References
- Argyros I.K. Convergence and applications of Newton-type iterations.
Springer-Verlag, New York, 2008.
- Argyros I.K., Magreñán Á.A. A contemporary study of iterative
methods. Convergence, dynamics and applications. Academic Press, London,
2019. doi:10.1016/C2015-0-04301-5
- Argyros I.K., Shakhno S. Extended Two-Step-Kurchatov method for
solving Banach space valued nondifferentiable equations. Int. J.
Appl. Math. Comput. Math. 2020, 6 (2), 32.
doi:10.1007/s40819-020-0784-y
- Argyros I.K., Shakhno S.M., Yarmola H.P. Extended semilocal
convergence for the Newton-Kurchatov method. Mat. Stud. 2020,
53 (1), 85–91. doi:10.30970/ms.53.1.85-91
- Argyros I.K., Shakhno S., Yarmola H. Improving convergence
analysis of the NewtonKurchatov method under weak conditions.
Comput. 2020, 8 (1), 8.
doi:10.3390/computation8010008
- Cãtinac E. On some iterative methods for solving nonlinear
equations. Rev. Anal. Numér. Théor. Approx. 1994,
23 (1), 47–53.
- Dennis J.E.Jr., Schnabel R.B. Numerical methods for unconstrained
optimization and nonlinear equations. SIAM, Philadelphia, 1996.
- Hernández M.A. Rubio M.J. A uniparametric family of iterative
processes for solving nondiffrentiable operators. J. Math. Anal.
Appl. 2002, 275 (2), 821–834.
doi:10.1016/S0022-247X(02)00432-8
- Hernández-Verón M.A., Rubio M.J. On the local convergence of
Newton-Kurchatov-type method for non-differentiable operators.
Appl. Math. Comput. 2017, 304 (1), 1–9.
doi:10.1016/j.amc.2017.01.010
- Ortega J.M., Rheinboldt W.C. Iterative solution of nonlinear
equations in several variables. Acad. Press, San Diego, 1970.
- Ren H., Argyros I.K. Local convergence of a secant type method
for solving least squares problems. Appl. Math. Comput. 2010,
217 (8), 3816–3824. doi:10.1016/j.amc.2010.09.040
- Ren H., Argyros I.K., Hilout S. A derivative free iterative
method for solving least squares problems. Numer. Algor. 2011,
58 (4), 555–571. doi:10.1007/s11075-011-9470-9
- Shakhno S.M. Gauss-Newton-Kurchatov method for solving nonlinear
least squares problems. J. Math. Sci. 2020,
247 (1), 58–72. doi:10.1007/s10958-020-04789-y
(translation of Mat. Metody Fiz.-Mekh. Polya 2017, 60
(4),–62. (in Ukrainian))
- Shakhno S.M., Gnatyshyn O.P. Iterative-difference methods for
solving nonlinear least-squares problem. In:Arkeryd L., Bergh J.,
Brenner P., Pettersson R. (Eds.) Progress in Industrial Mathematics at
ECMI 98, Teubner, Stuttgart, 1999, 287–294.
- Shakhno S.M., Iakymchuk R.P., Yarmola H.P. An iterative method
for solving nonlinear least squares problems with nondifferentiable
operator. Mat. Stud. 2017, 48 (1), 97–107.
doi:10.15330/ms.48.1.97-107
- Shakhno S.M., Yarmola H.P., Shunkin Yu.V. Convergence analysis of
the Gauss-Newton-Potra method for nonlinear least squares problems.
Mat. Stud. 2018, 50 (2), 211–221.
doi:10.15330/ms.50.2.211-221
- Shakhno S.M., Shunkin Yu.V. One combined method for solving
nonlinear least squares problems. Bull. Lviv Univ. Ser. Appl. Math.
Inform. 2017, 25, 38–48 (in Ukrainian).
- Ulm S. On generalized divided differences, I. Izv. Akad.
Nauk ESSR Ser. Fiz. Mat. Tekh. Nauk 1967, 16 (1), 13–26
(in Russian).
- Ulm S. On generalized divided differences, II. Izv. Akad.
Nauk ESSR Ser. Fiz. Mat. Tekh. Nauk 1967, 16 (2),
146–156 (in Russian).
- Wang X. Convergence of Newton’s method and uniqueness of the
solution of equations in Banach space. IMA J. Numer. Anal. 2000,
20 (1), 123–134. doi:10.1093/imanum/20.1.123