References

  1. Simon B. The bound state of weakly coupled Schrödinger operators in one and two dimensions. Ann. Physics 1976, 97 (2), 279–288.
  2. Klaus M. On the bound state of Schrödinger operators in one dimension. Ann. Physics 1977, 108 (2), 288–300.
  3. Klaus M., Simon B. Coupling constant thresholds in nonrelativistic quantum mechanics. I. Short-range two-body case. Ann. Physics 1980, 130 (2), 251–281.
  4. Simon B. On the absorption of eigenvalues by continuous spectrum in regular perturbation problems. J. Funct. Anal. 1977, 25 (4), 338–344.
  5. Klaus M. Some applications of the Birman–Schwinger principle. Helv. Phys. Acta 1982, 55, 49–68.
  6. Blankenbecler R., Goldberger M.L., Simon B. The bound states of weakly coupled long-range one-dimensional quantum Hamiltonians. Ann. Physics 1977, 108 (1), 69–78.
  7. Rauch J. Perturbation theory for eigenvalues and resonances of Schrödinger Hamiltonians. J. Funct. Anal. 1980, 35 (3), 304–315.
  8. Klaus M. Simon B. Coupling constant thresholds in nonrelativistic quantum mechanics. Comm. Math. Phys. 1980, 78 (2), 153–168. doi:10.1007/BF01942369
  9. Albeverio S., Gesztesy F., Høegh-Krohn R. The low energy expansion in nonrelativistic scattering theory. Ann. Inst. H. Poincaré Sect. A (N.S.) 1982, 37 (1), 1–28.
  10. Bollé D., Gesztesy F., Wilk S.F.J. A complete treatment of low-energy scattering in one dimension. J. Operator Theory 1985, 13 (1), 3–32.
  11. Holden H. On coupling constant thresholds in two dimensions. J. Operator Theory 1985, 14 (2), 263–276.
  12. Gesztesy F., Holden H. A unified approach to eigenvalues and resonances of Schrödinger operators using Fredholm determinants. J. Math. Anal. Appl. 1987, 123 (1), 181–198. doi:10.1016/0022-247X(87)90303-9
  13. Jensen A., Melgaard M. Perturbation of eigenvalues embedded at a threshold. Proc. Roy. Soc. Edinburgh Sect. A 2002, 132 (1), 163–179. doi:10.1017/S0308210500001578
  14. Gadyl’shin R.R. Local perturbations of the Schrödinger operator on the axis. Theoret. Math. Phys. 2002, 132 (1), 976–982. doi:10.1023/A:1019615509634
  15. Gadyl’shin R.R. Local perturbations of the Schrödinger operator on the plane. Theoret. Math. Phys. 2004, 138 (1), 33–44. doi:10.1023/B:TAMP.0000010631.40891.f0
  16. Borisov D.I., Gadyl’shin R.R. The spectrum of the Schrödinger operator with a rapidly oscillating compactly supported potential. Theoret. Math. Phys. 2006, 147 (1), 496–500. doi:10.1007/s11232-006-0056-y
  17. Gesztesy F., Simon B. A short proof of Zheludev’s theorem. Trans. Amer. Math. Soc. 1993, 335 (1), 329–340. doi:10.1090/S0002-9947-1993-1096260-8
  18. Fassari S., Klaus M. Coupling constant thresholds of perturbed periodic Hamiltonians. J. Math. Phys. 1998, 39 (9), 4369–4416. doi:10.1063/1.532516
  19. Scharf G., Wreszinski W.F. Stability for the Korteweg-de Vries equation by inverse scattering theory. Ann. Physics 1981, 134 (1), 56–75. doi:10.1016/0003-4916(81)90004-X
  20. Weinstein M.I. Excitation thresholds for nonlinear localized modes on lattices. Nonlinearity 1999, 12 (3), 673–691. doi:10.1088/0951-7715/12/3/314
  21. Kevrekidis P.G., Rasmussen K.Ø., Bishop A.R. The discrete nonlinear Schrödinger equation: a survey of recent results. Internat. J. Modern Phys. B 2001, 15 (21), 2833–2900. doi:10.1142/S0217979201007105
  22. Golovaty Yu.D., Hryniv R.O. On norm resolvent convergence of Schrödinger operators with \(\delta'\)-like potentials. J. Phys. A 2010, 43 (15), 155204. doi:10.1088/1751-8113/43/15/155204 (a corrigendum: J. Phys. A 2011, 44 (4), 049802. doi:10.1088/1751-8113/44/4/049802)
  23. Golovaty Yu. Schrödinger operators with \((\alpha\delta'+\beta \delta)\)-like potentials: norm resolvent convergence and solvable models. Methods Funct. Anal. Topology 2012, 18 (3), 243–255.
  24. Golovaty Yu. Eigenvalues of Schrödinger operators near thresholds: two term approximation. Methods Funct. Anal. Topology 2020, 26 (1), 76–87. doi:10.31392/MFAT-npu26_1.2020.06
  25. Golovaty Yu.D., Hryniv R.O. Norm resolvent convergence of singularly scaled Schrödinger operators and \(\delta'\)-potentials. Proc. Roy. Soc. Edinburgh Sect. A 2013, 143 (4), 791–816. doi:10.1017/S0308210512000194
  26. Golovaty Yu. 1D Schrödinger Operators with Short Range Interactions: Two-Scale Regularization of Distributional Potentials. Integral Equations Operator Theory 2013, 75 (3), 341–362. doi:10.1007/s00020-012-2027-z
  27. Lazutkin V.F. Semiclassical Asymptotics of Eigenfunctions. In: Fedoryuk M.V. (Ed.) Partial Differential Equations V. Asymptotic Methods for Partial Differential Equations. Encyclopaedia of Mathematical Sciences, vol 34. Springer, Berlin, Heidelberg, 1999. doi:10.1007/978-3-642-58423-7_4
  28. Reed M., Simon B. Methods of Modern Mathematical Physics. Vol. 4. Analysis of Operators. Academic Press, New York, 1978.