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On Hadamard composition of Gelfond-Leont’ev derivatives of
entire and analytic functions in the unit disk

Mulyava O.M.!, Sheremeta M.M.2

For an entire function and an analytic in the unit disk function the growth of the Hadamard
composition of their Gelfond-Leont’ev derivatives is investigated in terms of generalized orders. A
relationship between the behaviors of the maximal terms of Hadamard composition of Gelfond-
Leont’ev derivatives and of the Gelfond-Leont’ev derivative of Hadamard composition is estab-
lished.
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Introduction

For power series

@)=Y A g2 =Y g &
k=0 k=0

with the convergence radii R[f] and R]g], the series (f * g)(z) = OZO‘, fr8iZ" is called the
k=0

Hadamard composition. It is well known [1,2], that R[f * g] > R[f]R[g].

Obtained by J. Hadamard properties of this composition have the applications [2,3] in the
theory of the analytic continuation of the functions represented by power series. We remark
also, that singular points of the Hadamard composition are investigated in the article [4].

For 0 < r < R[f], let M(r, f) = max{|f(z)| : |z| = r}, u(r, f) = max{|fi|r* : k > 0} be
the maximal term and v(r, f) = max{k : |fi|r** = u(r, f)} be the central index of the power
expansion of f.

For a power series of the form (1) with the convergence radius R[f] € [0, +o0] and a power

series [(z) = OZO: I,z* with the convergence radius R[] € [0, +oo] and coefficients [, > 0 for all

k > 0 the power series

is called [5] Gelfond-Leont’ev derivative of n-th order. If I(z) = e* then Dl(n) f(z) = f(z)
is the usual derivative of n-th order. The properties of Hadamard compositions of Gelfond-
Leont’ev derivatives of analytic functions f and g in cases when either R[f] = R[g] = +oo
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or R[f] = R[g] = 1 are investigated in [6]. For example, for entire functions f and g it is
proved [6], that if
: Iy I
0< lim ———— < lim ———— < +oo, 2
O T ey~ e K Dl @
then - -
,D," f« D"
lim 11 In plr l(nj)c* L8) = no|f * g]
eI, Dy *8))
and ) ¢, D)
, D" f«D;"
lim ! In pr Dy f+Dyg) =nAl[f xgl,

et T (e, DI (f % 9)

where ¢[f] is the order and A[f] is the lower order of the function f.
If R[f] = R[g] = R[f *g] = 1 and (2) holds, then [6]

e - +]/t(rD f>x<D 8)
olf g]<1m1—ln(1—r) u(r, D" (f * 8))

<n(eW[f gl +1)

and

(n) (n)
nAW[f % ¢] < lim In*™ pr.Dy f+Dy g)
1 —In(l—r) u(r, Dl(”) (f*g))

where o(V[f] is the order and A(V[f] is the lower order of the analytic function f in the unit
disk.

The question about the similar properties of the Hadamard composition naturally arises
for the case R[f] # R[g]. Here, we restrict ourselves to the case R[f] = +o0 and R[g] = 1. We
will conduct researches in terms of generalized orders.

<n(AW[fxg]+1),

1 Analyticity and growth

Since R[f] = +oo, R[g] = 1 and R[f x ¢] > R[f]R[g], we have R[f * g] = +oo. In [6], it is
proved that for an arbitrary series of the form (1) the equalities R[f] = +oco and R[Dl(”) f] = +o0
are equivalent if and only if

0<g=lm /I}/ls1 < hm e/ I = Q < o0 (3)
k— 00
Hence, it follows that R[Dl(")( f*g)] = +oo for each n > 0. Finally, if (3) holds, then
R[Dl(”)f * Dl(m)g] = +4oo for each n > 0 and m > 0. Indeed,

1 i Kk I — _
— < n+m k k —0.
R[D}"f = D}"g] %ﬂ%%k ol keml = QU Y/ i fi, v gien] =0

As in [7], let L be a class of continuous nonnegative on (—oo, +00) functions a such that
a(x) = a(xg) > 0 for x < xp and a(x) T +oo0 as xyg < x — +o0. We say that « € L°,
ifoe € Land a((1+4+0(1))x) = (14+o0(1))a(x) as x — +oo. Finally, « € Ly, if « € L and
a(cx) = (1+o0(1))a(x) as x — +oo for each fixed ¢ € (0, +o0), i.e. « is a slowly increasing
function. Clearly, Ly; C Lo,
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Fora € L, B € L and an entire transcendental function (1) the quantities

fm “n M(r,f))

Quplf] 1= Quplln M, f] = Tim == =5

e (1 M(7, )
a(ln M(r
A =AM plln M, f] = lim ——— L=~
o,p [f] 06,5[ f] oo ﬁ(ln 1,)
are called the generalized order and the lower generalized order, respectively. If here we sub-
stitute In (7, f) or v(r, f) instead of In M(r, f), then we obtain the definitions of the quantities

0upln 1, fl, A pln p, f] and 0q g[v, f1, Aa,plv, f], respectively.
-1
a1 (ea(x)

Lemma 1. Leta € Ly, B € LY and (1) as x — +oo for each c € (0, +c0).

dln x
Then L
0uplf] = fim — 2 @
ST
| fl
If, moreover, |fi/ fri1| /* +oo asky < k — oo, then
Naglf] = tim — 2 ©)
711
k— IB 11’1
1fil

Formula (4) was proved in [7], and formula (5) follows from the corresponding formula for
entire Dirichlet series proved in [8].

Proposition 1. Let the functions « and B satisfy the conditions of Lemma 1 and (3) holds. Then
0u,plf * 8] < 0a,plf] and under condition

lim \/|gx] =h >0 (6)

k— o0

the equality 04, (f * 8] = 0ap[f] holds.
If, moreover, |fi|/|fri1| /* +o0and |8/ gki1| / 1asko < k — oo, then Ay g[f *g| < Ay p[f]
and under condition (6) the equality A, g[f * g] = Ay p[f] holds.
Proof. Since kh—m V1gk] = 1/R[g] = 1, for every h > 1 and all k > ko(h) we have </|gx| < h,
— 00

thatis (1/k)In (1/|gx|) > — In h. Therefore, since f(x +O(1)) = (1 +0(1))B(x) as x — +oo,
by Lemma 1 we get

1 — lim 1 <1 In 1 )
apl#8] e k" il
1 1 1 1 1 1 1 1 1
= lim — < In — + - l )Zli_m— ( lnh> ,
Sma P TR R Tl ) 7 e kT TAT sl
i.e. 0aplf * gl < 0uplf] If (6) holds, then as above we have

71 —imL 1 L — 1 im 1 1n——n = 1
ea,ﬁ[f*g]ih—wamﬁ( In [+ IR |gk|> qu)ﬁ( A ”’””) Tk

ie. sz,ﬁ[f * Q] > 0B [f] and, thus, sz,ﬁ[f x Q] = sz,/st}
The inequality A, g[f * g] < A4p[f] and the equality A, g[f * g] = A4 p[f] can be proved
similarly. O
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Remark 1. In general, the equality g, s[f * §] = 0a,p[f] may not hold. Indeed, let for example
f(z) =Y exp{-2nB'(a(2n))}z" and  g(z) =} "
n=0 n=0
Then by Lemma 1 we have g, g[f * 8] =0 < 1 = gq[f]-
Lemma 2. Ifa € Ly and B € L%, then 0, 8[f] = 0uplln i, f] and Ay plf] = Agp(ln p, f]. If,

moreover, x(e*) € Ly and a(x) = o(B(x)) as x — +oo, then gup[ln , f] = guplv, f] and
Azx,ﬁ [In u, f] = )‘a,ﬁ v, f].

Proof. In view of the conditions « € Lg; and f € L° the equalities 04 (f] = 04,p[ln 1, f] and
Aaplf] = Aaplln p, f] follow from the estimates

o0

u(r, f) < M(r, f) < ,i il = Y 1Al @n)F2* < 2p2r, ).

k=0

.
It is well known [9, p. 13] thatIn u(r, f) —In u(1, f) = / L};f)dt, whence
1

v(r/2,f)In2 < / L1;jc>zii,‘ <Inwu(r,f) —Inu(l,f) <v(r,f)Inr, (7)
r/2

and, therefore, in view of conditions a(e*) € Ly, B € LY and a(x) = o(B(x)) as x — +co we
have

(1+o(1))M < (1+0(1))«x(ln p(r,f) _ alexp{lnv(r,f) +InInr})

B(lnr) — B(nr) — B(In r)

< a(exp{2max{In v(r, f), InIn r}})

: Bin )

B . a(exp{max{ln v(r, f), InInr}})

= (1+0(1)) S

s yma el ), aln )} _ el ) + alin )

e +0(1))% +o(1), 1> +oo,
and, thus, 0. g[In pt, f] = 0aplv, f] and Ay g[ln p, f] = Aypg[v, f]. The proof of Lemma 2 is
completed. O

dp~! (ca(x))

Remark 2. From the condition Ty O(1) asx — +oo foreachc € (0, +o0) it follows

that B! (ca(x)) < gx for each ¢ € (0, +0) and some g € (0, +c0), that is a(x) < B(qx)/c =
(140(1))B(x)/c as x — +o0. Hence, in view of the arbitrariness of ¢ we obtain a(x) = o(B(x))
as x —» +oo.

The following proposition establishes a connection between the growth of entire function
and its Gelfond-Leont’ev derivative.
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Proposition 2. Leta € LY and B € LO. If condition (3) holds and f is an entire function, then
0B [Dl(")f] = 0q,p[f] and A,x,ﬁ[Dl(")f] = Ay plf] foreachn > 1.

Proof. 1t is enough to consider the case n = 1. Condition (3) implies the existence of numbers
0 < g1 < g2 < 400 such that q’l‘ < /lxi1 < q’ﬁ for all k > 0. Therefore,

I 1 r,
e, D) = max { a2 k2 0} < Lo+ k> 0) < H22S)

and by analogy ru(r, Dl(l)f) > u(qir, f)/ g1 for all r enough large. Since In r = o(In u(r, f)) as

r — oo for each entire transcendental function, hence we get the asymptotic inequalities

(L+o(W)In plqrr, f) <In pu(r, DIVF) < (L+0(1) In plqar, f), 7= +oo,
whence by Proposition 1 the validity of Proposition 2 follows easy:. O
Corollary 1. Leta € Lg; and B € L°. If R[f] = +oo, R[g] = 1 and (3) holds, then

MplDf" £ D" = AaplDf" (f # )] = Auglf *8
and

0up[D" f % D{"'g] = 00 gID}" (f  8)] = Quplf 8]
foralln > 1.

Indeed, the equalities A, g [Dl(n)(f xg)] = Aw [f * g] and 0u,p [Dl(n)(f xg)] = O, [f * ¢
follow directly from Proposition 2. To prove the equalities A[Dl(n) f* Dl(n) gl = A[Dl(n) (f x Q)]
and Q[Dl(”) fx Dl(”) gl = Q[Dl(”) (f % )] it is enough to notice that, as at proof of Proposition 2, it
is possible to get inequality

giu(r, DIV (f %)) < u(r, D" £+ DMg) < qiu(r, D (f  g)),

and use Lemma 2.

2 Relationship between the growth of the maximal terms of Hadamard
composition of the derivatives and of the derivative of Hadamard com-
position
We start with two theorems close to the results cited in the introduction.

-1
Theorem 1. Letn € Z, a(e*) € L, p € L° and W = O(1) as x — oo for each
¢ € (0, 400). Suppose that R[f] = 400, R[g] = 1 and conditions (3) with q > 1 and (6) hold.

Then
(m u(r, D" f « D["g)
u(r, D" (f < 8))
If, moreover, lklk+2/l,%+1 AL | fe/ fesa| S +ooand |k /8ks1| /1 asky < k — oo, then

" <1n u(r, D" £+ D["g)
u(r, DI (f g))

r£r+n00 B(In r)

> = OQu,B [f] (8)

lim
ro+eo p(In7)

) = )\a,ﬁ V] (9)
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Proof. In [6], the following estimates are proved

l

Lot _ p(, D" fDMg)

v(r, D(n f*D(n Q)
lv(r,Df")(f*g))—o—n B V(erl(n)(f*g)) N lV(V,Dl f*D[ g)+n

(10)

Condition (3) with g > 1 implies the existence of numbers 1 < g; < g2 < 400 such that
q’l‘” < I /lgyy < q’ﬁ” for all k > ko. Therefore, from (10) we get

u(r, D" f+ D\"g)
u(r, DI (f % g))

whence in view of the condition « € Ly; we obtain

nv(r, Dl(")(f *¢))Ing <In < nv(r, D f * Dl g) Ingp,, r>rg (11)

u(r, D" £« DMyg)
u(r, DM (fxg))

a(v(r, D" (f x8))) < (1+0(1))a (1“ ) < a(v(r,D}"f + D}"g))

asr — +oo. Thus,

(n) (n)
D u(r, D D
Ou,B [V, l(n) (f * g)] < lim o (111 (r i f * L g)

) < 0uplv, D" FxDMg] (12)

e fin r) u(r, D" (f * g))
and
() 1 u(r, D" f « D["g)
Auplv, DT (f 2l < Iim g —a (ln 4, D () > < Aaplv, D"+ D["gl. (13)

By Lemma 2 we have gulv,Di" (f «)] = auplin  Dy"'(f « 9] = eaplD}"'(f » )] and
A2 D f* DZ g] = 0up[ln y,D f>x< Dl g] = 04,8[D Z(")f* Dl(")g]. On the other hand, by
Corollary 1 we have g, g[D l( )(f xg)| = Qa,,s[ b f * Dl")g] = Quplf * g|. Finally, by Propo-
sition 1 we have Q,x,ﬁ[f * gl = 04 ﬁ[f] Therefore, (12) implies (8) Also, by Lemma 2 we
have Ay plv, D" ( % 8)] = Aup[D}" (f 8)] and Aqly, D"’ + D{"g] = A, g[D{" f + D}"g).
From Corollary 1 and Proposition 1 we obtain )\a,/g[Dl( )( f*8)] = Auplf] and, thus,

Aaplv, DV (f * 8)] = Aaglf].

On the other hand, since Il;4»/12., / 1askg < k — oo, we have

k+1

lerns1 T Derlirje

ko <k — oo,
lk+1lk+n j=0  ‘k+j+1

and, thus,

<lk|fk+n|> / (M) S oo, <lk|gk+n|> / <lk+1|gk+n+1|> 21 (14)

lk+n lk+n+1 lk+n lk+n+1

as kg < k — oo. Therefore, by Propositions 1 and 2, A,x,ﬁ[Dl(")f * Dl(”)g] = Aup [Dl(")f] = Auglf]
and, thus, (13) implies (9). The proof of Theorem 1 is completed. O
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Theorem 2. Let R[f] = +c0, R[g] = 1 and (6) holds. Suppose that the functions « and f satisfy
the conditions of Theorem 1,n € Z.,m € Zy and m > n. If

lk/lk+1 =k, k— oo, (15)
then - m)
. m—n D m D m
fim Lo (D TP R g (16)
r—+co B(In ) u(r, Dl(n) (f %))
If, moreover, lklk+2/l,%+1 AL fe/ fesa| / +ooand |k /8ks1| /1 asky < k — oo, then
m—n D(m) D(m)
li_m 1 " (7’ ]’l(rr 1 f* 1 g) — Alx,ﬁ[_f] (17)
rotoo f(In 7) u(r, Dl(")(f *g))

Proof. At first we show that

2
lv(r,Dl(”)(f*g))+n lv(r,Df")(f*g))—b—n—m < Tm_n‘u(i’, Dl(m)f * Dl(m)g)
e D ) u(r, D" (F x g))

2
< ( lv(r,Dl(m>f*Dl(m>g) ) lv(r,Dl(m)f*Dl(m)g)+m
—_— l .

lvr (1) (£x n
(r.D) 7 (fxg))+ (18)

m m l m m
v(r,Df >f>(<Dl< >g)+m v(r,Df >f>(<Dl< >g)+m—n

Indeed, from one side,

Lo om ]
PI(T’, Dl(n)(f *g)) _ v(r,D; 7 (f*8)) |f |1,1/(r,Dl< >(f>(<g))

v(r,D™ (fx n| |gvr () (£ n
v(r D) (Feg))+n (D7 (f*8))+ (r,D; 7 (f*8))+

- [ 200w ?
_ v(r,D; (f*g)) v(r,D; 7 (f*g))+n—m+m v(r,D; 7 (fxg))+n—m

L0 (prgyyn \

v(r,Df")(f*g))—i-n—m lv(r,Df”(f*g))—i—n—m—i—m

v(r,D(”)(f*g))—i-n—m m—n
X |f1/(r,Dl(”)(f*g))+n—m+m| |gv(r,Dl(”)(f*g))+n—m+m| r : r

l (n) N l (n) " 2
; v(r,D; 7 (f*g)) (l v(r,D) 7 (f*g))+n ;Ll(?’, Dl(m)f % Dl(m)g)rm—n
v(r, D (fxg))+n \ v(r,D" (fxg))+n—m

and, on the other hand,

u(r, D™ f+D™g)

l m m
_ ( v(r,Df >f>«<Dl< >g)

lv(r,Dl(m>f*Dl(m>g)+

rv(r,Dl(m)f*Dl(m)g)

2
) ‘fv(r,Dfm)f*Dfm)g)—b—m‘ ’gv(r,Dl(m)f*Dl(m)g)—i-m‘
m

2
. lv(r,Dl(m>f*Dl(m>g) ly(r,Dl(’")f*Dl(”’)g)er lv(r,Dl(mf*Dl(m)g)erfn
N l m m l m m l m m
v(r,Df >f>«<Dl< >g)+m v(r,D[( )f*Dl( )g)+m—n v(r,D[( )f*Dl( )g)—i-m—n—i-n

(m) 7, \(m)
v(r,D;" f*D; 7 g)+m—n n—m
x |f1/(r,Dl<m>f*Dl<m)g)+m—n+n| |g1/(r,Dl<m)f*Dl<m>g)+m—n+n| r r

2

l (m) (m) [ (m) (m)

v(r,D;" fxD;" ) v(r,D;" fxD;" ¢)+m _

P | e S, D (f g,
v(r,Dl(m>f*Dl(m>g)+m v(r,Dl(”’)f*Dl(m)g)+mfn
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whence (18) follows.
Condition (15) implies the existence of numbers 0 < h; < hp < +o0 such that

I I 2
vl<r,Df (fg) ( vl<r,D§ ><f*g>>+nm) > hw(r, D) ( + )2
V(D" (fxg)) v(r, D\ (frg))+n

and

2

Lo g Lo g (m)

D™ 4D D 4D _

l v /<0y 8) lv(r L SxDig)tm Shzv(r,Dz(m)f*Dl(m)g)zm !
v(r,Dl(m)f*Dl(m)g)—i-m V(r,Dfm)f*Dfm)g)—O—m—n

and, therefore, (18) implies
= (r, Dl(m)f * Dl(m)g)
u(r, D" (f x g))

hyv(r, Dl(”) (f*g))¥ "< < hpv(r, Dl(m)f * Dl(m)g)zm_”. (19)

Since w(e*) € Lg;, we have
a(hv(r, Dl(")(f %)) ) = a(exp{(2m —n)In v(r, Dl(")(f *g))+Inh})
= (1+o(1))a(exp{In v(r, D{" (f xg))}) = (1+o(1))a(In v(r, D;" (f x g)))

and similarly a(hyv(r, Dl(m)f * Dl(m)g)zm—”) = (14+o0(1))a(v(r, Dl(m)f * Dl(m)g)) asr — +oo.
Therefore, from (18) we obtain

"mu(r, D" f x D["™g)
u(r, DI (f % g))

(m) (m)
r—>+ooﬁ > SQ”‘fﬁ[V’Dl f*Dl g]

(20)

Q:x,/a[l/,Dl(”)(f*g)] < lim (1111 r)“ (1’

and
"nu(r, D" f + DI"g)
u(r, DI (f % g))
(21)

From (20) and (21) as in the proof of Theorem 1 we get (16) and (17). Theorem 2 is proved. [

)‘a,ﬁ[erz( )(f*g)] < Iim (in r)“( > SAm,ﬁ[v,Dl( )f*Dl( )g]'

rreo B

The following theorem indicates the relationship between

u(r, D" (Fxg)) and u(r, D" (f *g))-

Theorem 3. Let R[f] = +c0, R[g] = 1 and (6) holds. Suppose that the functions « and f satisfy
the conditions of Theorem 1,n € Z, m € IN and m > n. If (3) holds with q > 1, then

m—n (m)
fim o (i DDLU 22)
r—-+co B(In 7) u(r, Dl(”) (fxg))
and if, moreover, |fi/ fri1| / +00, |gk/ k1| /1 asky < k — oo, then
m—n (m)
lim i’ #(r, D7 (f *8)) = Agplf]: (23)
v Bl 7] k(D (f %))
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If (15) holds, then

= 1 . ™ u(r, Dl(")f * Dl(n)g)
r—+oo B(In ) u(r, Dl(n) (fxg))

and if, moreover, |fi/ fri1| / +00, |gk/ k1| /1 asky < k — oo, then

b Lo (7D 5 D)
m 48
e BN TR DY (F+g))

) = Ou,p [f] (24)

> = Azx,ﬁ V] (25)

Proof. Since [6]

lv(r,DfM(f*g))—b—n—m < rm—ny(r’ Dl(m)(f*g)) < ZV(VrD[(m)(f*g)) (26)
LD (1)) u(r, D} (f * g)) Ly D™ )

if (3) holds with g > 1, then as in the proof of Theorem 1 we have

= mu(r, DI (f % )
u(r, D" (F ) (27)
< (m—my(r,D" (fxg))In gy, 1< g1 <42 < +oo,

(m—n)v(r, DZ(”)(f *¢))Ing; <In

whence as above we get (22) and (23).
If (15) holds, then from (26) it follows that

rm=ny(r, D™ (f % g))
u(r, DM (fg))

The further proof of Theorem 3 is the same as the proof of Theorem 1. We only note that since
v(r, Dl(m) f* Dl(m) g) stands on the right-hand side of inequality (12) we need conditions (14),
that is, the condition Iyl ,/ l,% 1 (k — o). Now this condition is not necessary, because

on the right-hand side of (28) the term v(r, Dl(m) (f * g)) stands and, therefore, from (28) we
obtain (24) and (25). Theorem 3 is proved. O

hv(r, DI (f )" " < <hw(r, D™ (Fxg))™ " (28)

Finally, the following theorem indicates the relationship between u(r, Dl(m) f = Dl(m) g) and
u(r, Dl(")f * Dl(")g).

Theorem 4. Let R[f] = 400, R[g] = 1 and (6) holds. Suppose that the functions « and p satisfy
the conditions of Theorem 1,n € Z,,m € IN and m > n. If (3) holds with q > 1, then

’ (ln (. D"+ D"g)
u(r, D"+ DMg)

r£r+n00 ﬁ(ln 1’)

> = sz,/st]
and if, moreover, |fi./ fii1] /40, |8k /Skv1] 1 asky < k — oo, then

lim ———a <1n r"u(r, D" f + Di"g)
r—-+oo p(IN 7) u(r, D" f + D}"g)

) = )\a,ﬁ [f]
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If (15) holds, then

- (m) (m)
- 1 ym ny(i’, Dl f*Dl g)
lim o _
r—4o0 ﬁ(ln 1’) (\l “Ll(?’, Dl(n)f “ Dl(n)g) Ou,B [f]

and if, moreover, |fi/ fri1| / +00, |9k/ k1| /1 asky < k — oo, then

_ (m) (m)
lim —— (J rmp(r, Dy f + Dy g>> = A plfl:

400 ,3(11'1 7’) ]/l(?’, Dl(n)f * Dl(i’l)g)

Indeed, since [6]

4

hmw“ww»w1m<idrm"V@JﬂmV*lﬁmg>< Lr.0f" ()
lv(r,Dl(">(f*g)) u(r, D" f = DY) lv(r,Dfm’(f*g)Hmw

the proof of this theorem is the same as the proof of Theorem 3.

3 Addition

Choosing a(x) = In™ x and B(x) = xT, from the definitions of g, g[f] and A [f] for entire

function (1) we get the definitions of the order ¢[f] = lim In In M(r, f)
v f) r—oo Inr
. InIn M(r,

Alfl = }% Inr
1-4 except of the condition a(e*) € Lg; that arose as a result of the applying Lemma 2. But from
(7) it follows, that o[v, f] = o[ln u, f], Alv, f] = Alln y, f] and, thus, o[v, f] = o[f], Alv, f] =
A[f]. Therefore, from (11) we get

and the lower order

. The selected functions « and B satisfy all the conditions of Theorems

(n) (n)
D D
oD (f+g)] < Tm ——Inln p(r Dy f* Dy 7g) < oD f+D"g],
ro+ooIn r }l(?’, Dl(”) (f % g))
(n) 1 u(r, D" f  D"g) () ¢, pm
AD;V(f*g)] £ lim ——InIn <A[D,”f+D;"g]

eI T (DY (f 2 g))

and repeating the proof of Theorem 1 we arrive at the following statement.

Proposition 3. Letn € Z ., R[f] = +oo, R[g] = 1 and conditions (6) and (3) with g > 1 hold.
Then
— 1 u(r, D" f + D"g)
lim In In

~ alf
r—+ooIn r ﬂ(r'Dl(n)(f*g)) v

and if, moreover, lklk+2/l]%+1 1 S/ fee1] /oo and [k /gki1| 1 askg < k — oo, then

(1) (1)
lim 1 In In y(r,Dl f*DZ 8)

lim L = Alfl-
roteoIn T P‘(erl( )(f*g))
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If (15) holds, then from (19) we get

L m—n D(m) D(m)
(2m—n)Q[Dl(n)(f*g)] < ET lnlrln ! 7/2(”/ (;)(f* )l) 8) < (2m—n)Q[Dl(m)(f*g)],
T o0
u(r, Dy (f xg
m—n D(m) D(m)
@m = mAID[(f #g)] < lim i DL T2 8)
roteo InUT u(r, D (f % g))

and repeating the proof of Theorem 2 we arrive at the following statement.

< (2m—m)AD™ (f % g)]

Proposition4. Letn € Z,, m € N, m > n, R[f] = 400, R[g] = 1 and conditions (15) and (6)
hold. Then

— M (r, Dl(m)f * Dl(m)g)
rgr—Poo Inr In D(”)
u(r, D (f*8))

If, moreover, Il 2 /171 /1, |fi/ fiza| /* +oo and |/ gy1] /1 asky < k — oo, then

= (2m —n)e[f].

lim In T, Dl(m)f 8 Dz(m)g)
roteo In T u(r, D" (F )

= (2m — n)A[f].

Using (27) and (28) similarly we prove the following statement.

Proposition 5. Letn € Z, m € Z, m > n, R[f] = +o0, R[g] = 1 and condition (6) holds. If
(3) with g > 1 holds, then

i Lt D)
r—+ooIn r u(r, Dl(”) (f*g))

= olf]

and if, moreover, |fi/ fri1| /* +o0 and gk /Qk+1| /1 asky < k — oo, then

= u(r, DI (f % g))

lim L Inln

lim = Alf].
e lny pr, D" (f %))
If (15) holds, then
m—n (n) (n)
- ,D"f+D
fim Lo T MDD g,
ey u(r, Dy (f *g8))

and if, moreover, |fi/ fri1| /* +o0 and gk /Qk+1| /1 asky < k — oo, then

N
im In

eI DY (fxg))

— (m—m)A[f]

Finally, the following statement also is true.

Proposition 6. Letn € Z, m € N, m > n, R[f] = +o0, R[g] = 1 and condition (6) holds. If
(3) with g > 1 holds, then

(m)
— 1 u(r, D (f *g))

r—o+coInr H(T’/Dl(n)(f*g)) :Qm
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and if, moreover, |f/ fri1| /* +o0 and |gx/gk+1| ' 1 asko < k — oo, then

(m)
lim U i u(r,D; 7 (fxg))
rreo I, DI (f 4 g))

= Alfl-

If (15) holds, then

_ 1 rm—n‘u(r’ D(”)f % D(”) )
I Q 5 = 2(m —n)elf]
u(r, D7 (f*8))

and if, moreover, |fi/ fri1| /* +oo and gk / k1| /1 asky < k — oo, then

m—n (”) (”)
D D
lim 11 n H -+ S*D18) ot — malf)
e T u(r, DV (f*g))
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Anst mirol pyHKIIT i aHAAITMYHOT B OAMHMYHOMY KpYy3i OYHKIIT y TepMiHax y3araabHEHMX II0-

HOBAEHO 3B’SI30K MiX IIOBOAXEHHSIMM MaKCMMAaAbHMX UAEHIB aAaMapOBOI KOMITO3MIIT IOXiAHMX
I'eapdponara-AeoHTheBa Ta moxiaHOI 'eAbdpOHAQ-AEOHTBEBA aAAMaPOBOI KOMIIO3MIITIT.

Kntouosi cnoea i ¢ppasu: aHaniTMUIHA (PYHKIIISI, apaMapoBa KoMIo3uilis, moxiaHa I'eabdporaa-Ae-
OHTbBEBA, MAKCMMAaABHIIT YAEH.



