References

  1. Altinok M., Kaya U., Kucukaslan M. \(\alpha\)-Statistical Supremum-Infimum and \(\alpha\)-Statistical Convergence. Azerb.J. Math. 2014, 4 (2), 31–42. doi:10.33773/jum.823084
  2. Balcerzak M., Dems K., Komisarski A. Statistical convergence and ideal convergence for sequences of functions. J. Math. Anal. Appl. 2007, 328, 715–729. doi:10.1016/j.jmaa.2006.05.040
  3. Basu A., Srivastava P.D. Statistical convergence on composite vector valued sequence space. J. Math. Appl. 2007, 29, 75–90.
  4. Bilalov B.T., Nazarova T.Y. Statistical convergence of functional sequences. Rocky Mountain J. Math. 2015, 45 (5), 1413–1423. doi:10.1216/RMJ-2015-45-5-1413
  5. Bilalov B.T., Nazarova T.Y. On Statistical Convergence in Metric Spaces. J. Math. Res. 2015, 7 (1), 37–43. doi:10.5539/jmr.v1n1p37
  6. Bilalov B.T., Nazarova T.Y. On the statistical type convergence and fundamentality in metric spaces. Caspian J. Appl. Math. Ecology and Economics 2014, 2 (1), 84–93.
  7. Bilalov B.T., Sadigova S.R. On \(\mu\)-statistical convergence. Proc. Amer. Math. Soc. 2015, 143, (9), 3869–3878. doi:10.1090/S0002-9939-2015-12528-2
  8. Bruckner A.M. Differentiation of real functions. AMS, Providence, Rhode Island, USA, 1994.
  9. Connor J.S. The statistical and strong p-Cesaro convergence of sequences. Analysis 1988, 8 (1-2), 47–63. doi:10.1524/anly.1988.8.12.47
  10. Connor J.S. R-type summability methods, Cauchy criteria, P-sets and statistical convergence. Proc. Amer. Math. Soc. 1992, 115 (2), 319–327. doi:10.2307/2159248
  11. Connor J.S., Grosse-Erdmann K.G. Sequential definitions of continuity for real functions. Rocky Mountain J. Math. 2003, 33 (1), 93–121. doi:10.1216/rmjm/1181069988
  12. Duman O., Orhan C. \(\mu\)-statistically convergent function sequences. Czechoslovak Math. J. 2004, 54 (2), 413–422.
  13. Eghbali N., Ganji M. Generalized Statistical Convergence in the Non-Archimedean L-fuzzy Normed Spaces. Azerb. J. Math. 2016, 6 (1), 15–22.
  14. Fast H. Sur la convergence statistique. Colloq. Math. 1951, 2, 241–244.
  15. Federer H. Geometric measure theory. Springer, New York, 1969.
  16. Fridy J.A. On statistical convergence. Analysis 1985, 5 (4), 301–313. doi:10.1524/anly.1985.5.4.301
  17. Fridy J.A. Statistical limit points. Proc. Amer. Math. Soc. 1993, 118 (4), 1187–1192. doi:10.2307/2160076
  18. Fridy J.A., Miller H.I. A matrix characterization of statistical convergence. Analysis 1991, 11 (1), 59–66. doi:10.1524/anly.1991.11.1.59
  19. Fridy J.A., Khan M.K. Tauberian theorems via statistical convergence. J. Math. Anal. Appl. 1998, 228 (1), 73–95. doi:10.1006/jmaa.1998.6118
  20. Fridy J.A., Orhan C. Lacunary statistical summability. J. Math. Anal. Appl. 1993, 173 (2), 497–504. doi:10.1006/jmaa.1993.1082
  21. Fridy J.A., Orhan C. Lacunary statistical convergence. Pacific J. Math. 1993, 160 (1), 43–51.
  22. Gadjiev A.D., Orhan C. Some approximation theorems via statistical convergence. Rocky Mountain J. Math. 2002, 32 (1), 129–138. doi:10.1216/rmjm/1030539612
  23. Gadjiev A.D., Ghorbanalizadeh A.M. On the \(A\)-statistical approximation by sequences of \(k\)-positive linear operators. Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 2009 31, 41–52.
  24. Gadjiev A.D. Simultaneous statistical approximation of analytic functions and their derivatives by k-positive linear operators. Azerb. J. Math. 2011, 1 (1), 57–66.
  25. Gordon R. The integrals of Lebesgue, Denjoy, Perron and Henstock. In: Graduate studies in mathematics, 4. American Mathematical Society, 1994.
  26. Hazarika B., Savaş E. \(\left(\lambda ;\mu \right)\)-statistical convergence of double sequences in \(n\)-normed spaces. Note di Mathematica, 2012, 32 (2), 101–114.
  27. Jasinki J., Reclaw I. Ideal convergence of continuous functions. Topology Appl. 2006, 153 (18), 3511–3518. doi:10.1016/j.topol.2006.03.007
  28. Komisarski A. Pointwise \(\mathscr I\)-convergence and \(\mathscr I\)-convergence in measure of sequences of functions. J. Math. Anal. Appl., 2008, 340 (2), 770–779. doi:10.1016/j.jmaa.2007.09.016
  29. Lahiri B.K., Chakrabarti S. Approximately continuous functions in a measure space. Vietnam J. Math. 1997, 25 (1), 59–64.
  30. Mačaj M., Šalát T. Statistical convergence of subsequences of a given sequence. Math. Bohem. 2001, 126 (1), 191–208. doi:10.21136/MB.2001.133923
  31. Maddox I.J. Statistical convergence in a locally convex space. Math. Proc. Cambridge Philos. Soc. 1988, 104 (1), 141–145. doi:10.1017/S0305004100065312
  32. Móricz F. Statistical limits of measurable functions. Analysis 2004, 24, 1–18. doi:10.1524/anly.2004.24.1.1
  33. Mursaleen M. \(\lambda\)-statistical convergence. Math. Slovaca 2000, 50 (1), 111–115.
  34. Mursaleen M., Mohiuddine S.A. Statistical convergence of double sequence in intuitionistic fuzzy normed spaces. Chaos Solitons Fractals 2009, 41, 2414–2421. doi:10.1016/j.chaos.2008.09.018
  35. Natanson I.P. Theory of Functions of a Real Variable, Nauka, Moscow, 1974. (in Russian)
  36. Patterson R.F., Savaş E. Lacunary statistical convergence of double sequences. Math. Commun. 2005, 10, 55–61.
  37. Rath D., Tripathy B.C. On statistically convergent and statistically Cauchy sequences. Indian J. Pure Appl. Math. 1994, 25 (4), 381–386.
  38. Šalát T. On statistically convergent sequences of real numbers. Math. Slovaca 1980, 30 (2), 139–150.
  39. Sarabadan S., Talebi S. Statistical convergence and ideal convergence of sequences of functions in 2-normed spaces. Int. J. Math. Math. Sci. 2011, 2011, 1–10. doi:10.1155/2011/517841
  40. Savaş E. On lacunary strong \(\sigma\)-convergence. Indian J. Pure Appl. Math. 1990, 21 (4), 359–365.
  41. Savaş E., Borgohain S. On strongly almost lacunary statistical \(A\)-convergence defined by Musielak-Orlicz function. Filomat 2016, 30 (3), 689–697. doi:10.2298/FIL1603689S
  42. Schoenberg I.J. The integrability of certain functions and related summability methods. Amer. Math. Monthly 1959, 66, 361–375. doi:10.1080/00029890.1959.11989303
  43. Steinhaus H. Sur la convergence ordinaire et la convergence asumptotique. Colloq. Math. 1951, 2, 73–74.
  44. Zygmund A. Trigonometric series, Vol. II. Cambridge Univ. Press, London–New York, 1979.