References
- Simon B. The bound state of weakly coupled Schrödinger operators
in one and two dimensions. Ann. Physics 1976, 97
(2), 279–288.
- Klaus M. On the bound state of Schrödinger operators in one
dimension. Ann. Physics 1977, 108 (2),
288–300.
- Klaus M., Simon B. Coupling constant thresholds in
nonrelativistic quantum mechanics. I. Short-range two-body case.
Ann. Physics 1980, 130 (2), 251–281.
- Simon B. On the absorption of eigenvalues by continuous spectrum
in regular perturbation problems. J. Funct. Anal. 1977,
25 (4), 338–344.
- Klaus M. Some applications of the Birman–Schwinger
principle. Helv. Phys. Acta 1982, 55,
49–68.
- Blankenbecler R., Goldberger M.L., Simon B. The bound states of
weakly coupled long-range one-dimensional quantum Hamiltonians.
Ann. Physics 1977, 108 (1), 69–78.
- Rauch J. Perturbation theory for eigenvalues and resonances of
Schrödinger Hamiltonians. J. Funct. Anal. 1980, 35
(3), 304–315.
- Klaus M. Simon B. Coupling constant thresholds in nonrelativistic
quantum mechanics. Comm. Math. Phys. 1980, 78 (2),
153–168. doi:10.1007/BF01942369
- Albeverio S., Gesztesy F., Høegh-Krohn R. The low
energy expansion in nonrelativistic scattering theory. Ann. Inst.
H. Poincaré Sect. A (N.S.) 1982, 37 (1), 1–28.
- Bollé D., Gesztesy F., Wilk S.F.J. A complete treatment of
low-energy scattering in one dimension. J. Operator Theory 1985,
13 (1), 3–32.
- Holden H. On coupling constant thresholds in two dimensions.
J. Operator Theory 1985, 14 (2), 263–276.
- Gesztesy F., Holden H. A unified approach to eigenvalues and
resonances of Schrödinger operators using Fredholm determinants. J.
Math. Anal. Appl. 1987, 123 (1), 181–198.
doi:10.1016/0022-247X(87)90303-9
- Jensen A., Melgaard M. Perturbation of eigenvalues embedded at a
threshold. Proc. Roy. Soc. Edinburgh Sect. A 2002,
132 (1), 163–179. doi:10.1017/S0308210500001578
- Gadyl’shin R.R. Local perturbations of the Schrödinger operator
on the axis. Theoret. Math. Phys. 2002, 132 (1),
976–982. doi:10.1023/A:1019615509634
- Gadyl’shin R.R. Local perturbations of the Schrödinger operator
on the plane. Theoret. Math. Phys. 2004, 138 (1),
33–44. doi:10.1023/B:TAMP.0000010631.40891.f0
- Borisov D.I., Gadylshin R.R. The spectrum of the Schrödinger
operator with a rapidly oscillating compactly supported potential.
Theoret. Math. Phys. 2006, 147 (1), 496–500.
doi:10.1007/s11232-006-0056-y
- Gesztesy F., Simon B. A short proof of Zheludevs theorem.
Trans. Amer. Math. Soc. 1993, 335 (1), 329–340.
doi:10.1090/S0002-9947-1993-1096260-8
- Fassari S., Klaus M. Coupling constant thresholds of perturbed
periodic Hamiltonians. J. Math. Phys. 1998, 39
(9), 4369–4416. doi:10.1063/1.532516
- Scharf G., Wreszinski W.F. Stability for the Korteweg-de Vries
equation by inverse scattering theory. Ann. Physics 1981,
134 (1), 56–75. doi:10.1016/0003-4916(81)90004-X
- Weinstein M.I. Excitation thresholds for nonlinear localized
modes on lattices. Nonlinearity 1999, 12 (3),
673–691. doi:10.1088/0951-7715/12/3/314
- Kevrekidis P.G., Rasmussen K.Ø., Bishop A.R. The
discrete nonlinear Schrödinger equation: a survey of recent
results. Internat. J. Modern Phys. B 2001, 15
(21), 2833–2900. doi:10.1142/S0217979201007105
- Golovaty Yu.D., Hryniv R.O. On norm resolvent convergence of
Schrödinger operators with \(\delta'\)-like potentials. J.
Phys. A 2010, 43 (15), 155204.
doi:10.1088/1751-8113/43/15/155204 (a corrigendum: J. Phys. A 2011,
44 (4), 049802. doi:10.1088/1751-8113/44/4/049802)
- Golovaty Yu. Schrödinger operators with \((\alpha\delta'+\beta \delta)\)-like
potentials: norm resolvent convergence and solvable models. Methods
Funct. Anal. Topology 2012, 18 (3), 243–255.
- Golovaty Yu. Eigenvalues of Schrödinger operators near
thresholds: two term approximation. Methods Funct. Anal. Topology
2020, 26 (1), 76–87.
doi:10.31392/MFAT-npu26_1.2020.06
- Golovaty Yu.D., Hryniv R.O. Norm resolvent convergence of
singularly scaled Schrödinger operators and \(\delta'\)-potentials. Proc. Roy.
Soc. Edinburgh Sect. A 2013, 143 (4), 791–816.
doi:10.1017/S0308210512000194
- Golovaty Yu. 1D Schrödinger Operators with Short Range
Interactions: Two-Scale Regularization of Distributional
Potentials. Integral Equations Operator Theory 2013,
75 (3), 341–362. doi:10.1007/s00020-012-2027-z
- Lazutkin V.F. Semiclassical Asymptotics of Eigenfunctions. In:
Fedoryuk M.V. (Ed.) Partial Differential Equations V. Asymptotic Methods
for Partial Differential Equations. Encyclopaedia of Mathematical
Sciences, vol 34. Springer, Berlin, Heidelberg, 1999.
doi:10.1007/978-3-642-58423-7_4
- Reed M., Simon B. Methods of Modern Mathematical Physics. Vol. 4.
Analysis of Operators. Academic Press, New York, 1978.