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Local convergence of the Gauss-Newton-Kurchatov method
under generalized Lipschitz conditions

Shakhno S.M.24, Yarmola H.P.

We investigate the local convergence of the Gauss-Newton-Kurchatov method for solving non-
linear least squares problems. This method is a combination of Gauss-Newton and Kurchatov
methods and it is used for problems with the decomposition of the operator. The convergence
analysis of the method is performed under the generalized Lipshitz conditions. The conditions of
convergence, radius and the convergence order of the considered method are established. Given
numerical examples confirm the theoretical results.
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Introduction

One of the important problems in Computational Mathematics is finding numerical solu-
tions of nonlinear least squares problems. They arise while solving overdetermined systems
of nonlinear equations, parameter estimation of physical processes by measurement results,
constructing nonlinear regression models for solving engineering problems.

The classical formulation of the nonlinear least squares problem looks like this [1,2,7,10]:

min %F(x)TF(x). (1)

Here residual function F : D C R" — R, m > n, is nonlinear by x, D is an open convex
domain, F is a continuously differentiable function. The most used technique for solving of (1)
is Gauss-Newton’s method [1,2,7,10]

X1 = X — (F'(x)TF (%)) ' (x) TF(xk), k=0,1,.... ()

Difference methods are also often used [11,12, 14]. One of them is the Kurchatov type method
[12,14]

L = F(2x¢ — %1, %—1), Xks1 = X — (L{ L) 'L{F(x), k=0,1,.... 3)

Here F'(x;) is a Fréchet derivative of F(x); F(2xy — x;_1,xx_1) is a divided difference of the
first order of function F(x) (see [18,19]) at points 2x; — x;_1, Xx_1; X0, X_1 are given starting
points.
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Let us consider the nonlinear least squares problem with decomposition of operator [15-17]

min 2 (F(x) + G(x))T (F(x) + G(x)), 4
xeD 2
where the residual function F+ G : D € R" — R", m > n, is nonlinear by x, D is an open
convex domain, F is a continuously differentiable function, G is a continuous function, dif-
ferentiability of which, in general, is not required. For numerical solving of (4) one can use
difference and combined methods. The classical Gauss-Newton method cannot be applied to
solving this problem.
Combination of (2) and (3) gives the Gauss-Newton-Kurchatov method for finding the so-
lution of the problem (4)

Ar = F'(xi) + G(2x — xp—1, X5—1),

(5)
Y1 =X — (AfAY) AL (F(x) + G(x)),  k=0,1,....

We proposed this method in [13]. Another combined methods are considered in [15-17].

For m = n, the problem (4) turns into a system of nonlinear equations F(x) + G(x) = 0.
This problem and methods for its solving were studied in [1-6, 8, 9].

In this paper, we provide the local convergence analysis of the Gauss-Newton-Kurchatov
method (5). There are two main approaches to the study the convergence of iterative me-
thods: a local and semilocal convergence analysis. In the first case, the existence of a solution
x* is assumed. Then, based on the information around a solution, it is found the radius of
convergence ball with a center in solution and asserted that the sequence, generated by an
iterative method, is well defined, remains in convergence ball, and converges to this solution.
In the second case, based on the information around an initial point xo, it is found the radius
of convergence ball with a center in initial point and asserted that the sequence, generated by
iterative methods, is well defined, remains in convergence ball, and converges to the solution
that contains in this ball. Moreover, theorems of both types usually include error estimates
on ||xy — x*||. The semilocal convergence theorems additionally include error estimates on

ka+1 — xi||-

1 Local convergence analysis

We give a local convergence analysis of the Gauss-Newton-Kurchatov method (5) under
generalized Lipschitz conditions. These conditions were proposed in [20].
Let us, at first, consider some auxiliary lemmas [15,20] needed to obtain the main results.

Lemma 1. Put ;
o(t) = / E(u)du,
0

where E is integrable and positive nondecreasing function on [0, T]. The functione(t) is mono-
tonically increasing with respect tot on [0, T}.

Lemma 2. Put 1
ht) = - / H(u)du,
tJo

where H is integrable and positive nondecreasing function on [0, T]. The function h(t) is non-
decreasing with respect to t on (0, T.
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Lemma 3. Put 1
s(t) = t_z/o S(u)udu,

where S is integrable and positive nondecreasing function on [0, T|. The function s(t) is non-
decreasing with respect tot on (0, T.

Sufficient conditions and the rate of local convergence of the iterative process (5) are de-
fined in such a theorem. We use the Euclidean norm, for which ||A — B|| = ||AT — BT||, with
A, B € R"™*" js fulfilled. Denote

Q(x*,t)={xeD:|x—x*|| <1}, x*€D, >0, A,=F(x*)+G(x"x%).

Theorem 1. LetF + G : D € R" — R be continuous on an open convex subset D, and F is a
continuously differentiable function, G is a continuous function Suppose that the problem (4)
has a solution x* € D, and the inverse operation (AT A,)~! exists, such that ||(AT A,)~|| < B.
On the subset D, the Fréchet derivative F' satisfies the radius Lipschitz condition with L
average

p(x)
|F'(x) = F'(x7)| < / L(u)du, x"=x"+71(x—x"), 0<7t<1, (6)
T
the function G has the first- and second-order divided difference, and
[lx=ul+ly—oll
166xy) = Gw,o) < | M(u) du, 7)
[u—o
IG(exy) - Gloxyl < [ N, ®)
for all x,y,u,v € D, p(x) = ||x —x*||, L, M and N are positive nondecreasing functions on
[0,2R], R > 0.
Furthermore,

F)+ Gl <a [F G+ 660l <o | [ L+ [ Me ] <1,

and Q(x*,3r,) C D, where r, is the unique positive zero of the function q given by

a(r) :BH / du+/2r du+2r/02rN(u)du]
[—/ udu—l—/ du+2r/02rN(u)du]
[2o¢—|—/ du+/2r u) du + 2r /OZYN(u) du]
U du+/zr du—l—Zr/Oer(u)du}
[/ du~|—/2r du+2r/02rN(u)du] ;7]—1.

Then, for xy, x_1 € Q(x*,r,), the iterative process {xx}, k = 0,1, ..., generated by (5), is
well defined, remains in Q)(x*,r,), and converges to x*. Moreover, the following error esti-
mates hold for all k > 0:

k1 — x*|| < Callae — x| + Collax — xe—1[|* + Callax — x*[|* + Callxx — x* ||| — xi-1]1% (9)
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where

C = g(r*)ri (/Or* L(u)du+ /Ozr* M(u) du) , C= g(r*)z% /Ozm N(u)du,

Cs = g(r)T(r) (l /Or* L(u)udu + " M(u) du) , G = g(r)T(r.) /Ozr* N(u)du,

£ 0 27y

g(r) = B(1—B[T(r) +0é] [T(r) —a]) ™,
2r

2r
—(x+/ du—l—/ du+2r/ N(u)du.
0

Proof. According to L'Hospital’s rule we get

r 2r
tim 2 [ Ly = tim M)~ 100), 1t [ M) du = 1im 2V

r—071 Jo r—0 r—071 Jo r—0

= 2M(0).

Then for sufficiently small # we have g(0) = B(L(0) +2M(0))y — 1 < 0. Taking into account
Lemmas 1-3 we can prove, that q(r) is monotonically increasing on (0, R]. With a sufficiently
large R inequality q(R) > 0 holds. By the intermediate value theorem, the function g has on
(0, R) a positive zero denoted by r.. Moreover ¢q'(R) > 0 for R > 0. Therefore, this zero is
unique on (0, R).

Denote 6 = ||xx — xx_1]|- Let k = 0. Then we obtain the following estimation

11— (ATA) 1AL A
= (AT A,)"HAL(AL — Ag) + (AT — AD)(Ag — A + (AT — AD AL (10)
< B(af|A — Ao + |AT — AL ||| A0 — ALl + a|| AT — ATY).

Using conditions (6)—(8), we get

Ao — Asl| = ||[F'(x0) — F'(x*) + G(2x9 — x_1,x_1) — G(x0, x_1)
+ G(x0, x-1) — G(x0, x0) + G(x0, x0) — G(xs, x4 |
< [|F'(x0) — F'(x")Il + |G (x0, x0) — G(xs, x:) | (11)
+ [1(G(x0, x-1,%0) — G(2x0 — x-1,x_1,X0)) (x0 — x_1)

g/ du+/ u)du + ||xg — x_ 1||/ u)du.
0

Then from (10), (11) and definition of r, we get

11— (ATA) 1 AT Ag|| < “r -
AT Ay Aol < B |20+ | Lu)du + | u)du + |lxo — x| J - N(u)du

[/ du+/ u)du + ||xo — x_ 1H/ du}
Zr* 27y (12)
<B |:20(+/ du—l—/ du+21’*/0 N(u)du]
x[/ du—{—/zr du+2r*/02r*N(u)du]<1



Local convergence of the Gauss-Newton-Kurchatov method under generalized Lipschitz conditions 309

According to Banach lemma of invertible operator [1,10] and (12), it follows that (Al Ag)
exists and

a5 A0 < g0 =5 (1= [ [ Loyau+ [ Ml + 0~ 2 [N o

x[/o du—l—/ du+|\x0—x1|\/ D_l

2r, 2r,
<g(r*)_B<1—B[2a+/ du—{—/r du—{—2r*/0rN(u)du}

X [/ du—l—/zr* du—|r2r*/02r*N(u)du]>_1

Hence, x; is well defined. Next, we can write
lxy ="l = [lxo — x* — (Ag Ao) ™' (Ag (F(x0) + G(x0)) — AL (F(x*) + G(x"))) |
< 1= (A5 o)l - AT (Ao~ [ F/(x* 4 b0 = ) df — Glaxo,x")) (x0 — 2°)
+(Ag — AD(F(x*) + G(x").
Thus, by conditions (6)—(8) and inequalities
40— [ P + a0~ x*))dt — Gl x|

1
= IF/(x0) = [ F(x" + t(x0 = x))dt + G(2x0 — ¥-1,x-1) = (o, x")|

/ / dudr+/ ) du + ||x0 — x_ 1H/ u) du

< l udu—l—/ u)du + ||xg — x_ 1||/ u)du,
Po
and
ol < Al + 10— Al < @t [ L) dut [ MG+ o —x 1] [ NG du
we obtain

1 — x°| ggoHa+/O du—l—/ w)du + ||x0 — x_ 1||/ du]
« [plo/ L(u)udu+/ du+/ ) duflxo — 1|y] %o — x°|
+;7U du~|—/ du+|yx0—x1|y/ du”
< g(r )[ {H/ du+/2r* ) dut + 2r, /Ozr*N(u)du]
x [rl /y udu—l—/ u) du +2r, /Ozr* N(u)du]
+71[/0 du—l—/ du+2r*/02r*N(u)du”r*
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So, x1 € Q(x*,r,) and estimate (9) is true for k = 0.

Let us suppose, that x; € Q(x*,r,) for k > 0 and estimate (9) holds. Let us prove, that
Xpi1 € Q(x*,r,) and estimate (9) holds.

Using conditions (6)—(8), we get

11— (ATAT) AT A¢| < B zH/ du+/ w) du + |2 — i 1H/ du]
X / du—l—/ u) du + || xx — xx_ 1”/ du]
0
27 214
<B 21x+/ du+/ du—{—2r*/ N(u)du}
0
27
X / du+/ du+2r*/ N(u)du] <1
/0 0

Thus, (Al Ax) ! exists and

(AT AQ) Y| < gx = B [1—3 {2«x+/ du+/ u) du + || — xi— 1H/ du]

~1
<[ L [ M@+ - xl NG| <00
Hence,

lra = xl < g o [ Lodut [ MOt = xal [[ NG

1
<o [ udu+/ waut = x| [ NG du] - 27
k

+,7[/ du+/ u)du + |x — 1”/ du”

< g(ry) [[a+/ u)du + /Zr* u)du + 2r, /OZr* N(u)du]

1 Fa 2r
X L—/ udu+/ du—{—2r*/ N(u)du}
* 0
i 2r 21
_|_r_[/ du+/ du+2r*/ N(u)duHr*
. 0

and xq € Q(x*,7y).

Thus, iterative process (5) is well defined, x; 1 € Q(x*,7.) for k > 0 and estimate (9) holds
for each k > 0.

Let us prove that x; — x* for k — oco. Define functions a, b on [0, 7] by

a(r) = C1 4 Car +4Cyr?,  b(r) = 4Cyr. (13)
According to the choice of 7., we get
a(re) >0, b(re) >0, a(r«)+b(re) =1 (14)

Using the estimate (9), the definition of functions a, b and constants C;, i = 1,2, 3,4, we get
ltes1 — 2| < a(r) [ — 2| + b(r) 21 — x|

According to the proof in [1,2], under the conditions (13) and (14), the sequence {x;} converges
to x* for k — oo. O
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Corollary 1. The convergence order of the iterative method (5) with zero residual is quadratic.

Proof. If 1 = 0, we have the nonlinear least squares problem with zero residual in the solution.
In this case constants C; = 0, C, = 0, and the estimate (9) reduces to
1 = o[} < Calle = 27|12 + Calloe — || |1 — x>
< Gl — 2 + 4Ca [l — x|y — 27|12
It follows from the inequality (15) that the order of convergence (5) is not higher than quadra-

tic. Consequently, there exist a constant Cs > 0 and a positive integer N such that forallk > N
we have

(15)

o — x| > Cs fla—y — 2|
Then from (15) we obtain
e = x| < Call — 271”4 4Ca gy — |17 | — 7|
< Call = x|+ 4G = ]2 = Co v = ° .
From the last estimate it follows the assertion of the corollary. O

Assume that L, M and N are constants. Then from Theorem 1 we get results similar to
ones, obtained in [13].

Theorem 2. Let F + G : D C R" — R be continuous on an open convex subset D, and F is a
continuously differentiable function, G is a continuous function. Suppose that the problem (4)
has a solution x* € D, and the inverse operation (Al A,)~! exists, such that ||(AI A,)~!|| < B.
On the subset D, the Fréchet derivative F' satisfies the radius Lipschitz condition
|F/(x) = F(x")|]| < (1—-7)L|]x —x*||, x"=x"+71(x—x"), 0<t<]1,
the function G has the first- and second-order divided difference, and
1G(x,y) = G, v)[| < M(|lx —ul +[ly = 2l}),  [G(w,x,y) = G(v,x,y)|| < Nllu—wol,
forallx,y,u,v € D, p(x) = ||x — x*||; L, M and N are positive constants.
Furthermore,
IF() + G <, IF(x) +G(x*, ) <o, B[L+2M]p <1
and Q = Q(x*,r) = {x: ||x —x*|| < r«} C D, where r, is the unique positive zero of the
function q given by
q(r) = B(a + (L +2M)r +4Nr?)((L/2 + M)r + 4Nr?)
+ B(L +2M + 4Nr)y + B(2a + (L +2M)r 4 4Nv?)((L +2M)r + 4N7?) — 1.

Then, for xp,x_1 € Q), the iterative process {xx}, k = 0,1,..., generated by (5), is well
defined, remains in (), and converges to x*. Moreover, the following error estimates hold for
allk > 0:

(16)

k1 = x| < Cullxe = 2| + Call ok — w51 1> + Callx — x*|1> + Callxe — ||| — 261 1%, (17)
where
Ci =g(r)(L+2M)y, Cp=g(r«)Ny,
Cs = g(r)(L/2+ M)(a + (L +2M)r, +4Nr3), Cy= g(r«)N(a+ (L +2M)r, + 4Nr3),
g(r) = B[1 — B(2a + (L +2M)r 4+ 4Nr?)((L +2M)r + 4Nr?)] L.
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2 Numerical results

In this section, we present the results of the verifying of the theorem’s conditions. We use

the Euclidean norm ||x|| = /¥, x? for x € R".

Example 1. Consider the function F+ G : D C R — R3 given by

X+ u
F(x)+Gx)=[ AP+x—u |,
Ax® =1 - A

X+ u 0
F(x)()tx3+xy), G(x)( 0 ),
0 A =1 = A

where A, i € R are two parameters.

The unique solution of this problem is x, = 0. Therefore, we can set constants «, # and B
as follows: 7 = v/2|u|, « = /2, B=1/2.
Let D = {x: |x| < 1}. Then

1 8 0
Fl(x) =] 3A\x*+1 |, G(x,y) = 3 3 = 0 ,
0 )‘|x —1|—)\|]/ _1| _A(x2+xy+y2)
X—y
and
_ G(u,x) = G(u,y)
G(u,x,y) = y
0 0
_ 0 — 0
| AP ux+ ) AW Fuy+yA) | ’
—A
1 (1 +x+)
and

[F'(x) = F'(x")[| = 3|A[(1 = 7)(1 + 7)[x|]x = x"| < 6[A[[x|(1 — T)[x — x7],
1G(x,y) = G(u, o) | < [A[(Ju +x+yllu — x|+ [v+y +ullv—y]),
1G(u, x,y) = G(o,x,y) || < |A|[u —ol.

That is, we can set constants L = 6|A|, M = 3|A|, N = |A|. We consider problems with zero
and nonzero residuals. Solving equation (16) for different values of parameters A, u we get
results, given in Table 1.

Ao Ty B[L +2M]y
0.35 0 | 0.1076417713313384 0
01 0.3 | 0.2676148592421200 | 0.2545584412271572

Table 1. Results for different values of A and u.
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Let A =0.35, u =0, xp = 0.1, yp = 0.1001. In this case we have problem with zero residual.

The solution was obtained in 3 iterations.

o(Xki1) The right side of (17)
3.535982373516905e-04  8.668044825593081e-02
2.150913546502143e-09  6.156060534217174e-06
2.067951531382569e-24  4.286170529089731e-16

Table 2. The results for A = 0.35, y = 0.

N — O

Let A = 0.1, u = 0.3, xo = 0.1, yo = 0.1001. In this case we have problem with nonzero

residual. The solution was obtained in 3 iterations too.

k o(Xki1) The right side of (17)

0 | 5.489482150691644e-04 6.922777353526340e-02
1 | 1.384555821295347e-08  7.884351861069518e-04
2 | 1.301043268727095e-17  2.232703312141992e-08

Table 3. The results for A = 0.1, y = 0.3.

Therefore, all conditions of Theorem 2 are satisfied. We see that the right sides of estimate

(17) for problem with zero residual decreases faster than for problem with nonzero residual
(see Tables 2 and 3, respectively). This confirms the convergence orders of the method for
different types of problem (4).

3

ing

Conclusions

We investigated the local convergence of the Gauss-Newton-Kurchatov method for solv-
nonlinear least squares problems under generalized Lipshitz conditions. The quadratic

convergence order of the method for problems with zero residual is established. Obtained
numerical results are consistent with the theoretical ones.
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Y poborTi AocaiakeHO AOKaabHY 36ikHicTH MeToAy T'aycca-HuioToHa-KypuaToBa Anst po3s’s-
3aHHS HEAIHIHMX 3aAa4 PO HaliMeHIIi kBaapaTu. Lelt MeToa € kombiHamiero MeToais I'aycca-Huro-
ToHa Ta KypuaToBa i 3aCTOCOBYETBCSI AASI 3apa¥ 3 A€KOMIIO3MIIICIO omeparopa. AHaAi3 36iXHOCTI
MeTOAY IIPOBEAEHO 3a y3araabHeHMX ymos Aimmmmis. BcraHoBA€HO yMOBH, paaiyc Ta HOPsIAOK 36i-
JXHOCTi MeToAy. HaBeaeHO umceAbHi IpUKAaAM, SIKi MIATEPAXYIOTh TEOPEeTUYHI pe3yAbTaTH.
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Ille, IOAiA€Ha Pi3HMIIS, y3araabHeHa yMoBa Aimmmmrist, o6AacTh 36iKHOCTI.



