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Some spectral formulas for functions generated by differential

and integral operators in Orlicz spaces
Bang H.H.">, Huy V.N.23

In this paper, we investigate the behavior of the sequence of L®-norm of functions, which are
generated by differential and integral operators through their spectra (the support of the Fourier
transform of a function f is called its spectrum and denoted by sp(f)). With Q being a polynomial,
we introduce the notion of Q-primitives, which will return to the notion of primitives if Q(x) = x,
and study the behavior of the sequence of norm of Q-primitives of functions in Orlicz space L* (R").
We have the following main result: let & be an arbitrary Young function, Q(x) be a polynomial and
(Qmf)%_, C LP(R") satisfies Q°f = f,Q(D)Q" 1 f = Q"f form € Z,. Assume that sp(f) is

compact and sp(Q"f) = sp(f) forallm € Z.. Then

lim [|Q"fll¢" = sup [1/Q(x)|.
e ? XGSP(f)| |

The corresponding results for functions generated by differential operators and integral operators

are also given.
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function.
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Introduction

Let1 < p < 0,0 >0, f € LP(R) and sp(f) C [—o,0], where sp(f) := suppf and
f = Ff is the Fourier transform of f. Then it is well-known the following Bernstein inequality
(see [11,23]): [|D™fl|, < o™ ||f|lp, m = 1,2,... . Bernstein inequality plays an important role in
function theory and has various applications. It was studied and developed by many authors,
see, e.g., [16-18,21,25-27,33]. The following result is an addition of the Bernstein inequality

(see [4]). Let1 < p < oocand D"f € LF(R),m =0,1,2,..., then
lim D™ f]|;/™ = sup{|{| : ¢ € sp(f)}-

1mM— 00

This result has the following extensions (see [5,7]).
Let1 < p <o, f € LPF(R") and sp(f) be compact, then

1/|a]
im (1077 sop [2¥]) =1

|#] 00 zesp(f)
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Further, if 1 < p < o0, Q is a polynomial, f € LP(IR") and sp(f) is compact, then
Tim [|Q"(D)f1Y™ = sup{|Q()] : x € sp(/)},
where the differential operator Q(D) is obtained from Q(x) by substituting
X — (—id/9dxy, —id/dxy,...,—id/0xy),

where x = (x1,x2,...,Xp).

The novelty of these results is that the behavior of the sequence of norm of derivatives
of a function f is directly investigated through its spectrum sp(f) but not, as usual, through a
given compact K containing sp(f). These results were studied and developed by many authors
(see [1-3,5-7,12-15]). It is natural to ask what will happen when we replace derivatives by
integrals? For p = 2, VK. Tuan proved the following result in [31].

Let f € L*(R) and ¢ := inf{|{| : ¢ € sp(f)} > 0. Then there exists I"'f, ["f € L?>(R) for
all m, and

tim 171" = 7, 1f(0) = [ fw)dy,

m— 00

the improper indefinite Riemann integral, and I" = (I)". This result of V.K. Tuan was extended
in [8] to the case f € LP(R) , 1 < p < oo, to the n-dimension case and Orlicz spaces in [9, 10].

The purpose of this paper is to extend above results to more general cases. With Q be-
ing a polynomial, we introduce the notion of Q-primitives, which will return to the notion
of primitives used in [8] if Q(x) = x, and study the behavior of the sequence of norm of
Q-primitives of functions in L®(IR"). Moreover, we also investigate the behavior of the se-
quence of norm of functions in Orlicz spaces which are generated by differential operators
and integral operators.

1 Notations

Let D = (Dy,...,Dy), Dj = 9/0xj for j = 1,2,...,n, D* = Dy ... Dy", x* = x{' ... xp",
1/x = (1/x1,...,1/x,) fora = (ay,...,a,) € Z', x = (x1,...,%x,). Let K be an arbitrary
compact set in R”, z € R"” and € > 0. Denote by K, := {x € R" : dist(x,K) < s},K(g) =
{x € C" : dist(x,K) < €}, B(z,¢) := {x € R" : |[x—1z| < ¢} and (R"¢) := {x € R" :
minj<j<, |xj| > e}. Further, S(R") stands for the Schwartz space on R" and S'(R") is the
dual space of tempered distributions on IR”. The convolution of two functions f, g is denoted
by f x g. Let f € L}(R") then

~

Fix) = @m) 72 [ e f(z)d,

where xz = x1z1 + Xpz0 + -+ + Xpzp, X = (X1,%2,...,%n), 2 = (21,22,...,2n). The Fourier
transform of a tempered distribution f is defined via the formula (Ff,¢) = (f, F¢), ¢ €
S(R™). Recall that (see [8]) if f € S’ (R") and ej = (0,...,0,1,0,...,0) € Z" is the unit vector
such that its jth coordinate equals 1, j = 1,2,...,n, the tempered distribution I° f is termed a
xj-primitive of f if D (I f) = f, thatis, (If, DI¢) = —(f, @) V¢ € S(R"). Now let Q be
a polynomial with n variables, Q(x) # 0 and f € S (R"). The tempered distribution Qf
is termed a Q-primitive of f if Q(D)Qf = f. So, each Qf is a solution of the differential
equation Q(D)h = f, and this is the meaning of introducing the Q-primitive notion. Note
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that the notion of primitives of a generalized function in D'(a,b) can be found in [32]. For
a polynomial Q, the differential operator Q(D) (respectively, the integral operator Q(I)) is
obtained from Q(x) by substituting x; — —id/dx; (respectively, x; — il;), j = 1,...,n. Then,
for Q(x) = Yja|<m AaXx”, wWe have

o
D“fzﬁ, QD)f = Y au(-)*D*f, Q)f= Y a1t
1 - 7n la| <M la| <M

Let ® : [0,+c0) — [0,+0c0] be an arbitrary Young function, i.e., ®(0) = 0, ®(t) > 0,
®(t) # 0 and @ is convex. Denote by ®(t) = sup, . {ts — @(s)} the Young function conjugate
to ® and L®(IR")-the space of measurable functions u such that

(1, 0)] = ‘/nu(x)v(x) x| < o0

for all v with p(v, @) < co, where

p(©,®) = [ B(o(x) )dx.

n

Then L®(IR") is a Banach space with respect to the Orlicz norm

|ul]le = sup ‘/ u(x)o(x) dx|,
p(o,@)<1 ' /R"
which is equivalent to the Luxemburg norm

@) = inf{A >0 /an>(|u(x)|/)\) dx <1} < oo

Moreover, || - [[@) < || llo <2[ - [|(®)-
We have the following results (see [28]).

Lemma 1. Letu € L®(R") and v € L®(R"). Then

[ 1m0 dx < o]0l @,
Lemma 2. Letu € L*(R") and v € L'(R"). Then ||u * v|o < ||ullo||v]1-

Note that Lebesgue spaces and their extension, Orlicz spaces, play an important role in
analysis and have many applications (see [19,20, 22,24, 28,29]). Recall that |- ||@) = [/ - [,
where ®(t) =t/ with 1 < p < oo, and || - [[(¢) = || - [|o, Where ®(¢) = 0for 0 <t < 1and
d(t) = oo for t > 1.

2 Some spectral formulas for Q-primitives of a function

Theorem 1. Let ® be an arbitrary Young function, f € L*(IR") and Q be a polynomial. Assume
that sp(f) is compactand Q(x) # 0 forallx € sp(f). Then there exists exactly one sequence of
functions (Q"f)%_y C L(R") satistying Q°f = f, Q(D)Q"*1f = Q"f, sp(f) = sp(Q")
form e Z.
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Proof. We consider a function ¢ € C§°(R") satisfying ¢(x) = 1 for x in a neighborhood
of sp(f). Put Q"f = (2r) "2f x» F Y p(x)/Q™(x)). Clearly, Q°f = f, Q"f € L®(R"),
sp(f) = sp(Q"f) and

Q(D)Q"f = (2m) "2 f x (Q(D)(F H(x)/Q" ! (x)) = Q" f

forall m = 0,1,.... Moreover, Q1 f and Q,f are two Q-primitives in L?(IR") of f satisfying
sp(f) = sp(Q1f) = sp(Q2f) then

{(f, Fle(x)p(x)/Q(x))) = (Q(D)Q;f, F(e(x)p(x)/
=(Qif, Q(=D)F(¢(x)p(x)/Q(x))) = (Qif, F(¢(x)p(x))
= (F(Qif), o) = (F(Qif). ¢) = (Qif, Fp)

forj = 1,2 and € S(R"). Hence, (Q1f — Qof, Fip) = 0 for all € S(R"), and then

Q1f = Qaf because of F(S(R")) = S(R"), so the uniqueness of the sequence (Q"f)%_ is
proved. O

$(x)/Q(x)))

Remark 1. Let f € L®(R") and sp(f) be compact. It should be noticed that the assumption
Q(x) # 0V x € sp(f) is essential for the existence of Q-primitives in L® (R") of f. For example,
if f(x) =14cosx, Q(x) =x,n=1,P(x) =0for0 < x <1and P(x) = oo forx > 1, then
sp(f) = {—1,0,1} and each Q-primitive of f has the form x + sinx + ¢, ¢ € C, which does not
belong to L*(R) (= L*(R)).

Theorem 2. Let ® be an arbitrary Young function, Q be a polynomial and (Q" f)%_, C L®(R")
satisfies Q'f = f, Q(D)Q" T f = Q"f form € Z.. Then

.. 1/
liminf || Q" f|I§" > sup [1/Q(x)]. M
xesp(f)

Before giving the proof of above theorem, we recall the following result in [7].

Lemma 3. Let ® be an arbitrary Young function, Q be a polynomial, f € L®(R") and sp(f) be
compact. Then

lim [|Q"™(D)fllg™ = sup{|Q(x)| : x € sp(f)}. 2)

m—o0

Proof of Theorem 2. Given ¢ € sp(f). Then for any ¢ > 0 there exists ¢ € C3°(R"), suppyp C
B(o,¢) such that (f, ¢) # 0. Put H,, := F(p(x)Q™(x)). Clearly, H,, € S(R"), and

(F9) = (f, Fp) = (Q"(D)Q"f, Fyp) = (Q"f, Q" (~D)F¢p) = (Q"f, Hm).
Using Lemma 1, we get
19" flolHumll @) > Q" f, Hu)| = |(F, )| > 0.
Hence,

s mel/m 1/m
hmnlngQ fll& >1/11msup|]7-[m|] 3)

m— 00
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From Lemma 3, we deduce

limsupHHmH%mS sup |Q(x)|.

m—00 ) x€B(o,€)

Therefore, since (3),

liminf || Q" fllg™ > 1/ sup |Q(x)].
x€B(o,€)

Letting ¢ — 0, we get

lim inf (| Q" f|lg" > 1/1Q(e)I- (4)
Because (4) holds for any ¢ € sp(f), we confirm (1), which completes the proof. O

We have the following theorem for entire functions of exponential type.

Theorem 3. Let ® be an arbitrary Young function, Q be a polynomial and (Q™ f)%_, C L®(R")
satisfies Q°f = f, Q(D)Q"*f = Q"f form € Z.. Assume that sp(f) is compact and
sp(Q"f) =sp(f) forallm € Z.. Then

lim |Q"f||§™ = sup [1/Q(x)|.

e xesp(f)

Proof. We divide the proof into two cases.
Case 1 (Q(x) # 0V x € sp(f)). Put K := sp(f). Now we prove

limsup [| Q" £I|5™ < sup [1/Q(x)|. ©)

m—»00 xeK

Indeed, by virtue of Q(x) # 0V x € K there exists a small number ¢ > 0 such that Q(x) # 0
Vx € Ke. We choose a function J € CF(R"): J(x) = 1if x € K;/p and J(x) = 0if x ¢ K..
Then J(x)/Q™(x) € S(R"). Because of Q"(D)Q™f = f and sp(Q™f) = sp(f), we have
FT(x)/Q™"(x) = Q" f. Consequently, Q" f = (271)"/2f « F~1( T (x)/Q"(x)).

Hence, using Lemma 2, we obtain
19" fllo < (2m) 2| F 1T (x)/Q" )1l flle = (27) 2| F(T (x)/Q™ (X))l |f |-

So,
lim sup | Q" f[5/™ < limsup | F (7 (x)/Q" (x)[[1/". ©)

m— 00 m— 00

We define the function G, as follows G, = F(J (x)/Q™(x)). Thenforoc € Z" ,0 < (2,2,...,2)
we have the following estimate

sup |y Go(y)| < (27) "2 sup | [ e D7(T(x)/Q"(x)) dx]

yEeR" yER"

= (2m) "2 sup
yeR”

< @) [ DT (0/Q" (x))ldx

J DT (6)/Q" () dx]
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which together with Leibniz’s rule imply

YL _Drgx)DT(1/Q (%) d

sup |y'Gg < (27 _”/2/ X
ye]lg |y m(Y)| ( ) = ! (0_ ,)/)
(271) /2 ( sup [ID7"7(1/Q™( ))|/ |D7j(x)|dx>
'y;o' (U ’)/) yEIIé)g Ke
< (2m)™™? max sup |D"(1/Q"(y))] ) < / |ID"J( )|t7lx>
T<(2 2 2) yeK ’)/<(7
(7)
From
D' (1/Q"()= Ly, (m—1+x)! (]_[D"IQ )/ ((m—=1)1Q"*(y))
K€Z+,(Kj)7:1CZ’jr,
K§2n,Kj§(2,2,...,2)
and inf{|Q(y)| : y € K¢} > 0, there is a constant C < co independent of m such that
sup |[DT(1/Q™(y))| < Cm*" sup [1/Q™(y)|, VYTezZ’, t<(22,...,2). (8)
yEKg YEKz
Combining (7) and (8), we have
sup Iy Galy)| < (2) 2Cn sup 11/Q" )| T (oo [ 177001
yEeR" y€EKe y<o )
= Cym™ sup [1/Q(y)[",
yeKe
where
Cy = C(2m) ™2y ( |D7j(x)|dx> :
y<o )
Clearly, C; is independent of m. Then it follows from (9) and
16l < (sup [0+ R0+ 1+ 20000 ) ([ s )
yER? R (14+y3)(1+y3) ... (1+y3)
= 7" sup |(1+ 1) (1 +13) ... (1 + y3)Gn(y)]
yeR”
that
limsup || G|} < sup [1/Q(y)]. (10)

m—oo yeKe

From (6) and (10), we obtain lim sup || Q™ f H}D/ " < sup|1/Q(y)|. Letting ¢ — 0, we confirm

m—oo yeKe
(5). By Theorem 2 and (5), we get n%lin Il Q’”fH}D/m = sup [1/Q(y)|-
* yesp(f)

Case 2 (Q(x) = 0 for some x € sp(f)). Then it follows from Theorem 2 that

hmmemeHl/m =
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Remark 2. Note that due to Theorem 1, the assumption sp(Q™f) = sp(f) for allm € Z may
be replaced by the following stricter condition: Q(x) # 0 for all x € sp(f).

Remark 3. In general, it is impossible to calculate all || Q" f ||, m = 1,2, ..., while Theorems 2
and 3 give us asymptotic estimations of them by using the following rather easier calculation
of SUP, o (f) |1/Q(x)|, which is especially effect if f € F~1(M), where M is the set of all

measurable functions belonging to S'(R"). The similar situation occurs with our theorems
obtained in the following sections. This shows that our results have the potential to apply to
computational science.

3 Some spectral formulas for functions generated by integral operators

Let ® be an arbitrary Young function and f € L®(R"). If sp(f) C (IR",v) for some v > 0,
then it was shown in [10] that there exists exactly one sequence (I*f) ¢ zn C LP(R") satisfying
D*[**f = I'f foralla, £ € Z".

Theorem 4. Let  be an arbitrary Young function, Q be a polynomial and (I*f)yez» C L®(R")
satisfying D*I**'f = I'f for alla, ¢ € Z'.. Assume thatsp(f) C (R",v) for some v > 0. Then
sp(Q™(I)f) C sp(f) Vm € Z,, and

lim inf || Q" (1) fl|g™ > sup |Q(1/x)].
" xesp(f)

Proof. It was shown in [10] that sp(I*f) = sp(f) Ya € Z'.. Hence, sp(Q™(I)f) C sp(f)
Vm € Z.. Next, we show that

liminf | Q"(I)fllg™ > 1Q(1/0)l, (11)

where ¢ is an arbitrary element in sp(f). Indeed, if Q(1/0) = 0, then (11) is obvious. If
Q(1/¢) # 0, then for a small enough number ¢ € (0,v/2) we have [[_, |x;| > 0 and
Q(1/x) # 0Vx € B(o,¢). From ¢ € sp(f), thereis J € Cy(R"), suppJ C B(o,¢) such
that (f, J) # 0. Put H,, = F (T (x)/Q"(1/x)). Clearly, H,, is well defined, H,, € S(R") and
it follows from f = D*I*f that

U, F(T 7 ()5 Q™(1/x)))) = (DUI*f, F(T () / ((ix)* Q™ (1/x))))
= (=) f, DYF (T (x)/ ((ix)* Q"™ (1/x)))) = (I*f, Hum)

forall & € Z". Then, for Q"(x) = ¥, cax*, we get
(Q"(I)f, M) Zc i f, Hon) ani“’“<f,f(J(X)/((iX)"‘Qm(l/X))»
(0 L ea(1/%"/(Q"(1/)) = (£, T) = (£ 7).
So, using Lemma 1, we have

0 < |(f, ) = (Q™(N)f, Hu)| < IQ™(D)flle | Homll )

It follows that
liminf |Q"(Dfllg" = 1/ limsup [#|(g)" (12)

m—oo
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Arguing as in the proof of Theorem 3 and taking account of B(g,¢) C (R",v/2), we have a
constant A < oo independent of m, ¢ such that

sup |z"Hm(z)] < Am*" sup |1/Q™(1/z)),
z€R" z€B(o,€)

forallc € Z",0 < (2,2,...,2). Consequently,

sup |(14+20)(1423)...(1+22)Hu(z)| < A2"m*" sup |1/Q™(1/z)|. (13)
zeR" z€B(o,¢)
Moreover,
Il 5y < ¥l i@y sup 1(1+2)(1+ ). (1+20) Hn(2)], (14)
zE n
where 1
Y(z) =

(1+23)(14+23)...(1+23)

We choose x > 0 such that ®(x) < co. Since @ is a Young function, ®(x)/x is increasing on
[0, +00). Then ®(x) < x1x for all x € [0, x|, where k; = ®(x)/x. Hence,

K1 . K17Tn

— 1
J nq’<A< ;;(Hzf)))dzg R AT (1+20) 7 A

<1

forall A > max{1/x,x;7"}. Consequently, ||Y|| 5 < max{1/x,x17"} < co, which together
with (13) and (14) imply

limsup||7-[m||%m< sup 1/|Q(1/z)|.

m—00 )~ z€B(g,€)

Therefore, since (12), lirnrrl>inf Q™D f||¥™ > iBI}f | |Q(1/z)]. Letting ¢ — 0, we confirm (11).
o0 z€B(0,¢
Because (11) holds for any ¢ € sp(f), we obtain

. 1/
liminf |Q"(1)f}" > sup |Q(1/x)].
xesp(f)

We have the following theorem for entire functions of exponential type.

Theorem 5. Let ® be an arbitrary Young function, Q be a polynomial and (I*f)yez» C L®(R")
satisfying D*I*7f = [’ f foralla, 0 € Z'.. Assume thatsp(f) is compact and sp(f) C (R",v)
for some v > 0. Then

lim [[Q"(1)fllg" = sup [Q(1/x)].

e xesp(f)

Proof. We put K = sp(f) and consider ¢ € (0,v). Then there exists 7 € C;(IR") such that
J(x) =1ifx € Kgjp and J (x) = 0if x ¢ Ke. So, suppJ C (R",v —¢). From f = (ixl“\ﬁ?, we
get J(x)f = (ix)*I*f and then it follows from sp(I*f) = sp(f) that fJ (x)/(ix)* = I*f for all
a € Z" . Therefore, @f = fT(x)Q"(1/x) forall Vm € Z.. So,

QMINf = 2m) 2 f x F LI (x)Q™(1/x)) Ym € Zy.
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Then, using Lemma 2, we get

IQ"(Nflle < ) 2| flloll F (T ()Q™(1/x)|li Vm € Z-.
Thus, limsup || Q" (I)f||¥/™ < limsup Hgmnym, where Gy, = F 1T (x)Q™(1/x)). Then it

m—00 m—00
follows from |Gy 1 < 7" sup |(1422)(1 +23)... (1 +22)Gp(z)| that
zeR"
limsup || Q™ (I)f||™ < limsup sup |(1+22)(1+23)...(1+22)Gu(z)[*/™. (15)
m—»oo m—oo  zelR"

Arguing as in the proof of Theorem 3, we have a constant B < oo independent of m, ¢ such
that

sup 2"Gu(z)| < Bm®" sup |Q"(1/2)], (16)
zelR" zeK;

foralloc € Z",0 < (2,2,...,2). Combining (15) and (16), we obtain

lim sup [|Q™ (1) f]|§™ < sup |Q(1/2)].

m—oo Zng
Letting e — 0, we deduce
limsup | Q" (I)fllg™ < sup [Q(1/x)]. (17)
m—00 xeK

Combining (17) and Theorem 4, we arrive

Jim [|Q"(D)fllg" = sup [Q(1/x)].
xesp(f)

O

4 Some spectral formulas for functions generated by differential operators

If f S (R") has compact spectrum, then f is the Fourier transform of v := F~!f. The
Fourier-Laplace transform of v (see [32]), still denoted by the same symbol f, is known as
follows f(7) = (27r)"/2(v(-),e¢"), { € C". This is an entire function on C". Hence, for
f e L®(R")and a € R" (or f € F(E (R")) and a € C") we can define a function f, € S (R")
as follows fa(x) = f(x + a), x € R". Let P,Q be polynomials. Denote by T(P,Q,a)f(x) =
P(D)f(x) + Q(D)fa and T"*1(P,Q,a)f(x) = T(P,Q,a)(T™(P,Q,a)f)(x) for m € Z. Now
we have the following result.

Theorem 6. Let & be an arbitrary Young function, P and Q be polynomials and a € R",
f e L®(R") (ora € C", f € L®(R") N F(E'(R™))). Thensp(T™(P,Q,a)f) C sp(f) Vm € N
and

liminf | T"(P, Q,a) [}/ > sup{|P(x) + Q(x)e"™| : x € sp(f)}. (18)

Proof. 1t is easy to see sp(T™(P,Q,a)f) C sp(f) Vm € Z, from the fact that sp(D*f) C
sp(f) and sp(D*f(. +a)) C sp(f) for all « € Z" . Now we prove (18). By the definition of
T™(P,Q,a)f, one has F(T™(P,Q,a)f) = (P(x) + Q(x)e™) F(T"1(P,Q,a)f) and then

F(T"™(P,Q,a)f) = (P(x) + Q(x)eia")’”f Vm e N. (19)
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We consider ¢ € sp(f) satisfying |P(0) + Q(0)e@| > 0. Then, for sufficiently small ¢ > 0, we
obtain inf{|P(x) + Q(x)e’®]| : x € B(o,&)} > 0 and there is a function ¥y € C*(R"), suppy C
B(o,¢) such that (f,1) # 0. We define the function G,, as follows G, = F((x)/(P(x) +
Q(x)ea)™). Then G,, is well defined and by (19), we get

(T™(P,Q,a)f,Gu) = (T"(P,Qa)f, F(Gn)) = ((P(X) + Q(x)e™)"f, F}(G))
= (f, (P(x) + Q()e™)"F 1 (Gu)) = (F. ¥)
and apply Lemma 1 to conclude that
[(F9) = [(T™(P,Qa)f, Gu)| < IT"(P,Q,a)fllo ]Gl 5
Therefore, it follows from (f, ) # 0 that

P m 1/m . 1/m
liminf [ T"(P,Q,a)fllg" = 1/ hfnnjogpllgmll@- (20)

By the same argument as in the proof of Theorem 2 we get

limsup [|G[{2) < sup |(P(x) +Q(x)e™)~"|

m—o0 (©) x€B(g,€)

and then it follows from (20) that

liminf[| T"(P,Q,a)flg™ > 1/ sup [(P(x)+Q(x)e™)7"].
m—ee x€B(g,€)

Letting ¢ — 0, we obtain linbinf | T™(P,Q,a)f||&/™ > |P(0) + Q(0)e?| and then
m— o0

liminf | T"(P,Q a)f[[§" > sup{|P() + Q(e™ | : x € sp(f)}.

We have the following generalization of (2).

Theorem 7. Let ® be an arbitrary Young function, a € C", P,Q be polynomials and f €
L®(R"). Assume that sp(f) is compact. Then T™(P,Q,a)f € L®(R") for all m, and

lim [ T7(P,Qa)f[§" = sup{IP(x) + Q(x)e™ | : x € sp(f)}.

Proof. Put K = sp(f). For any ¢ > 0 we choose a function J € C*(RR") satisfying J(x) = 0
Vx ¢ K¢, and J (x) = 1V x € K¢ 5. Then it follows from (19) that T"(P,Q,a)f = J (x)(P(x) +
Q(x)e™)™ f and then

T"(P,Q,a)f = (2) "2 f x FH(T (x)(P(x) + Q(x)e™)™).
Hence, using Lemma 2, we deduce that T"(P,Q,a)f € L*(R") and
IT"(P,Q a)fllo < (271) "2 fllo [|F (T () (P(x) + Q(x)e™)™) 1.

Therefore,

limsup | T"(P, Q, a) f[[}/" < limsup [ F~1 (T (x) (P(x) + Qx)e™)™) [V, (21)

m— 00 m—o0
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Similarly as in the proof of Theorem 3, we get

limsup [|F (T (x) (P(x) + Q(x)e™)™)[[/" < sup{|P(x) + Q(x)e™| : x € K.}.

m—oo

Then it follows from (21) that limsup || T"(P, Q, a)fHé,/m < sup{|P(x) + Q(x)e’™| : x € K}

m—ro0
Letting ¢ — 0 with the note that K is compact, we obtain

limsup || T"(P, Q,a)fllg™ < sup{|P(x) +Q(x)e™]| : x € sp(f)}.

m— 00

From this and (18), we arrive

Jim ([ T(P, Q) Il = sup{[P(x) + Qe : x € sp(f)}.
U

Theorem 8. Let ® be an arbitrary Young function, a € C", P,Q be polynomials, f € L®(IR")
and Q := {x € R" : |P(x) + Q(x)e’®| < 1}. Assume that Q is the compact set. Then
sp(f) C Qifand only if T"(P,Q,a)f € L®(R") forallm € Z, and

s m 1/m
lim inf || T"(P,Q,a)fllg" < 1. (22)

Proof. Necessary. Assume that sp(f) C Q. Hence, sp(f) is also compact. Then it follows from
Theorem 7 that

Jim ([ T7(P,Q a)f[§" = sup{IP(x) +Q()e"™ s x € sp(f)}.

This implies, by sp(f) C Q, that n%gr;o | T™ (P, Q,a)f”é,/m <1

Sufficiency. Assume that (22) holds. Then it follows from Theorem 7 that sup{|P(x) +
Q(x)e™| : x € sp(f)} < 1and thensp(f) C Q. O

Theorem 9. Let @ be an arbitrary Young function and K be an arbitrary compact set in R".
Then for any T > 0 there exists a constant C x < co independent of ® such that

TP, Qa)flle < Coklfllo sup [P(x) +Q(x)e™| (23)
Xe (1)

foralla € C", f € E¢(K) and for all polynomials P(x), Q(x), where £o(K) = {f € L®(R") :
sp(f) € K}

Proof. Necessity. We choose a function A € CF°(R") such that A(z) = 1ifz € K;/4 and
A(z) = 0if z ¢ Kq)y. It follows from F(T(P,Q,a)f) = (P(z) + Q(z)e'?)f and sp(f) C K
that (T(P,Q,a)f) = A(z)(P(z) + Q(z)e'*?) f, and then

T(P, Q, a)f = (27‘[)—71/2f * Jr_l(A(Z)(P(Z) + Q(Z)eiaz)).
Therefore, by Lemma 2 we have

IT(P,Q a)flle < (271) 2| fllo |l F ' (A(2) (P(2)+Q(2)e"*)) |1 = (277) "2||fllo ]| T 11, (24)
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where J (x) := (F 1(A(z)((P(z) + Q(z)e'a?)))(x). Hence, for ¢ € Z", 0 < (2,2,...,2) we
get the following estimate

sup [x7 7 (x)| = (271) "/ sup

xelR" xeR"

[ D7 (A=) (P(2) + Q(2)e™)) de
= (27)""? sup /. D (A(@)(P(2) +Q(z)e™)) dz|

< @) [ D7(A(2)(P(2) + Q(z)e™)| dz.

KT/Z

Then it follows from Leibniz’s rule that

» T _DTA()D7(P(2) + Q(z)e™)

f;‘@"”("” SR D T i
) "/2;‘,( "  sup ID7T(P(0 + Q™) [ m\DM(z)!dz)
< (27T)‘”/2U<glgx 2, 2up ID"(Plx ) +Q(x)e'™)]
< é (ﬁ / ~ |D%4(z)|dz> . (25)

Because the derivatives of the analytic function (P(x) + Q(x)e®) can be estimated in K./, by
the maximum of the modulus in K(T), there exists a constant A; < oo independent of f, P(x),
Q(x), a, and @ such that

sup |D"(P(x) + Q(x)e™)| < Ar sup |(P(x) + Q(x)e™)| (26)

XEKT/Z XEK(T>

forallv € Z",v < (2,2,...,2). From (25) and (26), we have

I .
sup [x7J (x)| < (27)""/2 <LAT su + Q(x)e'* D7 A(z dz)
sup T < @) 1 (s sup (P00 + Q™) [ 1D7ACe)
< (2m) 222" A.C sup |P(x) + Q(x)e'™|, (27)
XEK(T)
where

C:= max / D7 A(z)| dz.
¥<(22,...2) JKy /2

Then it follows from (27) and || 7 ||y < 7" sup |(1 +x3)(1 +x3) ... (1 + x2)J (x)| that
x€R"

171l < Cox sup [P(x) + Q(x)e™], (28)
XEK(T)

where C¢ i is independent of f, P(x), Q(x), a, . Combining (24) and (28), we obtain (23). O
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VY wiit cTaTTi MM AOCAIAXYEMO TOBeAiHKy mocaiaoBHOCTI LP-HOpM dyHKLil, sKi TOpoAXeHi AM-
depeHIiaAbHMMM Ta iHTETpaABHMMM OIlepaTOpaMy 3a AOIIOMOTOIO iXHBOTO CIIeKTpa (HOCiit mepe-
TBOpenHsT Dyp’e pyHKUIT [ Ha3MBaIOTH 1i CIEKTPOM i MO3HAYAIOTD SP(f)). AASI A€SIKOTO MTOAIHOMA
Q MM BBOAMMO MOHSITTSI Q-TIPUMITHBIB, SIKe CTa€ IOHSITTSIM IPUMITHBIB, SIKIIIO Q(x) = x, i BuBuae-
MO TIOBEAIHKY TIOCAIAOBHOCTI HOpM Q-TpuMiTHBiB dyHKLil y mpocTopi Opaiva LP (R"). Mu oTpu-
MaAM HaCTYIIHWIA TOAOBHMI pe3yAbTat: Hexali & — aoBirbHa @yHkuis IOHra, Q(X) — mOAIHOM Ta
(Qmf)%_y C L®(R") saaoBoabrsze Q°f = f,Q(D) Q" f = Q" f angm € Z.. [Tpuryctumo, mo
sp(f) € xommaxrom i sp(Q™f) = sp(f) aast Bcix m € Z. Toai

: 1/m
lim [|Q"f|[y/™ = sup [1/Q(x)|.
m—ro0
xesp(f)
IToaaHO TaKOX BIAIIOBiIAHI pe3yAbTaTH AASL (PYHKIIN, IO TIOPOAXKEHi AMdpepeHITiaAbHMMM Ta iHTe-
I'paAbHMMIU OIlepaTOpaMIA.
Knrouosi crnosa i ppasu: npoctip Opaiva, HepiBHICTE B anpokcuMaliii, nepersopenHs Dyp’e, y3a-

raabHeHa (pyHKIIis.



