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BOUNDEDNESS OF THE HILBERT TRANSFORM ON BESOV SPACES

MAATOUG A., ALLAOUI S.E.

The Hilbert transform along curves is of a great importance in harmonic analysis. It is known
that its boundedness on L? (R") has been extensively studied by various authors in different con-
texts and the authors gave positive results for some or all p,1 < p < oco. Littlewood-Paley theory
provides alternate methods for studying singular integrals. The Hilbert transform along curves, the
classical example of a singular integral operator, led to the extensive modern theory of Calderén-
Zygmund operators, mostly studied on the Lebesgue L? spaces. In this paper, we will use the
Littlewood-Paley theory to prove that the boundedness of the Hilbert transform along curve I on
Besov spaces By, ,(IR") can be obtained by its LP-boundedness, where s € R, p, g €]1, +oo[, and I'(#)
is an appropriate curve in R", also, it is known that the Besov spaces B;,q(]R”) are embedded into
LP(R") spaces for s > 0 (i.e. B} ,(R") = LP(R"),s > 0). Thus, our result may be viewed as an
extension of known results to the Besov spaces B}, ,(R") for general values of s in R.
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1 INTRODUCTION

LetT : R — R", n > 2, be a continuous curve passing through the origin, i.e. I'(0) = 0. We
define the Hilbert transform along I' by the principal-valued integral

dt

M) =pv. [ fe—TE)T, vf e CTRY). )

It is interesting to determine for which curves I', and which indices p, one has the LP-bound

I#fllp < cllflly; 2)

for a survey of this problem’s history through 1977 see [21]. More recent results can be found
in a series of papers, see for example [6-8,14-18] and [4]. Now, we are interesting to determine
for which curves I', and which indices p, g, s, we have estimates of the form

1% £l vy < €Il Flls, (v ®)

for f € B} ,(IR"), and ¢ < co depending only on I' and p, not f ?
At first, note that a simple calculation shows that

~

HF(E) = m(E).f,
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where the "Fourier multiplier" m is the function
© dt
m(g) = p.v./ e”’;r(t)T, ¢ eR"™

Next, it is known that for proving the estimate (2) for p = 2, it suffices to show that m(¢) is
a bounded function on IR” and to use the Van Der Corput Lemma and Plancherel’s Theorem
(see [30, p.197] and [18]).

When T is of finite type, i.e the set {T(®)(0) : k > 1} spans R”, we must consider the local
version H, of the operator 7, where the integral defining # is restricted to [—1,1]. In [21] it
is shown that, in this case, #,,. is bounded on L?(R") for every p,1 < p < co. Thus, what can
happen in the case when I is not of finite type? We restrict our attention to curves 7y satisfying

v € C2(]0, +00[), convex on [0, +-o0[ and y(0) = 9/ (0) = 0; @)

and vy is either even or odd. The convexity hypothesis means that [y(c) — y(b)]/(c — b) >
[7(b) —(a)]/(b —a) for 0 < a < b < c. The following notions naturally arise

Definition1. (i) A function f : R — R belongs to C' if there exists A,1 < A < oo, such
that for each t > 0 the inequality f(At) > 2f(t) holds. Such a function f is said to be
doubling.

(ii) A differentiable function f : R — R belongs to C? if there exists ey > 0 such that for
t > 0 the inequality f'(t) > eof(t)/t holds. Such a function f is said to be infinitesimally
doubling.

If f is nondecreasing on |0, +oo[, then f € C? implies f € C'.

We will also use the function & defined for t > 0 by h(t) = ty/(t) — y(t). Because of 7 is
convex and y(0) = 0 we get the following important inequality

ty'(t) > y(t) forallt > 0.

In [5], it was proved that if 7y is even and satisfies (4) for p €]1, +-o0[, then H is LP-bounded
if and only if 9/ € C!. This is the case when 7 is convex and even. In the odd case, the current
situation is less satisfactory. In [15], it is shown that if v is odd, and satisfies (4), then H is
L%-bounded if and only if 1 € C!. This means that for each p €]1, +oo[ a necessary condition
for H to be LP-bounded is # € C!. However, it was demonstrated in [3] that this condition is
far from sufficient. It is shown that when -y is odd, satisfies (4), and if h € C2, then H is LP-
bounded for all p €]1, c0[. In the same case, we have the L? result for any p €]1, +oo| if ¢/ € C!
(see [5]).

For the case of polynomial curve I' in R” some of related known results are Theorems 2
and 3 (see below and [2,22]). Indeed, the subject of bounds on Hilbert transforms and singular
integrals has a rich history and has been studied by many authors on different spaces such as
Lebesgue, Sobolev Spaces, which are special cases of Besov spaces. For different states of the
Hilbert transform we refer the reader to [2,11,13,23] and many references therein. In particular,
and in connection with our work, we mention the work of U. Luther and M.G. Russo [13]. They
have studied the Hilbert transform on a new weighted Besov spaces which touched our topic
but did not approach exactly. Our method is also different from [13]. Besov spaces are the
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natural spaces in which many operators related to functional equations, many papers appeared
on Besov spaces and some possible related applications, for example Lagrange interpolation
in Besov spaces and Cauchy singular integral equations in Sobolev spaces (see [9,10,12]).

On some conditions we confirm that the Hilbert transform preserves the boundedness
property on Besov Bj ,(IR") spaces, for all s € R and p,q €]1,00[. In this paper, we will af-
firm this.

This paper is organized as follows. After giving some preliminaries and notations that will
be needed throughout this paper, we recall the decomposition of Littlewood-Palley, the defini-
tion of Besov spaces, and their properties. In addition, we will recall some results concerning
the LP(IR")-boundedness of the Hilbert transform along curves, we mention the following re-
sults of [22] and [2], which would guarantee the LP(IR")-boundedness for all p,1 < p < oo.
In Section 3, we prove that the boundedness of the Hilbert transform along curves on Besov
spaces Bj ,(IR") can be obtained by its L7(R")-boundedness. Finally, we present a conclusion
and discuss future research in Section 4. The main result of this paper is the following.

Theorem 1. Lets € R, p €]1,+o0[, g €]1, +00]. If H is bounded on LP(R"), then H is bounded
on Besov spaces B}, ,(R").

2 PRELIMINARIES

In this section, we recall the basic definitions and notations that will be needed throughout
this paper.

2.1 Notations

In this paper, N = {1, 2, - - - } denotes the set of all natural numbers and Ny = N U {0}. All
considered spaces are defined on the Euclidean space R”, x.y = x1y1 + - - - + X, denotes the
scalar product in R". For each &« = (a1, ...,a,) € N" and every x = (x1,...,%,) € R",0*f de-

ol f
the space of all infinitely differentiable and compactly supported functions in R”, D’(IR") is
the topological dual of D(IR"). S(IR") denotes the Schwartz space of all complex-valued, in-
finitely differentiable, and rapidly decreasing functions, and S’(R") its topological dual, the
space of tempered distributions. For ¢ € S(R") and f € S'(IR") the Fourier transform defined
on both S(R") and S’'(R") is given by (Ff)(¢) = f(F¢), where

notes the partial derivative with |a| = a3 + - - +a,. CF(R") = D(R") denotes

n

(FO)@) = 9@) = @r) ¢ [ e g(x)dx,  EER', geSRY).

The mapping F is a bijection (in both cases) and its inverse is given by

n

(Fl9)(¢) = (27T)_%/ eep(x)dx,  CER', ¢eSRY.

The convolution ¢ * ¢ of two integrable functions ¢, ¢ is defined via the integral

(9 9)(x) = [ olx—yp(y)dy.

R”
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The symbol — denotes that the natural injection is a continuous linear operator. For 1 <
1 1
p < oo, we denote by p’ the conjugate exponent of p such that » + P = 1. The space L”(IR"),

0 < p < oo, denotes the set of the measurable functions f such that

£l = ( [, |f(x)|de>% <o

with the usual modification if p = co. By 17 we denote the set of sequences (ay); such that
(@)1l = (Crep |ax|1)"/1 < co. For p and g such that 0 < p < 00,0 < g < oo, we put

1
q

< 0.
p

1fkeller) = (Iiufk(x)uzf <o Akl =) ( ké )

2.2 The Littlewood-Paley decomposition

We introduce the concept of a dyadic decomposition of unity, and we define the Besov
spaces by using the Littlewood-Paley decomposition of tempered distributions.

Let ¢ be a smooth function in S(R") which satisfies the conditions: ¢(x) = 1if x| < 1,
o(x) =0if[x| > 3,0< p(x) < 1.

We define

po(x) = 9(x), @j(x) = 927x) —(27/*x), j=1,2,..., x€R",

and the following identity holds
Y ¢i(x) =1, VxeR"
j=0

The system {¢;(x) }jen form a dyadic resolution of unity in R".
Putting
®y=F ¢ and D = f’l(pj,

we obtain the Littlewood-Paley decomposition of f, i.e.
f=)Y ®f
j=0

for every f € S'(R") (see [29]).

2.3 Besov spaces

Definition 2 ([29]). Let the real numbers s, p,q such thats € R,0 < p < o0, and 0 < g < co.
The Besov space By, ,(R") is the set of all f € S'(R") such that

[1£1I8s,, ()

(o) ) 1/17
(Le@een)) <o

j=0

with the usual modification if § = co.
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Note that B;IQ(IR”) is a Banach space if p > 1,4 > 1, which is independent of the chosen

system {q)]};zgo
Proposition 1. Lets € R, p,q € [1, +o0]. The following chain of continuous embeddings
S(R") < B, ,(R") — S'(R"),

holds. Furthermore Bj, ,(R") contains the Schwartz space S(R") as a dense subspace if
max(p,q) < o.

The given above definition represents only one of a large collection of possibilities for in-
troducing Besov spaces. For its basic properties we refer to [1, 19,20, 24, 25].

Now we give the results of [2] and [22], which guarantee the L”(IR")-boundedness of the
Hilbert transform for all p,1 < p < co.

Theorem 2 ([22]). Let T'(t) = (Pi(t),...,Pu(t)), where Py, ..., P, are real polynomials on R.
Then H is bounded on L? for all p,1 < p < oo, with bound independent of the coefficients of
Pl, ey Pn.

Theorem 3 ([2]). Suppose that P is a real polynomial and -y is convex on |0, o[ twice differen-
tiable, either even or odd, ¢(0) = 0, and 7/(0) > 0.

LetT(t) = (t,P((t))),p € ]1,00[, and either (1) P'(0) is zero, or (2) P'(0) is nonzero and
9 € Cl, then

IHfNlp < cllfllp-

Moreover the constant c depends only on p, y and the degree of P.

Remark 1. (1) By taking «(t) = t, we recover a form of Theorem 2, it is shown in [22] that
forall p,1 < p < oo, LP(IR")-boundedness of H is obtained. Also taking P(s) = s, it is
shown in [5] that if  is odd, satisfies (4) and o' € C, then the LP-boundedness of H for
all p €]1, 00| is obtained.

(2) Some examples of nonconvex curves were studied in [28], and later these were general-
ized somewhat through a technical theorem in [27]. Although the class of these curves
obtained from theorem in [2].

3 PROOF OF THEOREM 1.

The proof of Theorem 1 needs the following lemma.

Lemma 1 ([6]). For all functions f in S(R") we have

~

HF(E) = m(©).f, 5)

where the "Fourier multiplier" m is the function

m(g) :p.V./oo eig'r(t)?, ¢ e R"™
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Proof. By the Fubini theorem we have

HF(E) =pv. /oo % {/ ) el T f(x — F(t))dx} dt,

— 00

By changing the variable u = x — I'(t), we obtain
f( )el ~8 (T gy — F(7)el~ L),

O

Hence we have the following result. By applying the inverse of the Fourier transform for
(5), see for instance [26, p.40], we can define the Hilbert transform as a convolution operator
by the formula

Hf(x) = K= f(x), (6)
where
K(g) = F'm(g)

(see also [8] and [22, p.25]).
Now, by Theorem 2 or Theorem 3, for any p,q, such that 1 < p,q < oo, and any { fi } jin
11(LP), we have

) 1/q %) 1/q
(2 qu]-H;L) < c(z HﬁllZ) , %
j=0 j=0

where c is independent of {f;}.
It follows from formula (6) that

o] ) 1/17
174y = (2271121,
i=0
o 1/‘1 o 1/17
= <22]Sq|\q)j*7{f|]%> = <22]S‘7|\Cl>j*K*f|\Z> )
=0 =0

By the convolution properties and formula (6), we have
1/q

oo ) 1/17
7, ey = (z%nK* @)1} (Z @ e« P}
L

Then, by formula (7), there exists a constant ¢ such that

oo ) 1/17
(T — c(guzﬁqy <)
]:
Simple calculations show that

o] ) 1/17 o 1/11
1500 < c( D@0 1)7) = e E29@ 1) =l o

j=0 j=0
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4 CONCLUSION

In this work, using the Littlewood-Paley decomposition we have proved that the bound-

edness of the Hilbert transform along curves on Besov spaces Bj, , (R"™) can be obtained by
its LP(R")-boundedness, where s € R, and p,q €]1, +oo[. In future work, we will prove the
boundedness on other functional spaces.
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INepersopenns [1abbepTa B3AOBX KPMBIMX Ma€ BeAMKe 3HaUeHHs B rapMOHIUHOMY aHaAisi. Biao-
Mo, 1m0 11oro obMexeHicTs Ha LF (IR") IMpOKO AOCAIAXKYBAAOCH Pi3HMMI aBTOpaMM B Pi3HIMX KOH-
TeKCTaX i aBTOPY OTPMMYyBaAM IIO3UTHBHI PE3YABTATH AAS AestkuX abo Bcix p,1 < p < co. Teopis
AiTaByaa-Tleni Hapae aAbTepHATUBHI METOAM BUMBYEHHsI CMHIYASPHMX iHTerpaaiB. [lepeTBopeHHs
T'iAbbepTa B30BX KPMBMX, SK KAACHYHMIA IPMKAAA CHMHTYASIPHOTO iHTerpaaa, MpU3BEAO AO IIOSBI
cydJacHoi Teopii onepaTopis KaabaepoHa-3irmyHaa, siki 3ae6iAbIIoro BuBUeHi Ha Ae6€TOBIX IIPOCTO-
pax LP. VY miit cTaTTi My BUKOpUCTOBYeMO Teopito AiTaByaa-TTeai 1106 AoBeaecTH, 10 0OMeKeHiCTh
nepersoperHsi ['iabbepTa B3a0BX kpusoi I' Ha mpocTopax Becosa B;, ,(IR") Moxe 6yt orpumana 3
toro LP-obmexeHocTti, ae s € R, p,q €]1, +oc0|, i I'(t) — BianosiaHa xpusa B R”. BiaoMo, 1110 ipo-
cropu becosa Bj, ,(R") Bxaaaeni B mpocropu LF(R") aast s > 0 (To6To B, ,(R") < LP(R"),s > 0).
OTxe, HaIll pe3yAbTaT MOXHA PO3TASIAATH SIK IIPOAOBXEHHsI BiAOMMX pe3yAbTaTiB Ha mpocropu be-
cosa By, ;(R") Arst AOBiAbHVIX 3HaUeHD s B IR.

Kntouosi cnosa i ppasu: mepersopenHst ['iabbepTa, poskaaa AiTaByaa-Tleai, mpocropnu becosa.



