References
- Abreu L.D. Real Paley-Wiener theorems for the
Koornwinder-Swarttouw q-Hankel transform. J. Math. Anal. Appl.
2007, 334 (1), 223–231.
doi:10.1016/j.jmaa.2006.12.050
- Albrecht E., Ricker W.J. Local spectral properties of certain
matrix differential operators in \(L^{p}(\mathbb{R}^{N})^{m}\). J.
Operator Theory 1996, 35 (1), 3–37.
- Andersen N.B. Real Paley-Wiener theorems. Bull. Lond. Math.
Soc. 2004, 36 (4), 504–508.
doi:10.1112/S0024609304003108
- Bang H.H. A property of infinitely differentiable functions.
Proc. Amer. Math. Soc. 1990, 108 (1), 73–76.
doi:10.2307/2047695
- Bang H.H. Functions with bounded spectrum. Trans. Amer.
Math. Soc. 1995, 347 (3), 1067–1080.
doi:10.2307/2154890
- Bang H.H. Spectrum of functions in Orlicz spaces. J. Math.
Sci. Univ. Tokyo 1997, 4 (2), 341–349.
- Bang H.H. The study of the properties of functions belonging to
an Orlicz space depending on the geometry of their spectra. Izv.
RAN. Ser. Mat. 1997, 61 (2), 163–198. doi:10.4213/im120
(in Russian)
- Bang H.H., Huy V.N. Behavior of the sequence of norms of
primitives of a function. J. Approx. Theory 2010,
162 (6), 1178–1186. doi:10.1016/j.jat.2009.12.011
- Bang H.H., Huy V.N. Behavior of sequences of norms of primitives
of functions depending on their spectrum. Dokl. Math. 2011,
84 (2), 672–674. doi:10.1134/S1064562411060263
(translation of Dokl. Akad. Nauk 2011, 440 (4),
456–458. (in Russian))
- Bang H.H., Huy V.N. A study of behavior of the sequence of norm
of primitives of functions in Orlicz spaces depending on their
spectral. Tokyo J. Math. 2015, 38 (1), 283–308.
doi:10.3836/tjm/1437506250
- Bernstein S.N. Collected works, Vol. II. Izdat. Akad. Nauk SSSR,
Moscow, 1954. (in Russian)
- Betancor J.J., Betancor J.D., Méndez J.M.R. Paley-Wiener type
theorems for Chébli-Trimèche transforms. Publ. Math. Debrecen 2002,
60 (3–4), 347–358.
- Chettaoui C., Trimèche K. New type Paley-Wiener theorems for the
Dunkl transform on \(\mathbb{R}\).
Integral Transforms Spec. Funct. 2003, 14 (2), 97–115.
doi:10.1080/10652460290029635
- De Jeu M. Some remarks on a proof of geometrical Paley-Wiener
theorems for the Dunkl transform. Integral Transforms Spec. Funct.
2007, 18 (5), 383–385.
doi:10.1080/10652460701320752
- De Jeu M. Paley-Wiener theorems for the Dunkl transform.
Trans. Amer. Math. Soc. 2006, 358 (10), 4225–4250.
- Dzhaparidze K., Zanten J.H. On Bernstein-type inequalities for
martingales. Stochastic Process. Appl. 2001, 93
(1), 109–117. doi:10.1016/S0304-4149(00)00086-7
- Frappier C., Rahman Q.I. On an inequality of S. Bernstein.
Canad. J. Math. 1982, 34 (4), 932–944. doi:10.4153/CJM-1982-066-7
- Hang H., Steinwart I. A Bernstein-type inequality for some mixing
processes and dynamical systems with an application to learning.
Ann. Statist. 2017, 45 (2), 708–743.
doi:10.1214/16-AOS1465
- Krasnoselskii M.A., Rutickii Y.B. Convex functions and Orlicz spaces.
Gos. Izdat. Fiz.-Mat. Lit., Moscow, 1958. (in Russian)
- Luxemburg W. Banach function spaces. Ph.D. Thesis, Technische
Hogeschool te Delft., Netherlands, 1955.
- Máté A., Nevai P.G. Bernsteins inequality in \(L^p\) for \(0
< p < 1\) and \((C, 1)\)
bounds for orthogonal polynomials. Ann. of Math. 1980,
111 (1), 145–154. doi:10.2307/1971219
- Musielak J. Orlicz spaces and modular spaces. In: Dold A., Eckmann B.
(Eds.) Lecture Notes in Mathematics, 1034. Springer-Verlag, Berlin,
1983.
- Nikolskii S.M. Approximation of functions of several variables and
imbedding theorems. Nauka, Moscow, 1977. (in Russian)
- O’Neil R. Fractional integration in Orlicz space. I. Trans.
Amer. Math. Soc. 1965, 115, 300–328.
doi:10.2307/1994271
- Pesenson I. Bernstein-Nikolskii and Plancherel-Polya inequalities
in \(L^p\)-norms on noncompact
symmetric spaces. Math. Nachr. 2009, 282 (2),
253–269. doi:10.1002/mana.200510736
- Rahman Q.I., Tariq Q.M. On Bernstein’s inequality for entire
functions of exponential type. J. Math. Anal. Appl. 2009,
359 (1), 168–180. doi:10.1016/j.jmaa.2009.05.035
- Rahman Q.I., Schmeisser G. \(L^p\) inequalities for entire functions of
exponential type. Trans. Amer. Math. Soc. 1990,
320 (1), 91–103. doi:10.2307/2001753
- Rao M.M., Ren Z.D. Theory of Orlicz spaces. M. Dekker, New York,
1991.
- Rao M.M., Ren Z.D. Applications of Orlicz spaces. M. Dekker, New
York, 2002.
- Tuan V.K., Zayed A.I. Paley-Wiener-type theorems for a class of
integral transforms. J. Math. Anal. Appl. 2002,
266 (1), 200–226. doi:10.1006/jmaa.2001.7740
- Tuan V.K. Spectrum of signals. J. Fourier Anal. Appl. 2001,
7 (3), 319–323. doi:10.1007/BF02511817
- Vladimirov V.S. Methods of the theory of generalized functions.
Taylor & Francis, London, 2002.
- Yurinskii V.V. Exponential inequalities for sums of random
vectors. J. Multivariate Anal. 1976, 6 (4),
473–499. doi:10.1016/0047-259X(76)90001-4