References
- Altinok M., Kaya U., Kucukaslan M. \(\alpha\)-Statistical Supremum-Infimum and
\(\alpha\)-Statistical
Convergence. Azerb.J. Math. 2014, 4 (2), 31–42.
doi:10.33773/jum.823084
- Balcerzak M., Dems K., Komisarski A. Statistical convergence and
ideal convergence for sequences of functions. J. Math. Anal. Appl.
2007, 328, 715–729. doi:10.1016/j.jmaa.2006.05.040
- Basu A., Srivastava P.D. Statistical convergence on composite
vector valued sequence space. J. Math. Appl. 2007,
29, 75–90.
- Bilalov B.T., Nazarova T.Y. Statistical convergence of functional
sequences. Rocky Mountain J. Math. 2015, 45 (5),
1413–1423. doi:10.1216/RMJ-2015-45-5-1413
- Bilalov B.T., Nazarova T.Y. On Statistical Convergence in Metric
Spaces. J. Math. Res. 2015, 7 (1), 37–43.
doi:10.5539/jmr.v1n1p37
- Bilalov B.T., Nazarova T.Y. On the statistical type convergence
and fundamentality in metric spaces. Caspian J. Appl. Math. Ecology
and Economics 2014, 2 (1), 84–93.
- Bilalov B.T., Sadigova S.R. On \(\mu\)-statistical convergence. Proc.
Amer. Math. Soc. 2015, 143, (9), 3869–3878.
doi:10.1090/S0002-9939-2015-12528-2
- Bruckner A.M. Differentiation of real functions. AMS, Providence,
Rhode Island, USA, 1994.
- Connor J.S. The statistical and strong p-Cesaro convergence of
sequences. Analysis 1988, 8 (1-2), 47–63. doi:10.1524/anly.1988.8.12.47
- Connor J.S. R-type summability methods, Cauchy criteria, P-sets
and statistical convergence. Proc. Amer. Math. Soc. 1992,
115 (2), 319–327. doi:10.2307/2159248
- Connor J.S., Grosse-Erdmann K.G. Sequential definitions of
continuity for real functions. Rocky Mountain J. Math. 2003,
33 (1), 93–121. doi:10.1216/rmjm/1181069988
- Duman O., Orhan C. \(\mu\)-statistically convergent function
sequences. Czechoslovak Math. J. 2004, 54 (2),
413–422.
- Eghbali N., Ganji M. Generalized Statistical Convergence in the
Non-Archimedean L-fuzzy Normed Spaces. Azerb. J. Math. 2016,
6 (1), 15–22.
- Fast H. Sur la convergence statistique. Colloq. Math. 1951,
2, 241–244.
- Federer H. Geometric measure theory. Springer, New York, 1969.
- Fridy J.A. On statistical convergence. Analysis 1985,
5 (4), 301–313. doi:10.1524/anly.1985.5.4.301
- Fridy J.A. Statistical limit points. Proc. Amer. Math. Soc.
1993, 118 (4), 1187–1192. doi:10.2307/2160076
- Fridy J.A., Miller H.I. A matrix characterization of statistical
convergence. Analysis 1991, 11 (1), 59–66. doi:10.1524/anly.1991.11.1.59
- Fridy J.A., Khan M.K. Tauberian theorems via statistical
convergence. J. Math. Anal. Appl. 1998, 228 (1),
73–95. doi:10.1006/jmaa.1998.6118
- Fridy J.A., Orhan C. Lacunary statistical summability. J.
Math. Anal. Appl. 1993, 173 (2), 497–504. doi:10.1006/jmaa.1993.1082
- Fridy J.A., Orhan C. Lacunary statistical convergence.
Pacific J. Math. 1993, 160 (1), 43–51.
- Gadjiev A.D., Orhan C. Some approximation theorems via
statistical convergence. Rocky Mountain J. Math. 2002,
32 (1), 129–138. doi:10.1216/rmjm/1030539612
- Gadjiev A.D., Ghorbanalizadeh A.M. On the \(A\)-statistical approximation by sequences
of \(k\)-positive linear
operators. Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 2009
31, 41–52.
- Gadjiev A.D. Simultaneous statistical approximation of analytic
functions and their derivatives by k-positive linear operators.
Azerb. J. Math. 2011, 1 (1), 57–66.
- Gordon R. The integrals of Lebesgue, Denjoy, Perron and Henstock. In:
Graduate studies in mathematics, 4. American Mathematical Society,
1994.
- Hazarika B., Savaş E. \(\left(\lambda
;\mu \right)\)-statistical convergence of double sequences in
\(n\)-normed spaces. Note di
Mathematica, 2012, 32 (2), 101–114.
- Jasinki J., Reclaw I. Ideal convergence of continuous
functions. Topology Appl. 2006, 153 (18),
3511–3518. doi:10.1016/j.topol.2006.03.007
- Komisarski A. Pointwise \(\mathscr
I\)-convergence and \(\mathscr
I\)-convergence in measure of sequences of functions. J.
Math. Anal. Appl., 2008, 340 (2), 770–779.
doi:10.1016/j.jmaa.2007.09.016
- Lahiri B.K., Chakrabarti S. Approximately continuous functions in
a measure space. Vietnam J. Math. 1997, 25 (1),
59–64.
- Mačaj M., Šalát T. Statistical convergence of subsequences of a
given sequence. Math. Bohem. 2001, 126 (1),
191–208. doi:10.21136/MB.2001.133923
- Maddox I.J. Statistical convergence in a locally convex
space. Math. Proc. Cambridge Philos. Soc. 1988,
104 (1), 141–145. doi:10.1017/S0305004100065312
- Móricz F. Statistical limits of measurable functions.
Analysis 2004, 24, 1–18.
doi:10.1524/anly.2004.24.1.1
- Mursaleen M. \(\lambda\)-statistical convergence.
Math. Slovaca 2000, 50 (1), 111–115.
- Mursaleen M., Mohiuddine S.A. Statistical convergence of double
sequence in intuitionistic fuzzy normed spaces. Chaos Solitons
Fractals 2009, 41, 2414–2421.
doi:10.1016/j.chaos.2008.09.018
- Natanson I.P. Theory of Functions of a Real Variable, Nauka, Moscow,
1974. (in Russian)
- Patterson R.F., Savaş E. Lacunary statistical convergence of
double sequences. Math. Commun. 2005, 10,
55–61.
- Rath D., Tripathy B.C. On statistically convergent and
statistically Cauchy sequences. Indian J. Pure Appl. Math. 1994,
25 (4), 381–386.
- Šalát T. On statistically convergent sequences of real
numbers. Math. Slovaca 1980, 30 (2), 139–150.
- Sarabadan S., Talebi S. Statistical convergence and ideal
convergence of sequences of functions in 2-normed spaces. Int. J.
Math. Math. Sci. 2011, 2011, 1–10.
doi:10.1155/2011/517841
- Savaş E. On lacunary strong \(\sigma\)-convergence. Indian J. Pure
Appl. Math. 1990, 21 (4), 359–365.
- Savaş E., Borgohain S. On strongly almost lacunary statistical
\(A\)-convergence defined by
Musielak-Orlicz function. Filomat 2016, 30 (3),
689–697. doi:10.2298/FIL1603689S
- Schoenberg I.J. The integrability of certain functions and
related summability methods. Amer. Math. Monthly 1959,
66, 361–375. doi:10.1080/00029890.1959.11989303
- Steinhaus H. Sur la convergence ordinaire et la convergence
asumptotique. Colloq. Math. 1951, 2, 73–74.
- Zygmund A. Trigonometric series, Vol. II. Cambridge Univ. Press,
London–New York, 1979.