References
-
Bergh J., Löfström J.
Interpolation Spaces.
Springer, 1976.
-
Bez N.
$L^{p}$-boundedness for the Hilbert transform and maximal operator along a class of nonconvex curves.
Proc. Amer. Math. Soc. 2007, 135 (1), 151-161.
doi: 10.1090/S0002-9939-06-08603-5
-
Carbery A., Christ M., Vance J., Wainger S., Watson D.
Operators associated to flat plane curves: $L^p$ estimates via dilation methods.
Duke Math. J. 1989, 59, 677-700.
-
Carbery A., Ziesler S.
Hilbert transforms and Maximal functions along rough flat curves.
Rev. Mat. Iberoam. 1994, 10 (2), 379-393.
-
Carlsson N., Christ M., Cordoba A., Duoandikoetxea J., Rubio de Francia J.L., Vance J., Wainger S., Weinberg D.
$L^p$ estimates for maximal functions and Hilbert transforms along flat convex curves in $\mathbb{R}^2$.
Bull. Amer. Math. Soc. 1986, 14 (2), 263-267.
-
Córdoba A., Nagel A.,Vance J., Wainger S., Weinberg D.
$L^p$ bounds for Hilbert transforms along convex curves.
Invent. Math. 1986, 83, 59-71.
doi: 10.1007/BF01388753
-
Córdoba A., Rubio de Francia J.L.
Estimates for Wainger's Singular Integrals Along Curves.
Rev. Mat. Iberoam. 1986, 2 (2), 105-117.
doi: 10.4171/RMI/29
-
Duoandikoetxea J., Rubio de Francia J.L.
Maximal and singular operators via Fourier transform estimates.
Invent. Math. 1986, 84, 541-561.
doi: 10.1007/BF01388746
-
Li J., Gao G.
Boundedness of Oscillatory Hyper-Hilbert Transform along Curves on Sobolev Spaces.
J. Funct. Spaces 2014, Article ID 489068.
-
Junghanns P., Luther U.
Cauchy singular integral equation in spaces of continuous functions and methods for their numerical solution.
J. Comput. Appl. Math. 1997, 77, 201-237.
doi: 10.1016/S0377-0427(96)00128-8
-
Mastroianni G., Russo M.G.
Lagrange interpolation in some weighted uniform spaces.
Facta Universitatis, Ser. Math. Inform. 1997, 12, 185-201.
-
Mastroianni G., Russo M.G.
Lagrange interpolation in weighted Besov spaces.
Constr. Approx. 1999, 15 (2), 257-289.
-
Luther U., Russo M.G.
Boundedness of the Hilbert transformation in some weighted Besov type spaces.
Integr. Equ. Oper. Theory 2000, 36, 220-240.
doi: 10.1007/BF01202097
-
Nagel A., Stein E.M., Wainger S.
Hilbert transforms and maximal functions related to variable curves.
In: Weiss G., Wainger S. (Eds.)
Proc. Sympos. Pure Math. Part 1, 35,
Providence, R.I., 1979.
-
Nagel A., Vance J., Wainger S., Weinberg D.
Hilbert transforms for convex curves.
Duke Math. J. 1983, 50 (3), 735-744.
doi: 10.1215/S0012-7094-83-05036-6
-
Nagel A., Vance J., Wainger S., Weinberg D.
Maximal functions for convex curves.
Duke Math. J. 1985, 52 (3), 715-722.
doi: 10.1215/S0012-7094-85-05237-8
-
Nagel A., Wainger S.
Hilbert transforms associated with plane curves.
Trans. Amer. Math. Soc. 1976, 223, 235-252.
doi: 10.2307/1997526
-
Nestlerode W.C.
Singular integrals and maximal Functions associated with highly monotone curves.
Trans. Amer. Math. Soc. 1981, 267 (2), 435-444.
doi: 10.2307/1998663
-
Peetre J.
New thoughts on Besov spaces.
Duke Univ. Math. Series I. Durham, N.C., 1976.
-
Runst T., Sickel W.
Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations.
de Gruyter, Berlin, 1996.
-
Stein E.M., Wainger S.
Problems in harmonic analysis related to curvature.
Bul. Amer. Math. Soc. 1978, 84 (6), 1239-1295.
-
Stein E.M.
Harmonic Analysis.
Princeton University Press, 1993.
-
Roudenko S.
Matrix-Weighted Besov spaces.
Trans. Amer. Math. Soc. 2003, 355 (1), 273-314.
-
Triebel H.
Theory of Function Spaces.
Birkh\"auser, Basel, 1983.
-
Triebel H.
Theory of Function Spaces II.
Birkh\"auser, Basel, 1992.
-
Triebel H, Haroske Dorothee D. Distributions, Sobolev Spaces, Elliptic Equations.
EMS, Germany, 2008.
-
Vance J., Wainger S., Wright J.
The Hilbert transform and maximal function along nonconvex curves in the planes.
Rev. Mat. Iberoam. 1994, 10 (1), 93-121.
doi: 10.4171/RMI/146
-
Wright J.
$L^p$ estimates for operators associated to oscillating plane curves.
Duke Math. J. 1992, 67 (1), 101-157.
doi: 10.1215/S0012-7094-92-06705-6
-
Yuan W., Sickel W., Yang D.
Morrey and Campanato Meet Besov, Lizorkin and Triebel.
Springer, 2005.
-
Zygmund A.
Trigonometric Series, 1.
London, Cambridge Univ. Press, 1959.