References
-
Atiyah M.F., MacDonald I.G.
Introduction to Commutative algebra.
Addison-Wesley Publishing Company, University of Oxford, 1969.
-
Berraho M.
On a problem concerning the ring of Nash germs and the Borel mapping.
AIMS Mathematics 2020, 5 (2), 923-929.
doi: 10.3934/math.2020063
-
Berraho M.
On definable germs of functions in expansions of the real field by power functions.
Asia Mathematika 2020, 4 (2), 117-126.
-
Bianconi R.
Nondefinability results for expansions of the field of real numbers by the exponential function and by the restricted sine function.
J. Symbolic Logic 1997, 62 (4), 1173-1178.
-
Bochnak J., Coste M., Roy M.F.
Géométrie algébrique réelle, Ergebnisse des Mathematik, 12.
Berlin, Heidelberg, New York, Springer Verlag, 1987.
-
Chaumat J., Chollet A.M.
Division par un polynôme hyperbolique.
Canad. J. Math. 2004, 56 (6), 1121-1144.
doi: 10.4153/CJM-2004-050-1
-
Elkhadiri A., Sfouli H.
Weierstrass division in quasianalytic local rings.
Studia Math. 2008, 185 (1), 83-86.
-
Gunning R., Rossi H.
Analytic functions of several complex variables, Reprint of the 1965 original.
AMS Chelsea Publishing, Providence, RI, 2009.
-
Kaiser T.
R-analytic functions.
Arch. Math. Logic 2016, 55 (5-6), 605-623.
doi: 10.1007/s00153-016-0483-x
-
Miller C.
Expansions of the real field with power functions.
Ann. Pure Appl. Logic 1994, 68 (1), 79-94.
-
Miller C.
Infinite differentiability in polynomially bounded o-minimal structures.
Proc. Amer. Math. Soc. 1995, 123 (1), 2551-2555.
-
Nestruev J.
Smooth manifolds and observables.
Springer, Berlin, 2002.
-
Nowak K.
On division of quasianalytic function germs.
Internat. J. Math. 2013, 24 (13), 1-5.
doi: 10.1142/S0129167X13501115
-
Parusinski A., Rolin J.P.
A note on the Weierstrass preparation theorem inquasianalytic local rings.
Canad. Math. Bull. 2014, 57 (3), 614-620.
doi: 10.4153/CMB-2013-034-5
-
Rond G.
Local zero estimates and effective division in rings of algebraic power series.
J. Reine Angew. Math. 2018, 2018 (737), 111-160.
doi: 10.1515/crelle-2015-0041
-
Sfouli H.
On a problem concerning quasianalytic local rings.
Ann. Polon. Math. 2014, 111 (1), 13-20.
-
Thilliez V.
On quasianalytic local rings.
Expo. Math. 2008, 26 (1), 1-23.
-
Van den Dries L.
On the Elementary Theory of Restricted Elementary Functions.
J. Symbolic Logic 1988, 53 (3), 796-808.