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Let A € (—co,+0], ® : [4,A) — R be a continuous function such that xo — ®(0) — —oo as

o1 Aforevery x € R, ®(x) = max{xoc —P(0) : ¢ € [a,A)} be the Young-conjugate function of
®, P(x) = @(x)/x and I'(x) = (P(x) — Inx)/x for all sufficiently large x, (A,) be a nonnegative

(o)
sequence increasing to +oo, and F(s) = Y. a,e®! be a Dirichlet series such that its maximal term
n=0

(0, F) = max{|ay|e* : n > 0} and central index v(c, F) = max{n > 0 : |a,|e"*" = u(c,F)} are
defined for all ¢ < A. Itis proved thatif Inpu(o, F) < (1+0(1))®(0) as o 1 A, then the inequalities

_ / A /
lim _mes) (0’_F ) <1, lim v(,F) <
oA u(o, F)® ~1(0) AT 1(0)

7

hold, and these inequalities are sharp.
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INTRODUCTION

We fix a nonnegative sequence (A, ) increasing to +oo, and consider a Dirichlet series of the

form .
F(s) =), e,
n=0

For this series, by 0, (F) we denote its abscissa of absolute convergence. Put

B(F) = lim — In—

n-—p\,
n—oo An |an|
and let
Ei(F) = {a ER: |anle™ =o(1),n — oo},
E»(F) = {(7 ER: |anle™ = O(1),n — oo} .
It is easy to see that for j = 1,2 we have
— oo, if E(F)=g,
B(F) = o
sup E;(F), if E;(F) # &,
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i.e., the interval (—oo, B(F)) is the domain of existence for the maximal term
(o, F) = max{|a,|e™ : n > 0}

of series (1). Since B(F’) = B(F), this interval is also the domain of existence for the maximal
term of the derivative of series (1).
It is well known (for instance, see [8, pp. 114-115]) that for every Dirichlet series of the form

(1) we have

au(F) < B(F) < cu(F)+7, 7= Tim 20, ©)

n—o0 A,

and these inequalities are sharp. Moreover, it was shown in [4] that for any A, B € [—o0, +00]
such that A < B < A + 71 there exists a Dirichlet series of the form (1) for which o,(F) = A
and B(F) = B.

We assume that every Dirichlet series of the form (1) considered below is not reduced to
a constant, that is, for this series we have a,A, # 0 for at least one integer n > 0. By this
assumption, the central index

v(o, F) = max{n > 0: |a,|e"* = u(c,F)}

of series (1) and the central index of the derivative of this series are defined for all ¢ < B(F).
Let A € (—o0,+00],and ® : Dy — R be a real function. We say that ® € ()4 if the domain
D¢ of @ is an interval of the form [a, A), ® is continuous on D¢, and the following condition

VxeR: lim(xoc—®(0)) = —o0 4)
octA
holds. It is easy to see that in the case A < +oco condition (4) is equivalent to the condition
®(0) = +00,0 = A —0, and in the case A = +oo this condition is equivalent to the condition
®(0)/0 — 400, 0 — +oo. For & € Oy by ® we denote the Young-conjugate function of @,
i.e.,
®(x) = max{xc — ®(0) : 0 € Do}, x€R.

Note (see Lemma 1 below), that the function ®(x) = ®(x)/x is continuous and increasing to
A on some interval of the form (x, +0). Hence the inverse function ® ~! is defined on some
interval of the form (Ap, A) and ® ~! is continuous and increasing to +co on (Ag, A).

We say that ® € (0, if ® € )4, @ is continuously differentiable on Dg, and @' is positive
and increasing on Dg.

Let ® € ()). Itis clear that ®'(¢) T +o0 as o T A. In addition, &’ has an inverse function
@ : [xp, +00) = Dg. Set

O(0) =0 — q>(¢(77) 0 € Do.

It is easy to prove that ®(x) = ®(@(x)) for every x € (xp,+co0). This implies that
@ (D 1(r)) =D (o) forall o € (A, A).
M.M. Sheremeta [9] proved the following two theorems.

Theorem A. Suppose that A € (—oo, +o0], & € (Y, and the condition

In®'(0) =0(®(0)), o1 A4, (5)
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holds. Then for every Dirichlet series of the form (1) such that 0,(F) = A and

——Inu(o, F)

fim ) g
(o) ©)
we have
/
fim — 2 ) %

oA (o, F)® (o) ~

Theorem B. Suppose that A € (—oco,+0], ® € (), there exists a number a € (0,1] such that
the function h(c) = (®'(¢))*/P(0) is nonincreasing on [0y, A), and A, = 0(A,41) asn — +oo.
If

F(S) — Z 67&)()‘71)652\71, (8)
n=0
then
/
M)y )

otA u(o, F)® ~1(0)

Remark 1. Clearly, if for a Dirichlet series of the form (1) with 0,(F) = A equality (6) holds,
then for this series we have B(F) = A.

Remark 2. It can be proved that for series (8) by the conditions of Theorem B relation (6) holds
(this is also clear from considerations given in [9]).

Remark 3. In the proofs of Theorems A and B suggested in [9], the obvious inequalities

AV(U,F) < (0_’ F) < AV(U,F’)’ o< IB(F), (10)

were used, and, in fact, the following more exactly results were proved: by the conditions of
Theorem A for every Dirichlet series of the form (1) the inequality

im AV(O’,F’)

— 11
otA P -1 ((7) - ( )
holds, and by the conditions of Theorem B for series (8) we have
A
Tim —%5) 4, (12)
ctA O -1 ((7)

Therefore, for every Dirichlet series of the form (1) with 0, (F) = A, by some conditions on
a function ® € (Y}, equality (6) implies estimates (7) and (11), and these estimates are sharp.

In [9], M.M. Sheremeta conjectured that in Theorem A condition (5) may be unnecessary,
that is, Theorem A is true without any additional condition on a function ® € 0/,. Below
we confirm this conjecture. Moreover, we prove that inequality (7) is sharp in the case of an
arbitrary function & € (2/,. In addition, in the case of an arbitrary ® € )/, we obtain a sharp
growth estimate for the central exponent A, pry of the derivative of a Dirichlet series, which,
generally, does not coincide with estimate (11).
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1 MAIN RESULTS

Let A € (—oo,+o0]. For a Dirichlet series of the form (1) with B(F) = A and a function
d € ()4 we put

1. )\}’l
to(F) = lim — (13)

(see [7] and also [5]).
The following theorem confirms the above conjecture of M.M. Sheremeta.

Theorem 1. Let A € (—o0, +o0], ® € 4.
(i) For every Dirichlet series of the form (1) with B(F) = A and te(F) < 1 we have (7).

(ii) There exists a Dirichlet series of the form (1) with B(F) = A and te(F) = 1 such that
equality (9) holds.

Let ® € Q4. Since @ is continuous and increasing to A on some interval of the form
(xp, +00), there exists « > e such that the function

— Inx
[(x) =®(x) — — X€ [, +00), (14)
is continuous and increasing to A. Hence the inverse function I'"! is defined on some interval

of the form [A1, A) and I'"! is continuous and increasing to +co on [A7, A).
Theorem 2. Suppose that A € (—o0, 40|, ® € O, and T is defined by (14).
(i) For every Dirichlet series of the form (1) with B(F) = A and te(F) < 1 we have

Tim AV(O’,F’)

<1
AT (o) —

(ii) There exists a Dirichlet series of the form (1) with B(F) = A and te(F) = 1 such that

Tim AV(O’,F’) _
oA T=1(0)

(15)

Using Theorem 2, we show that without additional conditions on a function ® € (0, es-
timate (11) may not be satisfied for some Dirichlet series of the form (1) with o;(F) = A such
that (6) holds. Indeed, let ®(¢0) = —In|c| for all ¢ € [—1,0). It is easy to make sure that

— 1 1 2 1
O o)~ —=In—, (o)~ =In— as o T A.
o o] o] o]
By Theorem 2 there exists a Dirichlet series of the form (1) with 5(F) = 0 and t¢(F) = 1 such
that equality (15) holds, that is
— Ao,
lim

1 1
o0 = In +—
10 157 I o
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Suppose that Inn = 0(A,) as n — co. Then by (3) we have 0,(F) = 0. Estimate (11) takes the
form
— Ay, 1

1 1 =
o0 = In =
lo| = Je]

and, obviously, this estimate is false.
Theorems 1 and 2 are consequences of the following two theorems.

Theorem 3. Let A € (—oco,+co] and ® € O 4. For every Dirichlet series of the form (1) such
that B(F) = A and
Inu(o,F) <®(0), oc€ln,A)), (16)

we have o
ulo, F) <3 o),
p(o, F)
Theorem 4. Let A € (—o0,+o0] and ® € Q4. There exists a Dirichlet series of the form (1)
such that for an infinite set E of positive integers we have

o€ [om,A).

e~ M) if nekE,
an =
0, if n¢E,

and this series satisfies (12).

Remark 4. Since for each ® € Q4 we have ®(x)/x = ®(x) — A as x — +oo, for a Dirichlet
series of the form (1) whose existence follows from Theorem 4 we obtain f(F) = A by (2).

Remark 5. If & € Q4 and a Dirichlet series of the form (1) with B(F) = A satisfies (16), then,
by Theorem 3 and the left of inequalities (10), for all o € |02, A) we obtain A, ) < @ 1(0).
Since Ayyp) = (Inpu(c,F))y for every o < B(F), this fact is easy to prove without using
Theorem 3 (see [2, Lemma 5] or [3, Lemma 4]).

In order to prove Theorems 1, 2, 3 and 4, we will need some auxiliary results, which are

given in the next section.

2 AUXILIARY RESULTS

The following lemma is well known (see, for example, [1, § 3.2], [7]).

Lemma 1. Suppose that A € (—o0, 4], & € Oy, and, forall x € R, ¢(x) = max{c € Dy :
xo — ®(0) = ®(x)}. Then the following statements are true:

(i) the function ¢ is nondecreasing on IR;
(ii) the function ¢ is continuous from the right on IR;
(iii) ¢(x) — A, x — +00;
(iv) the right-hand derivative of ®(x) is equal to ¢(x) at every point x € R;

(v) if xo = inf{x > 0 : ®(¢(x)) > 0}, then the function ®(x) = ®(x)/x increases to A on
(x0, +00);
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(vi) the function a(x) = ®(¢(x)) is nondecreasing on [0, +0).

In the following two lemmas, which are proved in [2], ¢ and x( are defined by ® in the
same way as in Lemma 1.

Lemma 2. Let A € (—00, 40|, ® € Oy, 0p = P(x9+0), and o € (0p, A) be a fixed number.
Then the minimum value of the function

_ %W
h(y) = Vo y € (0, A),
is ® ~1(0) and this value is attained at the pointy = ¢(® ~1(¢)).
Lemma 3. Letd € (0,1), A € (=00, +00], ® € Oy, 09 = P(x9 +0), and y(c) = ¢(® ~(0)) for
allo € (0p, A). Then
- 52(y(0)\ _ @ (o)
1 M APV B
o (o ® 1)) 1=

The following lemma is proved in [6].

o€ (0p, A).

Lemma4. Let A € (—oo, +o0]. If for a Dirichlet series of the form (1) there exists an increasing
sequence (ny);._, of nonnegative integers such that a, = 0 for alln < ng, a,, # 0 for every
k>0, and
s = In |a”k| —In |‘1ﬂk+1|
)‘nkﬂ = Ay
then B(F) = A and, in addition, v(c,F) = nq for every ¢ < s and v(c,F) = ny, for all
o € [, #41) and k > 0.

A, k7T oo, lan| < |ank|e”’<()‘"k_)‘"), n € (ng,ngi1), k>0,

Lemma 5. Suppose that h is a function increasing on [«, B), h(x) = a, lim,ygh(x) = b, and
hYo) :=inf{x € [&, B) : h(x) > o}, 0o € [a,b).
Then the following statements are true:

(i) h~! is nondecreasing continuous on [a,b);
(i) h=1(a) = a, lim,, h =1 (0) = B;
(iii) h(x +0) = max{c € [a,b) : h~!(¢) < x} foreach x € [&, B).

Proof. Let
E(c) ={x € [a,pB) :h(x) >0}, o€ ]ab).
If oq,09 € [a,b) and 07 < 0y, then E(0») C E(07), and hence
h_1(0’1> = infE((rl) < infE(O’z) = h_1(0'2>.
Therefore, h— ! is nondecreasing on [a, ).
If x € [, B) and h(x) = o, then h~!(0) = x, i.e., the interval [a, B) is the range of h~1. This
and the monotonicity of the function 1! imply its continuity, as well as both equalities in (ii).
Let us prove (iii). Let xp € [&,B8) and 0p = max{c € [a,b) : h™'(c) < x}. Then
h=1(op) = xo. Therefore, if x € (xq,B), then h(x) > 0y, and hence h(xq +0) > 0. Sup-
pose that h(xg +0) = 03 > 0p. Then h(x) > o3 for all x € (xp, ), that is, (xo, ) C E(03).
Thus
h_1(0'3) = il’le(0'3) < Xxp.
This and the definition of ¢y imply that o3 < 0p, which contradicts the assumption that
h(xo +0) > 0p. Hence, h(xg +0) = 0p. O
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3 PROOF OF THEOREMS

Proof of Theorem 3. Suppose that A € (—oo,+00] and ® € Q4. Consider a Dirichlet series of

the form (1) with B(F) = A which satisfies (16).

Let o be defined as in Lemma 2, and ¢(x) = ®'_(x) for all x € R. Condition (16) implies

the existence of a number 0, € (0p, A) such that
max{1l,Inu(y,F) —Inu(c,F)} < ®(y), y,0 € [0, A).

By taking here y = y(¢), where y(c) = ¢(® ~1(¢)), and using Lemma 2, we get

Inpu(y(@),F) ~Inp(@,F) _ g1,

(@) —c o€ [m, A).

Fix an arbitrary o € [02, A). If Ay (g pry < @ ~1(0), then

by the right of inequalities (10). Therefore, we can further assume that A, p1y > @ (o).

For every integer n > 0 we have

’an‘eg)\n _ ’an‘ey(v)/\ne(g—y(ﬂ))/\n < y(y(g)lp)e(tf—y(ﬂ))/\n.

This and (17) imply that

|an]e™ _ (@) —0)(
p(o, F) — ’

Since Ay (g pr) > ® ~1(0), from (18) it follows that

el
|
s
|
>~
N
Iy
Vv
o

ﬂ(U/F’)S sup  Ape@) =)@ o)1)
W E) =5 sF 10

Let us consider the function
h(t) = te(y(ﬂ)—ﬂ)@’l(ﬂ)—f)l teR.

It is easy to check that this function is descending on the interval [t(, +o0), where

; 1
0
ylo) —o
Using Lemma 2, we have
@ (0) _ =1
to = <P (o),
o) =

and so from (19) it follows that

Theorem 3 is proved.

(17)

(18)

(19)
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Proof of Theorem 4. Suppose that A € (—oo, +00], & € ()4, and prove that there exists a Dirich-

let series of the form (1) such that for an infinite set E of positive integers we have a,, = e~ ®(}#)

whenn € E, a, = 0 when n ¢ E, and this series satisfies (12).
Let ¢(x) = @’ (x) forall x € R, and xo = inf{x > 0 : ®(¢(x)) > 0}.
Since, by Lemma 1, ® is convex on IR, we have
D(x) —D(b
W) =20) o), x>0 (20)
x—>b
In addition, ® is increasing on (xg, +0). Therefore, if x > b > xg, then ®(x) > ®(b). This
implies that

x> b > x. (21)

Now we show that
D(x) — D(b) = o(D(g(x))), x— +oo. (22)

Since, by Lemma 1, ®(x) — A and ®(¢(x)) — +o0 as x — o0, relation (22) is obvious in the
case A < +o0. If A = 400, then we get

(x) < ¢(x) = 0o(®(p(x)))

as x — 400, and this also implies (22).
It follows from the above that there exists a sequence (1) of positive integers such that we
have A;, > x¢ and also

Amg = 0(An.,), k= oo; (23)
D(Ay,) > 9(Ay), k>0 (24)
A (@ (Ayeyy) — D(Any)) = 0(D(@(Any,,))), Kk — 0. (25)

For each k > 0 we set

- DAy ) = D(An)
O = P(Ang,y), 2% = ;k“ A nk
k

g1

Using (21) and (20) withx = A and b = A, as well as (24), we obtain

My
Uk - 6()\nk+l> < A S (P(A”kﬂ) < 6(Ank+2> - Uk+1, k Z 0.

This implies that () is a sequence increasing to A.
Let oy = ®(xp +0),and y(0) = ¢(® ~1(0)) forall & € (0p, A). Using (23) and (25), we have

B o(P(p(Anyi))) o(P(y(ox)))
)‘nkﬂ - A”k — o A”kﬂ B 6_1(‘7];)

st = By, ) + 2P my) = ()

as k — co. From this and from Lemma 3 we see that
D g) ~ @ Hop), Kk — oo (26)

Put a, = e_&)(’\”k) for all k > 0, and let a, = 0if n # mny for every k > 0, ie,
E = {ng,ny,...}. Consider series (1) with such coefficients a,. Since

Ina, —Ina

k M1

»p = ) — 1A k— oo,
M1 My
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for this series by Lemma 4 we have A,(,, r) = A k > 0. Therefore, using (26), we get

Njt17

.—m AU(U,F) > Tm AU(%k,F) ST )\nk+1

O'TAafl((T) - k%ooafl(%k) k%ooafl((?’k)
Theorem 4 is proved. 0

Proof of Theorem 1. Let A € (—o0, +o0] and ® € Q4.

(i) Suppose that a Dirichlet series of the form (1) with B(F) = A satisfies the condition
to(F) < 1. Letg > 1be an arbitrary fixed number, and let ¥(c) = q®(c) forall ¢ € Dg. Then,
as it is easy to see, ¥ ~!(0) = g® (o) for each o € (Ag, A). From the condition tg(F) < 1it
follows thatIn (o, F) < ¥(0), o € |01, A). Therefore, by Theorem 3 we have

(o, F'y - _ o
u(o, F) <Y o) =q® (o), o€n,A).

Since q > 1 is arbitrary, this implies estimate (7).
(ii) By Theorem 4 there exists a Dirichlet series of the form (1) such that for an infinite set

E of nonnegative integers we have a, = e~®\) if 1 € E and a, = 0if n ¢ E, and this series
satisfies (12). Then B(F) = A (see Remark 4). Using (13), for this series we obtain t¢(F) = 1,
and hence, by the first part of our theorem, we have (7). From (7) and (12), due to the left of
inequalities (10), we immediately obtain (9).

Theorem 1 is proved. 0

Proof of Theorem 2. Suppose that A € (—oo, +0c0], & € ()4, and I is defined by (14). First, let us
prove that there exists a function ® € Q4 such that ®(x) = I'(x) forall x € [a, +0).
Let p(x) = @’ (x), x € R. Put

0(x) = @(x) — %, x € [, +00).

Since & > e (see above), the function 6 is increasing and continuous from the right on [«, +00),
and also limy4 1 0(x) = A. Consider the function

0~ (o) =inf{x € [a, +0) : (x) >0}, o€ [a,A),
where a = (a). By Lemma 5, the function #~! is nondecreasing continuous on [, A), and also
0(x) = max{c € [a,A) : 07 (0) < x}, x €& [x +o0).

Put -
®() = / 0-1(t)dt, o€ [, A).

Let A < +oo, and let 7(x) = A— 1, x € [a,+00). Since p(x) < A for all x € R, we have
6(x) < n(x) for each x € [a, +00). Then

1
1) > —1(g) —
0N 2y 0) = 5 el A),
and hence for all € [a, A) we get
g —
O(0) > at_ _ In Ao
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This implies that @g(c) — +o0as ¢ — A — 0. In the case A = +oo, for all sufficiently large ¢

we have -

®o(c) > /U Lo > 201 (3).

This implies that ®y(c) /o — 400 as ¢ — oo. Therefore, @y € ()4 always.
Let x € [a, +0c0) be an arbitrary fixed number. Consider the function

h(o) =x0—0y(0), o€laA).

Since i/ (0) = x — 671(0), the function h assumes its maximum value on [a, A) at the point
o = 0(x), and this point is maximal among all possible maximum points of /.

Therefore, from Lemma 1 we can see that for all x € [¢, 4+00) the function 6(x) is defined
by © as well as ¢(x) by ®, and hence 6(x) = @, (x). Put C = —®(a) + Ina + O(a) and let
O(c) =0Oy(c) +Cforallo € [a, A). Then ® € 04 and for every x € [&, +0c0) we have

O(x) = —Cc= / ()dt + @p(a) — C = /( %)dt—l—(:)o(oc)—C
(x) —Inx — O(«a )—{—lna—{—®0((x)—C:&D(x)—lnx:xr(x),

and hence @(x) = T'(x).

(i) Suppose that a Dirichlet series of the form (1) with (F) = A satisfies the condition
to(F) < 1. Letq > 1be an arbitrary fixed number. Then t¢(F) < g, and therefore from (13)
for all n > n; we obtain the inequality

_ 1 1
A, <g®d [ —1
n=1 <)\ n’”ﬂ‘)

which, as is easy to see, is equivalent to the inequality

In|a,| < —q@ <ﬂ> :
q
Hence, for all n > n, we have

~ ~ (A ~ (A
In [Apay| <InAy —qd <%> = —q0 <7"> +(1—g)InA, +gqlng < —¢O <7"> ,
which implies that

_ 1 1
Ay < g© 1 <—ln )
= | Anan|

Therefore, using (13) with F’ and © instead of F and & respectively, we obtain tg(F') < g.
Since g > 1 is arbitrary, this implies that te(F') < 1.

Recalling that @(x) = I'(x) for all x € [&, +00), and using Theorem 1 with F’ and ® instead
of F and @ respectively, we have

_ A ! _ )\ / _ "
fim =22 fim M2 < i po P
AT o) tA@-1(o) = otA u(o, F)O® ~1(0)

(ii) Since ® € 4, by Theorem 4 there exists a Dirichlet series of the form

(o]
= % bt
n=0
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such that for an infinite set E of positive integers we have b, = e=®M) if n € Eand b, = 0 if
n ¢ E, and this series satisfies the equation
m i\v(o,G)
1A © ~1(0)
We note also that f(G) = A (see Remark 4).
Puta, = e~ ®(n) — by/Ayifn € Eand a,, = 0if n ¢ E, and consider series (1) with such
coefficients a,,. For this series we have F/ = G, and hence B(F) = B(G) = A. By (13) we obtain
te(F) = 1. In addition, for this series equality (15) holds, because this equality coincides with
(27). Theorem 2 is proved. ]

=1 27)

REFERENCES

[1] Evgrafov M.A. Asymptotic estimates and entire functions. Nauka, Moscow, 1979. (in Russian)

[2] Fedynyak S.I, Filevych P.V. Distance between a maximum modulus point and zero set of an analytic function. Mat.
Stud. 2019, 52 (1), 10-23. d0i:10.30970/ms.52.1.10-23

[3] Fedynyak S.I., Filevych P.V. Growth estimates for a Dirichlet series and its derivative. Mat. Stud. 2020, 53 (1), 3-12.
d0i:10.30970/ms.53.1.3-12

[4] Filevych PV. On relations between the abscissa of convergence and the abscissa of absolute convergence of random
Dirichlet series. Mat. Stud. 2003, 20 (1), 33-39.

[5] Filevych P.V., Hrybel O.B. The growth of the maximal term of Dirichlet series. Carpathian Math. Publ. 2018, 10 (1),
79-81. doi:10.15330/cmp.10.1.79-81

[6] Filevich P.V. On Valiron’s theorem on the relations between the maximum modulus and the maximal term of an entire
Dirichlet series. Russian Math. 2004, 48 (4), 63-69. (translation of Izv. Vyssh. Uchebn. Zaved. Mat. 2004, (4),
66-72. (in Russian))

[7]1 Hlova T.Ya., Filevych P.V. Generalized types of the growth of Dirichlet series. Carpathian Math. Publ. 2015, 7 (2),
172-187. doi:10.15330/cmp.7.2.172-187

[8] Leont’ev A.E. Series of exponents. Nauka, Moscow, 1976. (in Russian)

[9] Sheremeta M.N. On the maximum term of the derivative of the Dirichlet series. Russian Math. 1998, 42 (5), 66-70.
(translation of Izv. Vyssh. Uchebn. Zaved. Mat. 1998, (5), 68-72. (in Russian))

Received 21.04.2020

Geaymsik C.I., @inesuu [1.B. Oyinku 3pocmanus MAKCUMATLHO0 UIEHA WA WEHMPALbHO20 NOKASHUKA
noxioHoi psdy Aipixne // Kapmarceki maTrem. my6a. — 2020. — T.12, Ne2. — C. 269-279.

Hexait A € (—oo, 40|, ® : [4, A) - R — r0BirbHA HenlepepBHa (PyHKIIisI Taka, o X0 — P (o) —
—o0, 0 T A, aast xoxHOro ¥ € R, ®(x) = max{xoc — ®(0) : ¢ € [a, A)} — dyHKuis, cupsixeHa 3
® 3a IOnrOoM, ®(x) = d(x)/xiT(x) = (P(x) — Inx)/x AAS BCiX AOCTATHBO BeAMKUX X, (A;) —
HeBiA'eMHa 3pocTaioya A0 +00 TIOCAIAOBHICTD, @ F(s) = Y. a,e** — psa Aipixae, MaKcMMaAbHIMI

n=0
unert y(o, F) = max{|ay|e”* : n > 0} Ta uenTparbumit inaexc v(c, F) = max{n > 0 : |a,|e"* =
(o, F)} sixoro BusHaueHi AAst Bcix 0 < A. AoBeaeHo, o sixio Iny (o, F) < (14 0(1))®(0), 0 T A,
TO BMKOHYIOTHCSI HEPiBHOCTI

TAy

i i HepiBHOCTI € TOUHMMM.

Kontouosi cnoea i ppasu: psia Aipixae, MaKCMMaABHIMIM YA€H, IEHTPAABHIIN iHAEKC, IIEHTPaAbHIIA
TIOKa3HMK, cIpsikeHa 3a IOHTOM dyHKIIis.



