References
- Altun I., Sahin H., Türkoğlu D. Caristi-type fixed point theorems
and some generalizations on \(M\)-metric space. Bull. Malays. Math.
Sci. Soc. 2020, 43, 2647–2657.
doi:10.1007/s40840-019-00823-8
- Sahin H., Altun I., Türkoğlu D. Two fixed point results for
multivalued \(F\)-contractions on \(M\)-metric spaces. Rev. R. Acad.
Cienc. Exactas Fı́s. Nat. (Esp.) 2019, 113, 1839–1849.
doi:10.1007/s13398-018-0585-x
- Asadi M., Karapinar E., Salimi P. New extension of \(p\)-metric spaces with some fixed-point
results on \(M\)-metric spaces. J.
Inequal. Appl. 2014, 18.
doi:10.1186/1029-242X-2014-18
- Baghani H., Gordji M.E., Ramezani M. Orthogonal sets: The axiom
of choice and proof of a fixed point theorem. J. Fixed Point Theory
Appl. 2016, 18, 465–477.
doi:10.1007/s11784-016-0297-9
- Banach S. Sur les opérations dans les ensembles abstraits et leur
application aux équations intégrales. Fund. Math. 1922,
3 (1), 133–181.
- Berinde V. Approximating fixed points of weak \(\varphi\)-contractions using the Picard
iteration. Fixed Point Theory 2003, 4 (2),
131–142.
- Bhaskar T.G., Lakshmikantham V. Fixed point theorems in partially
ordered metric spaces and applications. Nonlinear Anal. 2006,
65 (7), 1379–1393. doi:10.1016/j.na.2005.10.017
- Gordji M.E., Baghani H., Kim G.H. Common fixed point theorems for
\((\psi ,\varphi)\)-weak nonlinear
contraction in partially ordered sets. Fixed Point Theory Appl.
2012, 62. doi:10.1186/1687-1812-2012-62
- Gordji M.E., Rameani M., De La Sen M., Cho Y.J. On orthogonal
sets and Banach fixed point theorem. Fixed Point Theory 2017,
18 (2), 569–578.
- Işık H., Radenović S. A new version of coupled fixed point
results in ordered metric spaces with applications. Politehn. Univ.
Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2017, 79
(2), 131–138.
- Işık H., Türkoğlu D. Fixed point theorems for weakly contractive
mappings in partially ordered metric-like spaces. Fixed Point
Theory Appl. 2013, 51.
doi:10.1186/1687-1812-2013-51
- Işık H., Türkoğlu D. Some fixed point theorems in ordered partial
metric spaces. J. Inequal. Spec. Funct. 2013, 4
(2), 13–18.
- Lakshmikantham V., Ćirić L. Coupled fixed point theorems for
nonlinear contractions in partially ordered metric spaces.
Nonlinear Anal. 2009, 70 (12), 4341–4349.
- Matkowski J. Fixed point theorems for mappings with a contractive
iterate at a point. Proc. Amer. Math. Soc. 1977,
62 (2), 344–348.
- Matthews S.G. Partial metric topology. Annals of the New
York Academy of Sciences 1994, 728 (1), 183–197.
doi:10.1111/j.1749-6632.1994.tb44144.x
- Mitrović Z., Işık H., Radenović S. The new results in extended
\(b\)-metric spaces and
applications. Int. J. Nonlinear Anal. Appl. 2020,
11 (1), 473–482. doi:10.22075/ijnaa.2019.18239.1998
- Mlaiki N. \(F_{m}\)-contractive
and \(F_{m}\)-expanding mappings in
\(M\)-metric spaces. J. Math.
Comp. Sci. 2018, 18 (1), 262–271.
doi:10.22436/jmcs.018.03.02
- Nieto J.J., Rodrı́guez-López R. Contractive mapping theorems in
partially ordered sets and applications to ordinary differential
equations. Order 2005, 22 (3), 223–239.
doi:10.1007/s11083-005-9018-5
- Ran A.C.M., Reurings M.C.B. A fixed point theorem in partially
ordered sets and some applications to matrix equations. Proc. Amer.
Math. Soc. 2004, 132 (5), 1435–1443.
doi:10.1090/S0002-9939-03-07220-4
- Rhoades B.E. Some theorems on weakly contractive maps.
Nonlinear Anal. 2001, 47 (4), 2683–2693. doi:10.1016/S0362-546X(01)00388-1
- Salazar L.A., Reich S. A remark on weakly contractive
mappings. J. Nonlinear Convex. Anal. 2015, 16 (4),
767–773.
- Suzuki T. A generalized Banach contraction principle that
characterizes metric completeness. Proc. Amer. Math. Soc. 2008,
136, 1861–1869. doi:10.1090/S0002-9939-07-09055-7
- Wardowski D. Fixed point theory of a new type of contractive
mappings in complete metric spaces. Fixed Point Theory Appl. 2012,
94. doi:10.1186/1687-1812-2012-94