B TOUIIi Ta AOBOAMMO i eKBiBaAeH-
THICTB 3 p-stat 30iocHicmio. Kaacndpikamist TOuok po3puBy IepeHeceHa Ha el BUITaAOK. BrsHaueHO
BiATIOBiAHVIE TIpOCTip i-stat HelepepBHMX Ha BiApi3Ky dpYHKIIIN 3 sup-HOpMOIO. AOBEAEHO, IO IIet
IIpOCTip € 6aHaXOBMM Ta PO3TASIHYTO 3B’SI30K MiX IMM IPOCTOPOM Ta IPOCTOPOM HellepepBHUX i
CyMOBHIX 3a Aeberom (pyHKIIiIL.

Kntouosi cnosa i ppasu: p-stat 36ixHicTD, pi-stat PyHAAMEHTAABHICTD, TPOCTIpP {-CTATUCTUIHO He-
TlepepBHMX (PYHKIII.



