References

  1. Altun I., Sahin H., Türkoğlu D. Caristi-type fixed point theorems and some generalizations on \(M\)-metric space. Bull. Malays. Math. Sci. Soc. 2020, 43, 2647–2657. doi:10.1007/s40840-019-00823-8
  2. Sahin H., Altun I., Türkoğlu D. Two fixed point results for multivalued \(F\)-contractions on \(M\)-metric spaces. Rev. R. Acad. Cienc. Exactas Fı́s. Nat. (Esp.) 2019, 113, 1839–1849. doi:10.1007/s13398-018-0585-x
  3. Asadi M., Karapinar E., Salimi P. New extension of \(p\)-metric spaces with some fixed-point results on \(M\)-metric spaces. J. Inequal. Appl. 2014, 18. doi:10.1186/1029-242X-2014-18
  4. Baghani H., Gordji M.E., Ramezani M. Orthogonal sets: The axiom of choice and proof of a fixed point theorem. J. Fixed Point Theory Appl. 2016, 18, 465–477. doi:10.1007/s11784-016-0297-9
  5. Banach S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3 (1), 133–181.
  6. Berinde V. Approximating fixed points of weak \(\varphi\)-contractions using the Picard iteration. Fixed Point Theory 2003, 4 (2), 131–142.
  7. Bhaskar T.G., Lakshmikantham V. Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 2006, 65 (7), 1379–1393. doi:10.1016/j.na.2005.10.017
  8. Gordji M.E., Baghani H., Kim G.H. Common fixed point theorems for \((\psi ,\varphi)\)-weak nonlinear contraction in partially ordered sets. Fixed Point Theory Appl. 2012, 62. doi:10.1186/1687-1812-2012-62
  9. Gordji M.E., Rameani M., De La Sen M., Cho Y.J. On orthogonal sets and Banach fixed point theorem. Fixed Point Theory 2017, 18 (2), 569–578.
  10. Işık H., Radenović S. A new version of coupled fixed point results in ordered metric spaces with applications. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2017, 79 (2), 131–138.
  11. Işık H., Türkoğlu D. Fixed point theorems for weakly contractive mappings in partially ordered metric-like spaces. Fixed Point Theory Appl. 2013, 51. doi:10.1186/1687-1812-2013-51
  12. Işık H., Türkoğlu D. Some fixed point theorems in ordered partial metric spaces. J. Inequal. Spec. Funct. 2013, 4 (2), 13–18.
  13. Lakshmikantham V., Ćirić L. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 2009, 70 (12), 4341–4349.
  14. Matkowski J. Fixed point theorems for mappings with a contractive iterate at a point. Proc. Amer. Math. Soc. 1977, 62 (2), 344–348.
  15. Matthews S.G. Partial metric topology. Annals of the New York Academy of Sciences 1994, 728 (1), 183–197. doi:10.1111/j.1749-6632.1994.tb44144.x
  16. Mitrović Z., Işık H., Radenović S. The new results in extended \(b\)-metric spaces and applications. Int. J. Nonlinear Anal. Appl. 2020, 11 (1), 473–482. doi:10.22075/ijnaa.2019.18239.1998
  17. Mlaiki N. \(F_{m}\)-contractive and \(F_{m}\)-expanding mappings in \(M\)-metric spaces. J. Math. Comp. Sci. 2018, 18 (1), 262–271. doi:10.22436/jmcs.018.03.02
  18. Nieto J.J., Rodrı́guez-López R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 2005, 22 (3), 223–239. doi:10.1007/s11083-005-9018-5
  19. Ran A.C.M., Reurings M.C.B. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc. 2004, 132 (5), 1435–1443. doi:10.1090/S0002-9939-03-07220-4
  20. Rhoades B.E. Some theorems on weakly contractive maps. Nonlinear Anal. 2001, 47 (4), 2683–2693. doi:10.1016/S0362-546X(01)00388-1
  21. Salazar L.A., Reich S. A remark on weakly contractive mappings. J. Nonlinear Convex. Anal. 2015, 16 (4), 767–773.
  22. Suzuki T. A generalized Banach contraction principle that characterizes metric completeness. Proc. Amer. Math. Soc. 2008, 136, 1861–1869. doi:10.1090/S0002-9939-07-09055-7
  23. Wardowski D. Fixed point theory of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94. doi:10.1186/1687-1812-2012-94