References

  1. Atiyah M.F., MacDonald I.G. Introduction to Commutative algebra. Addison-Wesley Publishing Company, University of Oxford, 1969.
  2. Berraho M. On a problem concerning the ring of Nash germs and the Borel mapping. AIMS Mathematics 2020, 5 (2), 923-929. doi: 10.3934/math.2020063
  3. Berraho M. On definable germs of functions in expansions of the real field by power functions. Asia Mathematika 2020, 4 (2), 117-126.
  4. Bianconi R. Nondefinability results for expansions of the field of real numbers by the exponential function and by the restricted sine function. J. Symbolic Logic 1997, 62 (4), 1173-1178.
  5. Bochnak J., Coste M., Roy M.F. Géométrie algébrique réelle, Ergebnisse des Mathematik, 12. Berlin, Heidelberg, New York, Springer Verlag, 1987.
  6. Chaumat J., Chollet A.M. Division par un polynôme hyperbolique. Canad. J. Math. 2004, 56 (6), 1121-1144. doi: 10.4153/CJM-2004-050-1
  7. Elkhadiri A., Sfouli H. Weierstrass division in quasianalytic local rings. Studia Math. 2008, 185 (1), 83-86.
  8. Gunning R., Rossi H. Analytic functions of several complex variables, Reprint of the 1965 original. AMS Chelsea Publishing, Providence, RI, 2009.
  9. Kaiser T. R-analytic functions. Arch. Math. Logic 2016, 55 (5-6), 605-623. doi: 10.1007/s00153-016-0483-x
  10. Miller C. Expansions of the real field with power functions. Ann. Pure Appl. Logic 1994, 68 (1), 79-94.
  11. Miller C. Infinite differentiability in polynomially bounded o-minimal structures. Proc. Amer. Math. Soc. 1995, 123 (1), 2551-2555.
  12. Nestruev J. Smooth manifolds and observables. Springer, Berlin, 2002.
  13. Nowak K. On division of quasianalytic function germs. Internat. J. Math. 2013, 24 (13), 1-5. doi: 10.1142/S0129167X13501115
  14. Parusinski A., Rolin J.P. A note on the Weierstrass preparation theorem inquasianalytic local rings. Canad. Math. Bull. 2014, 57 (3), 614-620. doi: 10.4153/CMB-2013-034-5
  15. Rond G. Local zero estimates and effective division in rings of algebraic power series. J. Reine Angew. Math. 2018, 2018 (737), 111-160. doi: 10.1515/crelle-2015-0041
  16. Sfouli H. On a problem concerning quasianalytic local rings. Ann. Polon. Math. 2014, 111 (1), 13-20.
  17. Thilliez V. On quasianalytic local rings. Expo. Math. 2008, 26 (1), 1-23.
  18. Van den Dries L. On the Elementary Theory of Restricted Elementary Functions. J. Symbolic Logic 1988, 53 (3), 796-808.