References
- Abbas M., Nazir T., Radenović S. Common fixed point of
generalized weakly contractive maps in partially ordered \(G\)-metric spaces. Appl. Math. Comput.
2012, 218 (18), 9383–9395.
doi:10.1016/j.amc.2012.03.022
- Abdeljawad T. Meir-Keeler \(\alpha\)-contractive fixed and common fixed
point theorems. Fixed Point Theory Appl. 2013, 19.
doi:10.1186/1687-1812-2013-19
- Alghamdi M.A., Karapinar E. \(G\)-\(\beta\)-\(\psi\)-contractive-type mappings and
related fixed point theorems. J. Inequal. Appl. 2013,
70. doi:10.1186/1029-242X-2013-70
- Ansari A.H., Barakat M.A., Aydi H. New approach for common fixed
point theorems via C-class functions in \(G_p\)-metric spaces. J. Funct. Spaces
2017, 2017, article ID 2624569, 9 pages.
doi:10.1155/2017/2624569
- Aydi H., Rakić D., Aghajani A., Došenović T., Noorani M.S., Qawaqneh
H. On fixed point results in \(G_b\)-metric spaces. Mathematics 2019,
7 (7), 617. doi:10.3390/math7070617
- Banach S. Sur les opérations dans les ensembles abstraits et leur
application aux équations intégrales. Fund. Math. 1922,
3 (1), 133–181.
- Ćirić Lj. Some recent results in metrical fixed point theory.
University of Belgrade, Beograd, 2003.
- Karapinar E., Kumam P., Salimi P. On \(\alpha\)-\(\psi\)-Meir-Keeler contractive
mappings. Fixed Point Theory Appl. 2013, 94.
doi:10.1186/1687-1812-2013-94
- Khan M.S., Swaleh M., Sessa S. Fixed point theorems by altering
distances between the points. Bull. Aust. Math. Soc. 1984,
30 (1), 1–9.
- Moeini B., Işık H., Aydi H. Related fixed point results via \(C_*\)-class functions on \(C^*\)-algebra-valued \(G_b\)-metric spaces. Carpathian Math.
Publ. 2020, 12 (1), 94–106.
doi:10.15330/cmp.12.1.94-106
- Mustafa Z., Sims B. A new approach to generalized metric
spaces. J. Nonlinear Convex Anal. 2006, 7 (2),
289–297.
- Mustafa Z., Shatanawi W., Bataineh M. Existence of fixed point
results in \(G\)-metric spaces.
Int. J. Math. Mathematical Sci. 2009, 2009, article ID
283028, 10 pages. doi:10.1155/2009/283028
- Nashine H.K., Kadelburg Z., Pathak R.P., Radenović S. Coincidence
and fixed point results in ordered G-cone metric spaces. Math.
Comput. Model. 2013, 57 (3-4), 701–709.
doi:10.1016/j.mcm.2012.07.027
- Radenović S. Remarks on some recent coupled coincidence point
results in symmetric \(G\)-metric
spaces. J. Oper. 2013, 2013, article ID 290525, 8
pages. doi:10.1155/2013/290525
- Radenović S., Pantelić S., Salimi P., Vujaković J. A note on some
tripled coincidence point results in \(G\)-metric spaces. Int. J. Math. Sci.
Eng. Appl. 2012, 6, 23–38.
- Reddy G.S.M. A common fixed point theorem on complete \(G\)-metric spaces. Int. J. Pure Appl.
Math. 2018, 118 (2), 195–202.
- Reddy G.S.M. Fixed point theorems of contractions of \(G\)-metric spaces and property \(P\) in \(G\)-metric spaces. Global J. Pure
Appl. Math. 2018, 14 (6), 885–896.
- Reddy G.S.M. New proof for generalization of contraction
principle on \(G\)-metric spaces.
J. Adv. Res. Dyn. Cont. Sys. 2019, 11 (8),
2708–2713.
- Samet B., Vetro C., Vetro P. Fixed point theorems for a \(\alpha\)-\(\psi\)-contractive type mappings.
Nonlinear Anal. 2012, 75 (4), 2154–2165.
doi:10.1016/j.na.2011.10.014
- Shatanawi W. Common fixed point for mappings under contractive
conditions of \((\alpha, \beta,
\psi)\)-admissibility type. Mathematics 2018,
6 (11), 261. doi:10.3390/math6110261
- Shatanawi W., Abodayeh K. Common fixed point for mappings under
contractive condition based on almost perfect functions and \(\alpha\)-admissibility. Nonlinear
Func. Anal. Appl. 2018, 23 (2), 247–257.
- Shatanawi W., Abodayeh K. Fixed point results for mapping of
nonlinear contractive conditions of \(\alpha\)-admissibility form. IEEE
Access 2019, 7, 50280–50286.
doi:10.1109/access.2019.2910794
- Shatanawi W., Abodayeh K., Bataihah A., Ansari A.H. Some fixed
point and common fixed point results through \(\Omega\)-distance under nonlinear
contractions. Gazi Univ. J. Sci. 2017, 30 (1),
293–302.