References

  1. Abbas M., Nazir T., Radenović S. Common fixed point of generalized weakly contractive maps in partially ordered \(G\)-metric spaces. Appl. Math. Comput. 2012, 218 (18), 9383–9395. doi:10.1016/j.amc.2012.03.022
  2. Abdeljawad T. Meir-Keeler \(\alpha\)-contractive fixed and common fixed point theorems. Fixed Point Theory Appl. 2013, 19. doi:10.1186/1687-1812-2013-19
  3. Alghamdi M.A., Karapinar E. \(G\)-\(\beta\)-\(\psi\)-contractive-type mappings and related fixed point theorems. J. Inequal. Appl. 2013, 70. doi:10.1186/1029-242X-2013-70
  4. Ansari A.H., Barakat M.A., Aydi H. New approach for common fixed point theorems via C-class functions in \(G_p\)-metric spaces. J. Funct. Spaces 2017, 2017, article ID 2624569, 9 pages. doi:10.1155/2017/2624569
  5. Aydi H., Rakić D., Aghajani A., Došenović T., Noorani M.S., Qawaqneh H. On fixed point results in \(G_b\)-metric spaces. Mathematics 2019, 7 (7), 617. doi:10.3390/math7070617
  6. Banach S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3 (1), 133–181.
  7. Ćirić Lj. Some recent results in metrical fixed point theory. University of Belgrade, Beograd, 2003.
  8. Karapinar E., Kumam P., Salimi P. On \(\alpha\)-\(\psi\)-Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013, 94. doi:10.1186/1687-1812-2013-94
  9. Khan M.S., Swaleh M., Sessa S. Fixed point theorems by altering distances between the points. Bull. Aust. Math. Soc. 1984, 30 (1), 1–9.
  10. Moeini B., Işık H., Aydi H. Related fixed point results via \(C_*\)-class functions on \(C^*\)-algebra-valued \(G_b\)-metric spaces. Carpathian Math. Publ. 2020, 12 (1), 94–106. doi:10.15330/cmp.12.1.94-106
  11. Mustafa Z., Sims B. A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7 (2), 289–297.
  12. Mustafa Z., Shatanawi W., Bataineh M. Existence of fixed point results in \(G\)-metric spaces. Int. J. Math. Mathematical Sci. 2009, 2009, article ID 283028, 10 pages. doi:10.1155/2009/283028
  13. Nashine H.K., Kadelburg Z., Pathak R.P., Radenović S. Coincidence and fixed point results in ordered G-cone metric spaces. Math. Comput. Model. 2013, 57 (3-4), 701–709. doi:10.1016/j.mcm.2012.07.027
  14. Radenović S. Remarks on some recent coupled coincidence point results in symmetric \(G\)-metric spaces. J. Oper. 2013, 2013, article ID 290525, 8 pages. doi:10.1155/2013/290525
  15. Radenović S., Pantelić S., Salimi P., Vujaković J. A note on some tripled coincidence point results in \(G\)-metric spaces. Int. J. Math. Sci. Eng. Appl. 2012, 6, 23–38.
  16. Reddy G.S.M. A common fixed point theorem on complete \(G\)-metric spaces. Int. J. Pure Appl. Math. 2018, 118 (2), 195–202.
  17. Reddy G.S.M. Fixed point theorems of contractions of \(G\)-metric spaces and property \(P\) in \(G\)-metric spaces. Global J. Pure Appl. Math. 2018, 14 (6), 885–896.
  18. Reddy G.S.M. New proof for generalization of contraction principle on \(G\)-metric spaces. J. Adv. Res. Dyn. Cont. Sys. 2019, 11 (8), 2708–2713.
  19. Samet B., Vetro C., Vetro P. Fixed point theorems for a \(\alpha\)-\(\psi\)-contractive type mappings. Nonlinear Anal. 2012, 75 (4), 2154–2165. doi:10.1016/j.na.2011.10.014
  20. Shatanawi W. Common fixed point for mappings under contractive conditions of \((\alpha, \beta, \psi)\)-admissibility type. Mathematics 2018, 6 (11), 261. doi:10.3390/math6110261
  21. Shatanawi W., Abodayeh K. Common fixed point for mappings under contractive condition based on almost perfect functions and \(\alpha\)-admissibility. Nonlinear Func. Anal. Appl. 2018, 23 (2), 247–257.
  22. Shatanawi W., Abodayeh K. Fixed point results for mapping of nonlinear contractive conditions of \(\alpha\)-admissibility form. IEEE Access 2019, 7, 50280–50286. doi:10.1109/access.2019.2910794
  23. Shatanawi W., Abodayeh K., Bataihah A., Ansari A.H. Some fixed point and common fixed point results through \(\Omega\)-distance under nonlinear contractions. Gazi Univ. J. Sci. 2017, 30 (1), 293–302.