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ON A NONCLASSICAL PROBLEM FOR THE HEAT EQUATION AND THE FELLER

SEMIGROUP GENERATED BY IT

KOPYTKO B.I.1 , NOVOSYADLO A.F.2

The initial boundary value problem for the equation of heat conductivity with the Wenzel con-
jugation condition is studied. It does not fit into the general theory of parabolic initial boundary
value problems and belongs to the class of conditionally correct ones. In space of bounded contin-
uous functions by the method of boundary integral equations its classical solvability under some
conditions is established. In addition, it is proved that the obtained solution is a Feller semigroup,
which represents some homogeneous generalized diffusion process in the area considered here.
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INTRODUCTION

The article presents the results of studying one nonclassical initial boundary value problem
for the equation of second-order heat conductivity with respect to tangential variables under
the Wenzel type conjugation condition [3, 24]. It is assumed that the source area and its two
subdomains, where the conjugation problem is considered, are cylindrical, the basis of which
is the strips in the finite-dimensional Euclidean space R

d. These results were obtained using
the technique developed in [9, 10, 17] for the case when the bases of the mentioned cylindrical
areas coincide with the space R

d, d ≥ 2, and its half-spaces, respectively.
The following notations are used: x = (x′, xd) = (x1, . . . , xd−1, xd) is a point in a finite-

dimensional Euclidean space R
d, d ≥ 2, x′ = (x1, . . . , xd−1) is a point in R

d−1 (by x′ sometimes

is denoted the point (x1, . . . , xd−1, 0); (x, y) =
d

∑
i=1

xiyi for x, y ∈ R
d; (x′, y′) =

d−1
∑

i=1
xiyi for

x′, y′ ∈ R
d−1; D is an area in R

d with boundary ∂D = S; (t, x) = (t, x′, xd) is a point in R
d+1;

T is a fixed positive number; R
d+1
∞ = (0, ∞)× R

d, R
d
∞ = (0, ∞)× R

d−1, R
d+1
T = (0, T)× R

d,
R

d
T = (0, T) × R

d−1, Ω = (0, ∞)×D and ΩT = (0, T)×D are areas in R
d+1, Σ = (0, ∞)× S

and ΣT = (0, T] × S are lateral borders of areas Ω and ΩT accordingly; Q is the closure of
the set Q; Di the operator of differentiation by variable xi, i ∈ {1, . . . , d}; in particular ∇u =

(D1u, . . . , Dd−1u, Ddu) = (∇′u, Ddu) is the gradient of function u; Dt = ∂
∂t , Dr

t , and D
p
x are

symbols respectively of a partial derivative of t of order r and of any partial derivative of x
of order p, where r and p are integers that are nonnegative; δk

j = 1 if j = k, and δk
j = 0 if

j 6= k; △x̃
x f (·, x) = f (·, x) − f (·, x̃), △t̃

t f (t, ·) = f (t, ·) − f (t̃, ·); Cl(D) (Cl(D)), l ∈ {0, 1, 2},
(C0(D) ≡ C(D), C0(D) ≡ C(D)) is a set of continuous functions in D (in D), which have
continuous derivatives D

p
x , p ≤ l, in D (in D), where D is a subset of R

d; C(Ω) (C(Ω)) is a
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set of continuous functions in Ω (in Ω), where Ω is a subset of R
d+1
∞ ; C1,2(Ω) (C1,2(Ω)) is a set

of continuous functions in Ω (Ω), which have continuous derivatives Dr
t , D

p
x , r = 1, p ≤ 2, in

Ω (in Ω); B(Rd) is the Banach space of bounded measurable functions ϕ endowed with the
norm ‖ϕ‖ = sup

x∈Rd

|ϕ(x)|; Cl
b(R

d), l ∈ {0, 1, 2}, (C0
b(R

d) ≡ Cb(R
d) = C(Rd)

⋂B(Rd)) is the set

of all real l times continuously differentiable functions bounded by their derivatives D
p
x , p ≤ l;

Hλ(Rd−1), λ ∈ (0, 1), is Hölder space (see [6, Ch. I, §1]).
Various constants, the particular values of which we will mostly not be interested in, are

denoted by C, c (with or without indexes). Other designations will be explained where they
first appear.

1 FORMULATION OF WENTZEL INITIAL BOUNDARY VALUE PROBLEM FOR THE HEAT

EQUATION AND BASIC ASSUMPTIONS

Let D be a strip in the space R
d, d ≥ 2, which is bounded by hyperplanes

S1 = {x ∈ R
d|xd = d1, d1 < 0}, S2 = {x ∈ R

d|xd = d2, d2 > 0}.

Under such conditions, we assume that D is separated by a hyperplane

S0 = {x ∈ R
d|xd = 0} = R

d−1

into two lanes

D1 = {x ∈ R
d|d1 < xd < 0} and D2 = {x ∈ R

d|0 < xd < d2},

so ∂D = S = S1
⋃

S2, ∂D1 = S(1) = S1
⋃

S0, ∂D2 = S(2) = S2
⋃

S0. Let Ω = (0, ∞) × D,

ΩT = (0, T) × D, Ω(m) = (0, ∞) × Dm, Ω
(m)
T = (0, T) × Dm, m ∈ {1, 2}; Σ(m) = (0, ∞) ×

Sm, Σ
(m)
T = (0, T] × Sm, m ∈ {0, 1, 2}. Let us denote the normal vector n(x) = (ni(x))d

i=1 =

(0, . . . , 0, 1) ∈ R
d to the Sm at the point x ∈ Sm, m ∈ {0, 1, 2}.

Consider Wentzel’s initial boundary-value problem: to find a function

u(t, x) =

{
u1(t, x), (t, x) ∈ Ω

(1)
,

u2(t, x), (t, x) ∈ Ω
(2)

,
(1)

such that in Ω(m) the function um is a solution of the equation

Dtum − 1
2

∆um = 0, m ∈ {1, 2}, (2)

and on the boundary Σ(m), m ∈ {1, 2}, the function um satisfies the boundary condition

Lmum

∣∣
Σ(m) ≡

∂um(t, x)

∂xd

∣∣∣∣
xd=dm

= 0, m ∈ {1, 2}, (3)

on the boundary Σ(0) the functions u1 and u2 satisfy the conjugation conditions

L01(u)
∣∣
Σ
(0) ≡ (u1(t, x)− u2(t, x))

∣∣
xd=0 = 0, (4)

L02(u)
∣∣
Σ
(0) ≡

(
1
2

d−1

∑
i,j=1

βij(x′)DiDju(t, x) +
d−1

∑
i=1

αi(x′)Diu(t, x)

− q1(x′)Ddu1(t, x) + q2(x′)Ddu2(t, x)

)∣∣∣∣
xd=0

= 0,

(5)
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and at t = 0 the following initial conditions are satisfied

um(t, x)
∣∣
t=0 = ϕ(x), x ∈ Dm, m ∈ {1, 2}. (6)

Here ∆ =
d

∑
i,j=1

∂2

∂x2
i

is the Laplace operator, ϕ(x) is a given bounded continuous function on

R
d, βij(x′), αi(x′), {i, j} ⊂ {1, . . . , d − 1}, qm(x′), m ∈ {1, 2}, are given bounded continuous

functions on R
d−1 such that

a) β(x′) =
(

βij(x′)
)d−1

i,j=1 is symmetric and inalienable matrix, in addition there are posi-

tive constants β1 and β2 such that for all x′ ∈ R
d−1 and for any real vector Θ′ ∈ R

d−1

β1|Θ′|2 ≤ (β(x′)Θ′, Θ′) ≤ β2|Θ′|2 ;

b) qm(x′) ≥ 0, x′ ∈ R
d−1, m ∈ {1, 2}, and infx′∈Rd−1(q1(x′) + q2(x′)) > 0;

c) βij, αi, qm ∈ Hλ(Rd−1), λ ∈ (0, 1), {i, j} ⊂ {1, . . . , d − 1}, m ∈ {1, 2}.

Problem (2)–(6) with the condition of conjugation consisting the second order derivatives
with respect to tangent space variables occurs in the theory of random processes while study-
ing with analytical methods of so-called problem of pasting together of two diffusion processes
in an Euclidean space or, equivalently, when building of mathematical models of physical phe-
nomena of diffusion in a medium containing membranes located on fixed surfaces [11, 20, 21].
In this case the boundary condition (3) and the condition of conjugation (5) are only a few
options for the general Wentzel boundary condition for multidimensional diffusion processes
[3, 6, 23, 24]. We pay attention to the probabilistic meaning of these and other conditions in-
cluded in the problem (2)–(6). Therefore, if we assume that the obtained solution of the prob-
lem (2)–(6) forms a Feller semigroup of operators (we denote it by Tt, t ≥ 0), which describes
on D some homogeneous Markov process, then performing of the Kolmogorov equation (2)
for the function u(t, x) ≡ Tt ϕ(x) indicates that this process coincides at the interior points of
the domains D1 and D2 with the Wiener process specified there. This process is managed by
generating differential operator L = 1

2 ∆, and the initial condition (6) is consistent with the
equality T0 = I, where I is the identical operator. Сondition of conjugation (4) means that the
process will be Feller type, and the boundary condition (3) as well as the condition of conjuga-
tion (5) responsible for its continuation after entering the diffusing particles on the borders of
D1 and D2, where the membranes are located. In particular, the realization for semigroups of
boundary conditions (3) means that the process at the points of the surfaces S1 and S2 behaves
like a Brownian motion with reflection. According to (5) process after its release on the S0 is
carried out in accordance with combinations of effects such as partial reflection, the drift and
diffusion along the boundary.

The initial-boundary-value problem (2)–(6) is characterized by the fact that, if the condi-
tion of conjugation (5) contains the second order derivatives with respect to tangent space
variables, then this problem is not parabolic in the sense that it does not fulfill the so-called
complementarity conditions. These conditions in the case of conjugations problems are also
called the conditions of compatible covering [4, 7, 14, 26]. And this means that this problem
does not fit into the class of initial-boundary value problems for parabolic equations and sys-
tems, for which the general theory is constructed [4, 5, 7, 14, 22, 26]. Because of this, we call the
Wenzel conjugation condition (5) nonclassical one.

The classical solution of the problem (2)–(6) in the space of bounded continuous functions
is obtained by using the method of boundary integral equations. We use the potentials con-
structed by ordinary fundamental solutions of uniformly parabolic operators. It is also proved
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that, using a solution of this problem, one can construct an one-parameter Feller semigroup
that corresponds on D to some homogeneous Markov process. Again, we note that the con-
jugation problem, similar to the problem (2)–(6), has been studied (including in more general
formulations) by the potential theory method earlier in [9, 10, 17] for the case D = R

d (see
also [11, 12] for other variants of the general Wenzel boundary condition). In [2], the parabolic
variant of Wentzel initial-boundary problem with the boundary condition, containing sec-
ond order derivatives with respect to tangent space variables, was investigated in the Hölder
classes by the local method. We also note the works [1,6,15,18,23,25], which reflect the develop-
ment of other approaches (both using analytical and direct probabilistic methods) to construct
multidimensional diffusion processes under given Wenzel boundary conditions.

2 THE SOLUTION OF WENTZEL INITIAL BOUNDARY-VALUE PROBLEM

Let us denote by g(t, x, y) = q(t, x − y) = q(t, x′ − y′, xd − yd) (t > 0, {x, y} ⊂ R
d) the

density of transition probabilities of a d-dimensional Wiener process

g(t, x, y) = (2πt)−d/2 exp
{
− |y − x|2

2t

}
.

As we know, this is a fundamental solution for the heat equation

∂u(t, x)

∂t
− 1

2
∆u(t, x) = 0, (7)

that is, a function that has the following properties:

1) it is a continuous function of its arguments;

2) at fixed y ∈ R
d as a function of t, x in area (t, x) ∈ R

d+1
∞ it satisfies the equation (7);

3) for any function ϕ ∈ Cb(R
d)

lim
t↓0

∫

Rd
g(t, x, y)ϕ(y)dy = ϕ(x) (8)

for all t > 0, x ∈ R
d.

In addition, the function g(t, x, y) is infinitely differentiable for all variables and justifies the
inequality

|Dr
t D

p
x g(t, x, y)| ≤ C t−

d+2r+p
2 exp

{
− c

|y − x|2
t

}
(9)

for each domain of the form t ∈ (0, T], {x, y} ⊂ R
d, where r and p are nonnegative integer

numbers.
The following relations hold (t ≥ 0, {x, Θ} ⊂ R

d):

∫

Rd
Dr

t D
p
x g(t, x, y) dy =

{
1, if r = 0, p = 0, t > 0, x ∈ R

d,
0, if r + p ≥ 1, t > 0, x ∈ R

d,
(10)

∫

Rd
g(t, x, y)(y − x, Θ) dy = 0, if t > 0, {x, Θ} ⊂ R

d, (11)

∫

Rd
g(t, x, y)(y − x, Θ)2 dy = |Θ|2t, if t > 0, {x, Θ} ⊂ R

d, (12)
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g(t + s, x, y) =
∫

Rd
g(t, x, z)g(s, z, y) dy, if t > 0, s > 0, {x, y} ⊂ R

d. (13)

The correctness of the equalities (10)–(13) can be verified by direct calculations.
The integral on the left side of (8) is the function

u0(t, x) =
∫

Rd
g(t, x, y)ϕ(y) dy. (14)

This function is called the Poisson heat potential with kernel g and density ϕ. If ϕ ∈ Cb(R
d),

then potential (14) at (t, x) ∈ R
d+1
∞ is the solution of the equation (7) and satisfies the initial

condition
lim
t↓0

u(t, x) = ϕ(x), x ∈ R
d.

In addition, the inequality (9) gives us the following estimate of the function u0(t, x), (t, x)∈
R

d+1
T :

|Dr
t D

p
x u0(t, x)| ≤ Ct−

2r+p
2 ||ϕ||. (15)

In the solution of the problem (2)–(6) also be used the notion of a parabolic potential of a
single layer. This concept is associated with some given hypersurface S in R

d. We can consider
the case when S is a hyperplane in R

d orthogonal to a given orth n = (0, . . . , 0, 1) ∈ R
d.

This means that S = {x ∈ R
d|xd = m}, where m is a given real constant. The hyperplane S

separates R
d into two domains: D− = {x ∈ R

d|xd < m} and D+ = {x ∈ R
d|xd > m}, so

R
d = D−

⋃D+
⋃

S.
So suppose that on the set (0, ∞)× S there is a continuous function V(t, x) with real values,

which in each area of the form (t, x) ∈ (0, T]× S allows such an estimate

|V(t, x)| ≤ Ct−µ, 0 ≤ µ < 1. (16)

Let for (t, x) ∈ R
d+1
∞

W(t, x) =
∫ t

0
dτ

∫

S
g(t − τ, x, y)V(τ, y)dσy , (17)

that the inner integral is a surface integral over the variable y. Under our assumptions on the
hyperplane S the inegral (17) can be written as

W(t, x) =
∫ t

0
dτ

∫

Rd−1
g(t − τ, x′ − y′, xd − m)V̂(τ, y′) dy′, (18)

where V̂(τ, y′) = V(τ, y)
∣∣

yd=m
= V(τ, y′, m). The function W(t, x) is called the parabolic

single-layer potential with kernel g and dencity V. Note some of its properties (see [13, Ch. IV,
§15], [5, Ch. V, §2], [19, Ch. XXII, §8]). If V(t, x) satisfies the inequality (16), then the integral
(18) exists and it is a continuous function on the set of variables t > 0, x ∈ R

d. In addition,
the function W(t, x) in each area (t, x) ∈ (0, ∞) × D− and (t, x) ∈ (0, ∞) × D+ satisfies the
equation (7) and the initial condition

lim
t↓0

W(t, x) = 0, x ∈ R
d\S, (19)

and provided that in (16) the power µ ∈ [0, 1/2) zero initial condition (19) is satisfied for
W(t, x) for all x ∈ R

d. The case of µ = 1/2 in each situation needs to be investigated separately.
Note that with some additional assumptions on the smoothness of the density V, not only

the function W, but also its partial derivatives by tangent variables of the first and second
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orders will change continuously when passing through the surface S, that is, DiW and DiDjW,
{i, j} ⊂ {1, . . . , d − 1}.

As for the first-order derivative of the function W in the normal direction to S, its behavior
at x ∈ S, is determined by the statement, which is known in the literature as the theorem for
the jump of a conormal derivative of the single-layer potential. In the case under consider-
ation, this theorem states (see, for example, [19, Ch.XXII, §8, Theorem 2], [21, Ch.3, §3, For-
mula (3.45)]): if S = {x ∈ R

d|xd = m}, and the function V(t, x) in the formula (17) is continu-
ous in the domain (t, x) ∈ (0, ∞)× S and satisfy of the estimate (16), then

lim
xd→m±

∂W(t, x)

∂xd
= ∓V̂(t, x′), (t, x′) ∈ R

d
∞ . (20)

In addition, the minus sign on the right-hand side of (20) should be taken when x = (x′, xd) ∈
R

d approaches to (x′, m) ∈ S from the side of the area D+, and the plus sign should be taken
when x = (x′, xd) ∈ R

d approaches to (x′, m) ∈ S from the side of the area D−.

Theorem 1 (On the existence and uniqueness of Wenzel’s initial boundary-value problem).
Suppose that conditions (a)–(c) hold. Then, if ϕ ∈ Cb(R

d), the boundary-value problem (2)–
(6) has a unique classical solution continuous in the closed domain Ω.

Proof. To solve the initial boundary value problem (2)–(6), we apply the method of heat and
parabolic potentials, which are constructed using ordinary fundamental solutions of uniform
parabolic operators. Based on the properties of the fundamental solution of the heat equation g
and the resulting heat and parabolic potentials, we will search for each of the functions u1 and
u2 from (1) as the sum of the Poisson potential (14) and the single-layer potentials associated
with the hyperplanes Sk, k ∈ {0, 1, 2}:

um(t, x) = u0(t, x) + um1(t, x) + um2(t, x), (t, x) ∈ Ω
(m)

, m ∈ {1, 2}, (21)

where
u0(t, x) =

∫

Rd
g(t, x, y)ϕ(y) dy,

um1(t, x) =
∫ t

0
dτ

∫

S0

g(t − τ, x, y)Vm(τ, y) dσy =
∫ t

0
dτ

∫

Rd−1
g(t − τ, x′ − y′, xd)V̂m(τ, y′) dy′,

um2(t, x) =
∫ t

0
dτ

∫

Sm

g(t − τ, x, y)Vm+2(τ, y) dσy

=
∫ t

0
dτ

∫

Rd−1
g(t − τ, x′ − y′, xd − dm)V̂m+2(τ, y′) dy′, m ∈ {1, 2},

and Vm(τ, y) = Vm(τ, y′, 0) = V̂m(τ, y′), Vm+2(τ, y) = Vm+2(τ, y′, dm) = V̂m+2(τ, y′), m ∈
{1, 2}, are unknown functions which have to be determined.

The unknown functions Vm and Vm+2, m ∈ {1, 2}, are found from the boundary conditions
(3) and the conjugation conditions (4), (5). In particular, using the boundary conditions (3),
using the jump formula (20) applied only to the potentials of the single layer um2, m ∈ {1, 2},
we obtain

V̂m+2(t, x′) = ψ̂m(t, x′) +
∫ t

0
dτ

∫

Rd−1
K̂m(t − τ, x′, y′)V̂m(τ, y′) dy′, m ∈ {1, 2}, (22)

where

ψ̂m(t, x′) = (−1)m−1 ∂u0(t, x)

∂xd

∣∣∣∣
xd=dm

, m ∈ {1, 2},
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K̂m(t − τ, x′, y′) =
∂g(t − τ, x′ − y′, xd)

∂xd

∣∣∣∣
xd=dm

, m ∈ {1, 2}.

For functions ψ̂m(t, x′) ((t, x′) ∈ R
d
T) and K̂m(t − τ, x′, y′) (0 ≤ τ < t ≤ T, {x′, y′} ⊂ R

d−1)
the following estimates come true:

|ψ̂m(t, x′)| ≤ C||ϕ||t−1/2, m ∈ {1, 2}, (23)

|K̂m(t − τ, x′, y′)| ≤ C exp
{
− c

|x′ − y′|2
t − τ

}
, m ∈ {1, 2}. (24)

Indeed, the inequality (23) follows directly from (15) at r = 0, p = 1, and the estimate (24)
is a simple consequence of the relation

∂g(t − τ, x′ − y′, xd)

∂xd

∣∣∣∣
xd=dm

= − dm

(2π)d/2(t − τ)
2+d

2

exp
{
− d2

m

2(t − τ)

}
exp

{
− |x′ − y′|2

2(t − τ)

}
,

for |dm| > 0, m ∈ {1, 2}, and inequality

σν e−cσ ≤ const (0 ≤ σ < ∞, 0 ≤ ν < ∞).

The equations (22) are integral Volterra equations of the second kind, solved with respect
to the functions V̂3 and V̂4.

Let us consider the conjugation condition (4). Substituting the expressions for u1(t, x′, 0)
and u2(t, x′, 0) from (21), we find

∫ t

0
dτ

∫

Rd−1
g(t − τ, x′ − y′, 0)[V̂1(τ, y′)− V̂2(τ, y′)] dy′

=
2

∑
j=1

(−1)j
∫ t

0
dτ

∫

Rd−1
g(t − τ, x′ − y′,−dm)V̂j+2(τ, y′) dy′, (t, x′) ∈ R

d
∞ .

(25)

The equation (25) is integral Volterra equation of the first kind. In order to regularize this
equation, we apply the integral-differential operator E1 to both parts of this equation, which
operates by the rule

E1 f (t, x′) =
√

2/π

{
∂

∂t

∫ t

0
(t − τ)−1/2 dτ

∫

Rd−1
h(t̂ − τ, x′ − y′) f (τ, y′) dy′

}∣∣∣∣
t̂=t

,

where h denotes the fundamental solution of Dt − 1
2 ∆′, ∆′ =

d−1
∑

i=1

∂2

∂x2
i

:

h(t, x′, y′) = (2πt)−
d−1

2 exp
{
− |x′ − y′|2

2t

}
, t > 0, {x′, y′} ⊂ R

d−1.

As a result, we obtain an equivalent Volterra integral equation of the second kind, solved
with respect to V̂1(t, x′)− V̂2(t, x′):

V̂1(t, x′)− V̂2(t, x′) =
2

∑
j=1

∫ t

0
dτ

∫

Rd−1

∂g(t − τ, x′ − y′, xd − dm)

∂xd

∣∣∣∣
xd=0

V̂j+2(τ, y′) dy′. (26)

In the equation (26), as in (22), the kernels of the single-layer potentials allow the estimate
(24).
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Note that the equivalence of the equations (26) and (25) in this case is sufficiently easy to
justify by applying to both parts of these equations the Fourier and Laplace transforms for the
variables x′ and t, respectively.

So we have to use the conjugation condition (5). For this at first, we use the jump formula
(20) and the notations

β
(0)
ij (x′) =

βij(x′)

q1(x′) + q2(x′)
, α

(0)
i (x′) =

αi(x′)
q1(x′) + q2(x′)

, {i, j} ⊂ {1, . . . , d − 1},

q(x′) =
q2(x′)− q1(x′)
q1(x′) + q2(x′)

, |q(x′)| ≤ 1,

Θ(t, x′) =
2

∑
j=1

1
2

[
1 + (−1)jq(x′)

]
V̂j(t, x′)

−
2

∑
j=1

∫ t

0
dτ

∫

Rd−1

1
2

[
q(x′) + (−1)j

]∂g(t − τ, x′ − y′, xd − dj)

∂xd

∣∣∣∣
xd=0

V̂j+2(τ, y′) dy′

− q(x′)Ddu0(t, x)
∣∣

xd=0 − u(t, x′, 0).

For m ∈ {1, 2} we find the following image

L′
0u

∣∣
Σ(0) ≡

1
2

d−1

∑
i,j=1

β
(0)
ij (x′)DiDju(t, x′, 0)+

d−1

∑
i=1

α
(0)
i (x′)Diu(t, x′, 0)− um(t, x′, 0) = Θ(t, x′). (27)

The coefficients β
(0)
ij (x′) and α

(0)
i (x′) are elements of the matrix β0(x′) =

(
β
(0)
ij (x′)

)d−1
i,j=1 and

the coordinates of the vector α0(x′) =
(
α
(0)
i (x′)

)d−1
i=1 respectively. By β−1

0 (x′) we denote the
matrix inversed to the matrix β0(x′).

We can consider (27) as a stand-alone elliptic equation for S0, in which we interpret the vari-
able t as a parameter. From the conditions (a)–(c) it follows that the operator L′

0 is uniformly
elliptic and there exists its fundamental solution (see [16, Ch.III, §20], [8]), which we denote by
Γ(x′, z′), {x′, z′} ⊂ R

d−1. In this case, the function Γ(x′, z′) can be expressed by the formula

Γ(x′, z′) =
∫ ∞

0
e−sG(s, x′, z′) ds,

where G(s, x′, z′) (s > 0, {x′, z′} ⊂ R
d−1) is fundamental solution of uniform parabolic oper-

ator

L′ =
1
2

d−1

∑
i,j=1

β
(0)
ij (x′)DiDj +

d−1

∑
i=1

α
(0)
i (x′)Di − Ds.

We use some properties of the function G(s, x′, z′) (see [13, Ch.IV, §11-12], [20, Ch.2, §5]). In
particular, we will need the following representation of the fundamental solution G(s, x′, z′)

G(s, x′, z′) = G0(s, x′, z′) + G1(s, x′, z′),

where

G0(s, x′, z′)=G
(z′)
0 (s, x′− z′)=(2πs)−

d−1
2 (det(β0(z

′)))−1/2 exp
{
− 1

2s
(β−1

0 (z′)(z′− x′), z′− x′)
}

,

G1(s, x′, z′) =
∫ s

0
dτ

∫

Rd−1
G0(s − τ, x′, y′)Q0(τ, y′, z′)dy′,
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Q0 is a solution of some integral Volterra equation of the second kind. In addition, the func-
tions G and G1 satisfy such inequalities

∣∣Dr
sD

p
x′G(s, x′, z′)

∣∣ ≤ Cs−
(d−1)+2r+p

2 exp
{
− c

|x′ − z′|2
s

}
, (28)

∣∣Dr
sD

p
x′G1(s, x′, z′)

∣∣ ≤ Cs−
(d−1)+2r+p−λ

2 exp
{
− c

|x′ − z′|2
s

}
, (29)

where 2r + p ≤ 2, s ∈ (0, T], {x′, y′} ⊂ R
d−1, C = CT < ∞, if T < ∞.

The inequality (28) holds for G0 if r and p are any nonnegative integers.
If the expressions Dr

sD
p
x′G(s, x′, z′) and Dr

sD
p
x′G1(s, x′, z′) be evaluated by the factor e−µs,

µ > 0, we can show that the inequalities (28) and (29) will be correct for s ∈ (0, ∞), {x′, z′} ⊂
R

d−1 (that is, in this case C becomes independent of T).
We will also use estimates of the form (13.2) and (13.3) from [13, Ch.IV, §13] (applied to dif-

ferences ∆x̃′
x′(Dr

s D
p
x′G(s, x′, z′)) and ∆t̃

t(Dr
s D

p
x′G(s, x′, z′)) respectively), as well as the relations

(2.38), (2.39) from [20, Ch.2, §2] (they, like to the equations (10) and (13) with obvious changes,
will be applied to the potentials generated by the fundamental solution G).

Next, assuming that Θ(t, x′) with (27) as a function of the variable x′ is bounded and Hölder
continuous, we have that a unique solution of the equation (27) for (t, x′) ∈ R

d
∞ can be pre-

sented in the form

u(t, x′, 0) = −
∫

Rd−1
Γ(x′, z′)Θ(t, z′) dz′ = −

∫ ∞

0
e−sds

∫

Rd−1
G(s, x′, z′)Θ(t, z′) dz′. (30)

So, in addition to the formula (21), where we need to take (t, x) = (t, x′, 0), we found for
the function u(t, x′, 0) the relation (30). If we equate their right parts, given (26), we obtain the
following two integral equations that can be solved with respect to V̂m, m ∈ {1, 2}:

∫ t

0
dτ

∫

Rd−1

[
g(t− τ, x′− y′, 0)−

∫ ∞

0
e−sds

∫

Rd−1
G(s, x′, z′)g(t − τ, z′− y′, 0)dz′

]
V̂m(τ, y′) dy′

+
∫ ∞

0
e−sds

∫

Rd−1
G(s, x′, z′)V̂m(t, z′) dz′

=
2

∑
j=1

∫ t

0
dτ

∫

Rd−1
K
(m)
j (t − τ, x′, y′)V̂j+2(τ, y′)dy′ + ψ(t, x′), (t, x′) ∈ R

d
∞ ,

(31)

where

K
(m)
j (t − τ, x′, y′) =

∫ ∞

0
e−sds

∫

Rd−1
G(s, x′, z′)

[
g(t − τ, z′ − y′,−dj) + q(z′)

×
∂g(t − τ, z′ − y′, zd − dj)

∂zd

∣∣∣∣
zd=0

]
dz′ − g(t − τ, x′ − y′,−dm), if j = m, {j, m} ⊂ {1, 2},

K
(m)
j (t − τ, x′, y′) =

∫ ∞

0
e−sds

∫

Rd−1
G(s, x′, z′)

[
q(z′) + (−1)m−1]

×
∂g(t − τ, z′ − y′, zd − dj)

∂zd

∣∣∣∣
zd=0

dz′, if j 6= m, {j, m} ⊂ {1, 2},

ψ(t, x′) =
∫ ∞

0
e−sds

∫

Rd−1
G(s, x′, z′)

[
q(z′)Ddu0(t, z)

∣∣
zd=0 + (u0(t, z′, 0)− u0(t, x′, 0))

]
dz′.
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The equation (31) is an integral equation of the first kind of Volterra-Fredholm type. In
order to regularize it, we introduce the integro-differential operator E2, which operates by the
rule

E2 f (t, x′) =
√

2/π

{
∂

∂t

∫ t

0
(t − τ)−1/2dτ

∫

Rd−1
f (τ, y′)dy′

[
h(t̂ − τ, x′ − y′)

+
∫ ∞

0

(
1 − u

t − τ

)
exp

{
− u2

2(t − τ)

}
du

∫

Rd−1
h(t̂ − τ, x′ − v′)G(u, v′, y′)dv′

]}∣∣∣∣
t̂=t

.

The application of the operator E2 to both parts of each equations (31) leads us to a system
of Volterra type II equations solved with respect to V̂m, m ∈ {1, 2}:

V̂m(t, x′) =
∫ t

0
dτ

∫

Rd−1
K̂(t − τ, x′, y′)V̂m(τ, y′)dy′

+
2

∑
j=1

∫ t

0
dτ

∫

Rd−1
K̂
(m)
j (t − τ, x′, y′)V̂j+2(τ, y′)dy′ + ψ̂(t, x′), (t, x′) ∈ R

d
∞, m ∈ {1, 2}.

(32)

Here ψ̂(t, x′) = E2ψ(t, x′), and kernels K̂(t − τ, x′, y′) and K̂
(m)
j (t − τ, x′, y′), {j, m} ⊂ {1, 2},

are denoted by formulas:

K̂(t − τ, x′, y′) =

√
2
π

{
∂

∂t

∫ t

τ
dθ

∫

Rd−1
g(θ− τ, z′− y′, 0)dz′

∫ ∞

0
u · (t − θ)−3/2 exp

{
− u2

2(t − θ)

}
du

×
∫

Rd−1
h(t̂ − θ, x′ − v′)

[
G(u, v′, z′)− G

(x′)
0 (u, v′ − z′)

]
dv′

}∣∣∣∣
t̂=t

−
√

2
π

{
∂

∂t

∫ ∞

0
(t − τ)−1/2 exp

{
− u2

2(t − τ)

}
du

×
∫

Rd−1
h(t̂ − τ, x′ − v′)

[
G(u, v′, y′)− G

(x′)
0 (u, v′ − y′)

]
dv′

}∣∣∣∣
t̂=t

,

K̂
(m)
j (t − τ, x′, y′) = K̂

(m)
j1 (t − τ, x′, y′) + K̂

(m)
j2 (t − τ, x′, y′),

where

K̂
(m)
j1 (t − τ, x′, y′) =

√
2
π

{
∂

∂t

∫ t

τ
dθ

∫

Rd−1

[
q(z′) +

1
2

(
(−1)m−1 + (−1)j

)]

×
∂g(θ − τ, z′ − y′, zd − dj)

∂zd

∣∣∣∣
zd=0

dz′
∫ ∞

0
(t − θ)−1/2 exp

{
− u2

2(t − θ)

}
du

×
∫

Rd−1
h(t̂ − θ, x′ − v′)G(u, v′, z′)dv′

}∣∣∣∣
t̂=t

, {m, j} ⊂ {1, 2},

K̂
(m)
j2 (t − τ, x′, y′) = 0, if {m, j} ⊂ {1, 2} and m 6= j,

and

K̂
(m)
j2 (t − τ, x′, y′) = −∂g(t − τ, x′ − y′, xd − dm)

∂xd

∣∣∣∣
xd=0

+

√
2
π

{
∂

∂t

∫ t

τ
dθ

∫

Rd−1
g(θ − τ, z′ − y′,−dj)dz′

∫ ∞

0
u · (t − θ)−3/2 exp

{
− u2

2(t − θ)

}
du

×
∫

Rd−1
h(t̂ − θ, x′ − v′)G(u, v′, z′)dv′

}∣∣∣∣
t̂=t

, if {m, j} ⊂ {1, 2} and m = j.
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Using the properties of the fundamental solutions g, h and G we prove that for kernels

K̂(t − τ, x′, y′) and K̂
(m)
j (t − τ, x′, y′) (where {j, m} ⊂ {1, 2}, 0 ≤ τ < t ≤ T, (x′, y′) ⊂ R

d−1,
0 < γ < λ) next estimates hold:

|K̂(t − τ, x′, y′)| ≤ C(t − τ)−1+ λ−γ
4 Φc,γ(t − τ, x′, y′), (33)

|K̂(m)
j (t − τ, x′, y′)| ≤ C · Φc,γ(t − τ, x′, y′) +





C · exp
{
− c |x

′−y′|2
t−τ

}
, if m = j,

0, if m 6= j,
(34)

where by Φc,γ(t − τ, x′, y′) we denote the integral

Φc,γ(t − τ, x′, y′) =
∫ ∞

0
u−1+γ/2 exp

{
− c

u2

t − τ

}
(t − τ + u)−

d−1
2 exp

{
− c

|x′ − y′|2
t − τ + u

}
du.

Let us analyze in more details the function ψ̂(t, x′) in (32). For it, using the properties of
the fundamental solutions g and G, we find the following representation:

√
π

2
ψ̂(t, x′) =

1
2

∫ t

0
(t − τ)−3/2dτ

∫

Rd−1
h(t − τ, x′ − y′)

×
[
∆x′

y′u0(t, y′, 0)− (y′ − x′,∇′u0(τ, x′, 0))
]
dy′

−
∫ t

0
dτ

∫

Rd−1
∆x′

y′u0(τ, y′, 0)dy′
∫ ∞

0
DuDt

(
(t − τ)−1/2

× exp
{
− u2

2(t − τ)

})
du

∫

Rd−1
h(t − τ, x′ − v′)

[
∆x′

v′ G(u, v′, y′)
]
dv′

−
∫ t

0
dτ

∫

Rd−1
∆x′

y′ Dtu0(t − τ, y′, 0)dy′
∫ ∞

0
Du

(
τ−1/2 exp

{
− u2

2τ

})
G(u, x′, y′)du

+
∫ t

0
dτ

∫

Rd−1
q(y′)

∂u0(τ, y)

∂yd

∣∣∣
yd=0

dy′
∫ ∞

0
Dt

(
(t − τ)−1/2 exp

{
− u2

2(t − τ)

})
du

×
∫

Rd−1
h(t − τ, x′ − v′)∆x′

v′ G(u, v′, y′)dv′

+
∫ t

0
dτ

∫

Rd−1
q(y′)∆t

τ
∂u0(τ, y)

∂yd

∣∣∣
yd=0

dy′
∫ ∞

0
Dt

(
(t− τ)−1/2 exp

{
− u2

2(t − τ)

})
G(u, x′, y′)du

+
∫ ∞

0
t−1/2 exp

{
− u2

2t

}
du

∫

Rd−1
G(u, x′, y′)q(y′)

∂u0(τ, y)

∂yd

∣∣∣
yd=0

dy′ =
6

∑
i=1

Mi.

(35)

Estimating the terms Mi on the right-hand side of (35), using the inequalities (28), (29), and
(23) as well as the finite increment formula, we obtain for (t, x′) ∈ (0, T]× R

d−1:

|ψ̂(t, x′)| ≤ C||ϕ||t−1/2. (36)

Therefore, to find the unknown densities V̂i(t, x′), i ∈ {1, 2, 3, 4} of the boundary condi-
tions (3) and the conjugation conditions (4), (5), we have obtained a system of integral equa-
tions of Volterra of second kind (22), (32).

Estimates (24), (34) and (33) hold for kernels K̂m, K̂
(m)
j , {m, j} ⊂ {1, 2}, and K̂ from these

equations. Inequalities (23) and (36) are valid for the functions ψ̂m, m ∈ {1, 2}, and ψ̂. All of this
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allows us to apply to the system of integral equations (22), (32) usual method of successive ap-
proximations and, as a consequence, to obtain the unknown functions V̂i(t, x′), i ∈ {1, 2, 3, 4},
and the following inequalities:

|V̂i(t, x′)| ≤ C||ϕ||t−1/2, i ∈ {1, 2, 3, 4}, (t, x′) ∈ (0, T]× R
d−1. (37)

The estimates (24), (34) and (37) ensure that the single-layer potentials in (21) exist and the
inequalities can be done

|umj(t, x)| ≤ C||ϕ||, {m, j} ⊂ {1, 2}, (38)

where (t, x) ∈ Ω
(m)
T , C is some constant.

Hence, from the estimation (15) for r = p = 0 it follows that the inequality (38) also holds
for the function u(t, x) = um(t, x), (t, x) ∈ Ω(m), m ∈ {1, 2} from (21). In addition, we prove
that the initial condition (6) is satisfied for the function u(t, x) for all x ∈ D.

Let us go back to the functions ψ̂(t, x′) and V̂m(t, x′), m ∈ {1, 2} from (32). Similarly
to [9, 10, 17], using estimates (13.2) and (13.3) from [13, Ch.IV, §13], we establish that these
functions are continuously differentiable with respect to the variable x′ and, in addition, their
derivatives satisfy the Hölder property with respect to the spatial variable. This fact confirms
our a priori assumption of the existence and continuity of the derivatives Diu(t, x′, 0) and
DiDju(t, x′, 0), {i, j} ⊂ {1, . . . , d − 1}, as well as the possibility of using the formula (30) in
solving the equation (27). This completes the proof of the classical solvability of the problem
(2)–(6). As for the uniqueness of the solution, the corresponding statement can be obtained
based on the maximum principle for parabolic equations (see proof of a similar statement
in [9, 10, 17]).

3 CONSTRUCTION OF THE MARKOV PROCESS

It follows from Theorem 1 that there exists a unique solution of u(t, x) of the problem (2)–
(6) in the domain (t, x) ∈ [0, ∞)×D = Ω, which satisfies at t = 0 the condition u(0, x) = ϕ(x),
where ϕ(x) is a given function from Cb(D), which is considered to be a continuous extension
on R

d, so that ϕ ∈ Cb(R
d). Using the solution u(t, x) of the problem (2)–(6), we define an

one-parameter family of linear operators (Tt)t≥0, acting in the space Cb(D). For t > 0 and

ϕ ∈ Cb(R
d) we put Tt ϕ(x) = T

(0)
t ϕ(x) + T

(1)
t ϕ(x), (t, x) ∈ (0, ∞)×D, where

T
(0)
t ϕ(x) = u0(t, x), (t, x) ∈ (0, ∞)×D,

T
(1)
t ϕ(x) = um1(t, x) + um2(t, x), (t, x) ∈ (0, ∞)×Dm, m ∈ {1, 2},

u0 and um1, um2, m ∈ {1, 2} are determined by the corresponding formulas from (21), and
the densities Vk, k ∈ {1, 2, 3, 4}, which are part of the single-layer potentials um1, um2, are the
solution of the system of integral equations (22), (32), which the problem (2)–(6) boils down to.
Here T0 = I, where I is the identical operator.

The presence of an integral image for the operator family (Tt) makes it easy enough to
check the following properties (compare with [9, 10, 17]):

1) if ϕn ∈ Cb(R
d), n ∈ N, sup

n
||ϕn|| < ∞, and for all x ∈ R lim

n→∞
ϕn(x) = ϕ(x), where

ϕ ∈ Cb(R
d), then for all (t, x) ∈ Ω the relation lim

n→∞
Tt ϕn(x) = Tt ϕ(x) holds;

2) for all t ≥ 0, s ≥ 0 the relation Tt+s = Tt Ts holds, which means that the family (Tt)t≥0 is
a semigroup of operators;
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3) Tt ϕ(x) ≥ 0 for all (t, x) ∈ Ω, if ϕ ∈ Cb(D) and ϕ(x) ≥ 0;

4) operators Tt are compression, such operators that do not increase the norm of the ele-
ment.

From properties 1)–4) it follows (see, for example, [3, Ch.2, §1], [21, Ch.1]) that the family
of operators (Tt)t≥0 corresponds to some homogeneous Feller process on D. If we denote its
transition probability by P(t, x, dy), then for Tt ϕ(x) we have the following presentation:

Tt ϕ(x) =
∫

D
ϕ(y) P(t, x, dy), t ≥ 0, x ∈ D.

As we can see, the constructed Markov process is closely related to the heat equation (2).
Therefore, it is natural to treat this process as arising as a result of bonding on the common
part of the boundaries of the areas Di, i ∈ {1, 2}, where conjugation conditions (4), (5) are set,
two parts of the wiener process with full reflection properties at points located on the outer
parts of the boundaries of these areas. In addition, as already noted, the process described
here can serve as a mathematical model of the physical phenomenon of diffusion in a space
with membranes.

We formulate our result as the following theorem.

Theorem 2. Suppose that the conditions of Theorem 1 hold. Then the one-parameter family
of linear operators (Tt)t≥0, determined by the solution of the problem (2)–(6), generates in the
area D a homogeneous Markov process such that its parts at the interior points of D1 and D2
coincide with a wiener process governed by the generalized differential operator L = 1

2 ∆, and
their behavior at the boundary points of these domains is determined by boundary conditions
(3) and conjugation conditions (4), (5).

In conclusion, as follows from [9,10,17], the constructed by us in the described way Markov
process can be interpreted as a generalized diffusion in the understanding of M.I. Portenko
(see [20, 21]).
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Вивчається початково-крайова задача для рiвняння теплопровiдностi з умовою спряження
типу Вентцеля, яка не вкладається у загальну теорiю параболiчних початково-крайових задач
i вiдноситься до числа умовно коректних. Її класичну розв’язнiсть у просторi обмежених непе-
рервних функцiй встановлено при деяких умовах методом граничних iнтегральних рiвнянь.
Крiм того доведено, що отриманий розв’язок є напiвгрупою Феллера, яка представляє в роз-
глядуванiй тут областi деякий однорiдний узагальнений дифузiйний процес.

Ключовi слова i фрази: параболiчний потенцiал, метод граничних iнтегральних рiвнянь, на-
пiвгрупа Феллера, нелокальна крайова умова.


