References

  1. Abreu L.D. Real Paley-Wiener theorems for the Koornwinder-Swarttouw q-Hankel transform. J. Math. Anal. Appl. 2007, 334 (1), 223–231. doi:10.1016/j.jmaa.2006.12.050
  2. Albrecht E., Ricker W.J. Local spectral properties of certain matrix differential operators in \(L^{p}(\mathbb{R}^{N})^{m}\). J. Operator Theory 1996, 35 (1), 3–37.
  3. Andersen N.B. Real Paley-Wiener theorems. Bull. Lond. Math. Soc. 2004, 36 (4), 504–508. doi:10.1112/S0024609304003108
  4. Bang H.H. A property of infinitely differentiable functions. Proc. Amer. Math. Soc. 1990, 108 (1), 73–76. doi:10.2307/2047695
  5. Bang H.H. Functions with bounded spectrum. Trans. Amer. Math. Soc. 1995, 347 (3), 1067–1080. doi:10.2307/2154890
  6. Bang H.H. Spectrum of functions in Orlicz spaces. J. Math. Sci. Univ. Tokyo 1997, 4 (2), 341–349.
  7. Bang H.H. The study of the properties of functions belonging to an Orlicz space depending on the geometry of their spectra. Izv. RAN. Ser. Mat. 1997, 61 (2), 163–198. doi:10.4213/im120 (in Russian)
  8. Bang H.H., Huy V.N. Behavior of the sequence of norms of primitives of a function. J. Approx. Theory 2010, 162 (6), 1178–1186. doi:10.1016/j.jat.2009.12.011
  9. Bang H.H., Huy V.N. Behavior of sequences of norms of primitives of functions depending on their spectrum. Dokl. Math. 2011, 84 (2), 672–674. doi:10.1134/S1064562411060263 (translation of Dokl. Akad. Nauk 2011, 440 (4), 456–458. (in Russian))
  10. Bang H.H., Huy V.N. A study of behavior of the sequence of norm of primitives of functions in Orlicz spaces depending on their spectral. Tokyo J. Math. 2015, 38 (1), 283–308. doi:10.3836/tjm/1437506250
  11. Bernstein S.N. Collected works, Vol. II. Izdat. Akad. Nauk SSSR, Moscow, 1954. (in Russian)
  12. Betancor J.J., Betancor J.D., Méndez J.M.R. Paley-Wiener type theorems for Chébli-Trimèche transforms. Publ. Math. Debrecen 2002, 60 (3–4), 347–358.
  13. Chettaoui C., Trimèche K. New type Paley-Wiener theorems for the Dunkl transform on \(\mathbb{R}\). Integral Transforms Spec. Funct. 2003, 14 (2), 97–115. doi:10.1080/10652460290029635
  14. De Jeu M. Some remarks on a proof of geometrical Paley-Wiener theorems for the Dunkl transform. Integral Transforms Spec. Funct. 2007, 18 (5), 383–385. doi:10.1080/10652460701320752
  15. De Jeu M. Paley-Wiener theorems for the Dunkl transform. Trans. Amer. Math. Soc. 2006, 358 (10), 4225–4250.
  16. Dzhaparidze K., Zanten J.H. On Bernstein-type inequalities for martingales. Stochastic Process. Appl. 2001, 93 (1), 109–117. doi:10.1016/S0304-4149(00)00086-7
  17. Frappier C., Rahman Q.I. On an inequality of S. Bernstein. Canad. J. Math. 1982, 34 (4), 932–944. doi:10.4153/CJM-1982-066-7
  18. Hang H., Steinwart I. A Bernstein-type inequality for some mixing processes and dynamical systems with an application to learning. Ann. Statist. 2017, 45 (2), 708–743. doi:10.1214/16-AOS1465
  19. Krasnoselskii M.A., Rutickii Y.B. Convex functions and Orlicz spaces. Gos. Izdat. Fiz.-Mat. Lit., Moscow, 1958. (in Russian)
  20. Luxemburg W. Banach function spaces. Ph.D. Thesis, Technische Hogeschool te Delft., Netherlands, 1955.
  21. Máté A., Nevai P.G. Bernstein’s inequality in \(L^p\) for \(0 < p < 1\) and \((C, 1)\) bounds for orthogonal polynomials. Ann. of Math. 1980, 111 (1), 145–154. doi:10.2307/1971219
  22. Musielak J. Orlicz spaces and modular spaces. In: Dold A., Eckmann B. (Eds.) Lecture Notes in Mathematics, 1034. Springer-Verlag, Berlin, 1983.
  23. Nikolskii S.M. Approximation of functions of several variables and imbedding theorems. Nauka, Moscow, 1977. (in Russian)
  24. O’Neil R. Fractional integration in Orlicz space. I. Trans. Amer. Math. Soc. 1965, 115, 300–328. doi:10.2307/1994271
  25. Pesenson I. Bernstein-Nikolskii and Plancherel-Polya inequalities in \(L^p\)-norms on noncompact symmetric spaces. Math. Nachr. 2009, 282 (2), 253–269. doi:10.1002/mana.200510736
  26. Rahman Q.I., Tariq Q.M. On Bernstein’s inequality for entire functions of exponential type. J. Math. Anal. Appl. 2009, 359 (1), 168–180. doi:10.1016/j.jmaa.2009.05.035
  27. Rahman Q.I., Schmeisser G. \(L^p\) inequalities for entire functions of exponential type. Trans. Amer. Math. Soc. 1990, 320 (1), 91–103. doi:10.2307/2001753
  28. Rao M.M., Ren Z.D. Theory of Orlicz spaces. M. Dekker, New York, 1991.
  29. Rao M.M., Ren Z.D. Applications of Orlicz spaces. M. Dekker, New York, 2002.
  30. Tuan V.K., Zayed A.I. Paley-Wiener-type theorems for a class of integral transforms. J. Math. Anal. Appl. 2002, 266 (1), 200–226. doi:10.1006/jmaa.2001.7740
  31. Tuan V.K. Spectrum of signals. J. Fourier Anal. Appl. 2001, 7 (3), 319–323. doi:10.1007/BF02511817
  32. Vladimirov V.S. Methods of the theory of generalized functions. Taylor & Francis, London, 2002.
  33. Yurinskii V.V. Exponential inequalities for sums of random vectors. J. Multivariate Anal. 1976, 6 (4), 473–499. doi:10.1016/0047-259X(76)90001-4