References

  1. Bergh J., Löfström J. Interpolation Spaces. Springer, 1976.
  2. Bez N. $L^{p}$-boundedness for the Hilbert transform and maximal operator along a class of nonconvex curves. Proc. Amer. Math. Soc. 2007, 135 (1), 151-161. doi: 10.1090/S0002-9939-06-08603-5
  3. Carbery A., Christ M., Vance J., Wainger S., Watson D. Operators associated to flat plane curves: $L^p$ estimates via dilation methods. Duke Math. J. 1989, 59, 677-700.
  4. Carbery A., Ziesler S. Hilbert transforms and Maximal functions along rough flat curves. Rev. Mat. Iberoam. 1994, 10 (2), 379-393.
  5. Carlsson N., Christ M., Cordoba A., Duoandikoetxea J., Rubio de Francia J.L., Vance J., Wainger S., Weinberg D. $L^p$ estimates for maximal functions and Hilbert transforms along flat convex curves in $\mathbb{R}^2$. Bull. Amer. Math. Soc. 1986, 14 (2), 263-267.
  6. Córdoba A., Nagel A.,Vance J., Wainger S., Weinberg D. $L^p$ bounds for Hilbert transforms along convex curves. Invent. Math. 1986, 83, 59-71. doi: 10.1007/BF01388753
  7. Córdoba A., Rubio de Francia J.L. Estimates for Wainger's Singular Integrals Along Curves. Rev. Mat. Iberoam. 1986, 2 (2), 105-117. doi: 10.4171/RMI/29
  8. Duoandikoetxea J., Rubio de Francia J.L. Maximal and singular operators via Fourier transform estimates. Invent. Math. 1986, 84, 541-561. doi: 10.1007/BF01388746
  9. Li J., Gao G. Boundedness of Oscillatory Hyper-Hilbert Transform along Curves on Sobolev Spaces. J. Funct. Spaces 2014, Article ID 489068.
  10. Junghanns P., Luther U. Cauchy singular integral equation in spaces of continuous functions and methods for their numerical solution. J. Comput. Appl. Math. 1997, 77, 201-237. doi: 10.1016/S0377-0427(96)00128-8
  11. Mastroianni G., Russo M.G. Lagrange interpolation in some weighted uniform spaces. Facta Universitatis, Ser. Math. Inform. 1997, 12, 185-201.
  12. Mastroianni G., Russo M.G. Lagrange interpolation in weighted Besov spaces. Constr. Approx. 1999, 15 (2), 257-289.
  13. Luther U., Russo M.G. Boundedness of the Hilbert transformation in some weighted Besov type spaces. Integr. Equ. Oper. Theory 2000, 36, 220-240. doi: 10.1007/BF01202097
  14. Nagel A., Stein E.M., Wainger S. Hilbert transforms and maximal functions related to variable curves. In: Weiss G., Wainger S. (Eds.) Proc. Sympos. Pure Math. Part 1, 35, Providence, R.I., 1979.
  15. Nagel A., Vance J., Wainger S., Weinberg D. Hilbert transforms for convex curves. Duke Math. J. 1983, 50 (3), 735-744. doi: 10.1215/S0012-7094-83-05036-6
  16. Nagel A., Vance J., Wainger S., Weinberg D. Maximal functions for convex curves. Duke Math. J. 1985, 52 (3), 715-722. doi: 10.1215/S0012-7094-85-05237-8
  17. Nagel A., Wainger S. Hilbert transforms associated with plane curves. Trans. Amer. Math. Soc. 1976, 223, 235-252. doi: 10.2307/1997526
  18. Nestlerode W.C. Singular integrals and maximal Functions associated with highly monotone curves. Trans. Amer. Math. Soc. 1981, 267 (2), 435-444. doi: 10.2307/1998663
  19. Peetre J. New thoughts on Besov spaces. Duke Univ. Math. Series I. Durham, N.C., 1976.
  20. Runst T., Sickel W. Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. de Gruyter, Berlin, 1996.
  21. Stein E.M., Wainger S. Problems in harmonic analysis related to curvature. Bul. Amer. Math. Soc. 1978, 84 (6), 1239-1295.
  22. Stein E.M. Harmonic Analysis. Princeton University Press, 1993.
  23. Roudenko S. Matrix-Weighted Besov spaces. Trans. Amer. Math. Soc. 2003, 355 (1), 273-314.
  24. Triebel H. Theory of Function Spaces. Birkh\"auser, Basel, 1983.
  25. Triebel H. Theory of Function Spaces II. Birkh\"auser, Basel, 1992.
  26. Triebel H, Haroske Dorothee D. Distributions, Sobolev Spaces, Elliptic Equations. EMS, Germany, 2008.
  27. Vance J., Wainger S., Wright J. The Hilbert transform and maximal function along nonconvex curves in the planes. Rev. Mat. Iberoam. 1994, 10 (1), 93-121. doi: 10.4171/RMI/146
  28. Wright J. $L^p$ estimates for operators associated to oscillating plane curves. Duke Math. J. 1992, 67 (1), 101-157. doi: 10.1215/S0012-7094-92-06705-6
  29. Yuan W., Sickel W., Yang D. Morrey and Campanato Meet Besov, Lizorkin and Triebel. Springer, 2005.
  30. Zygmund A. Trigonometric Series, 1. London, Cambridge Univ. Press, 1959.