References

  1. Andreev A.A. Analogs of classical boundary value problems for a second-order differential equation with deviating argument. Differ. Equ. 2004, 40 (8), 1192–1194. doi:10.1023/B:DIEQ.0000049836.04104.6f (translation of Differ. Uravn. 2004, 40 (8), 1126–1128. (in Russian))
  2. Antonevich A.B. Linear differential equations. Operator approach. University, Minsk, 1988. (in Russian)
  3. Assanova A.T., Iskakova N.B., Orumbayeva N.T. Well-posedness of a periodic boundary value problem for the system of hyperbolic equations with delayed argument. Bull. Karaganda Univ. Ser. Math. 2018, 89 (1), 8–14. doi:10.31489/2018M1/8-14
  4. Baranetskij Ya.O., Kalenyuk P.I., Kolyasa L.I., Kopach M.I. The nonlocal problem for the differential-operator equation of the even order with the involution. Carpathian Math. Publ. 2017, 9 (2), 109–119. doi:10.15330/cmp.9.2.109-119
  5. Baranetskij Ya.O., Demkiv I.I., Ivasiuk I.Ya., Kopach M.I. The nonlocal problem for the \(2n\) differential equations with unbounded operator coefficients and the involution. Carpathian Math. Publ. 2018, 10 (1), 14–30. doi:10.15330/cmp.10.1.14-30
  6. Bzheumikhova O.I., Lesev V.N. On the solvability of nonlinear partial differential equations of a high order with deviating argument in lowest terms. Russian Math. 2016, 60 (7), 7–13. doi:10.3103/S1066369X16070021 (translation of Iz. VUZ. Mat. 2016, 7, 10–17. (in Russian))
  7. Bobyk I.O., Symotiuk M.M. Dirichlet-type problem for the equations with partial derivatives with delay argument. Sci. Bull. Uzhhorod Univ. Ser. Math. Inf. 2017, 31 (2), 21–27. (in Ukrainian)
  8. Iskakova N.B., Ikrambekova D.K. On algorithms for finding a solution to the periodic boundary value problem for linear differential equations with delay argument. Bull. Abai KazNPU Ser. Phys. Math. Sci. 2013, 4 (44), 95–99. (in Russian)
  9. Malanchuk O., Nytrebych Z. Homogeneous two-point problem for PDE of the second order in time variable and infinite order in spatial variables. Open Math. 2017, 15 (1), 101–110. doi:10.1515/math-2017-0009
  10. Myshkis A.D. Stability of linear mixed functional-differential equations with commensurable deviations of the space argument. Differ. Equ. 2002, 38 (10), 1415–1422. doi:10.1023/A:1022366528667 (translation of Differ. Uravn. 2002, 38 (10), 1331–1337. (in Russian))
  11. Ptashnyk B.Yo. Ill-posed boundary problems for partial differential equations. Naukova Dumka, Kyiv, 1984. (in Russian)
  12. Ptashnyk B.Yo., Il’kiv V.S., Kmit’ I.Ya., Polishchuk V.M. Nonlocal boundary value problems for partial differential equations. Naukova Dumka, Kyiv, 2002. (in Ukrainian)
  13. Ptashnyk, B.Y., Repetylo, S.M. Dirichlet–Neumann problem for systems of hyperbolic equations with constant coefficients. J. Math. Sci. 2016, 215 (1), 26–35. doi:10.1007/s10958-016-2819-9 (translation of Mat. Met. Fiz.-Mekh. Polya 2014, 57 (2), 25–31. (in Ukrainian))
  14. Ptashnyk, B.Y., Repetylo, S.M. Dirichlet–Neumann problem in a strip for hyperbolic equations with constant coefficients. J. Math. Sci. 2015, 205 (4), 501–517. doi:10.1007/s10958-015-2263-2 (translation of Mat. Met. Fiz.-Mekh. Polya 2013, 56 (3), 15–28. (in Ukrainian))
  15. Hale J. Theory of functional differential equations. Nauka, Moscow, 1984. (in Russian)