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CAUCHY PROBLEM FOR HYPERBOLIC EQUATIONS OF THIRD ORDER WITH
VARIABLE EXPONENT OF NONLINEARITY

BuHRII O.M.!, KHOLYAVKA O.T.2, PUKACH P.YA.3, VOVK M.1.3

We investigate weak solutions of the Cauchy problem for the third order hyperbolic equations
with variable exponent of the nonlinearity. The problem is considered in some classes of functions
namely in Lebesgue spaces with variable exponents. The sufficient conditions of the existence and
uniqueness of the weak solutions to given problem are found.
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INTRODUCTION

Letn € N and T > 0 be fixed numbers, Q7 :=R" x (0,T), Q¢ t, :== R" X (t1,t2),0 < £ <
tp < T,BR:={x e R" | |x| < R}, QR := BR x (0,T), R > 1. In this study, we seek a weak
solution u : Q1 — R of the Cauchy problem

Up — Z (ai]-(x,t)ux,.t)xj — Z (bi]-(x,t)ux,.)x]. + Z bi(x, t)uy,
ij=1 ij=1 i=1 )
+c1(x, tup) +co(x, )u = fo(x, £) = Y (fi)x(x,t) in Qr,
i=1
ult—o = uo, )
Utli—o = 11, 3)

where a;, bjj, b, c2, fo, f; are some functions, ¢ (x, t,u¢) is a function on the type |u; |f’(x)*2ut, ie.,

itis a nonlinear function with the variable exponent of the nonlinearity p = p(x). Problems for the

nonlinear PDEs with the variable exponents of the nonlinearity appear in many applications,

such as fluid dynamics, nonlinear elasticity, etc. They are investigated in some special classes of

the functions namely in the Lebesgue and Sobolev spaces with variable exponents (see [3,16,42,43]).
Let us consider the equation

Ut + Aut + Bu+ ‘ut‘p(x)qut + ]u!q(x)’zu = O, (x, t) €O x (O, T), (4)
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where A and B are some operators, p(x), g(x) are some functions, 3 C R". In case A = 0 and
B = —A (here and below A denotes the Laplace operator), type (4) equations are considered
in [14,23,24,38]. In particular, [23] is devoted to the existence results for the weak solution
of the initial-boundary value problem for equation (4) in a bounded cylindrical domain. The
existence of the global (in time) solutions u to such problems and the behaviour of u as t — 400
are investigated in [38]. In [24], the authors consider the initial-boundary value problem for
equation (4) in the domain unbounded in spatial variables. The existence and uniqueness of
the problem’s solution is proved without any restrictions on solution behavior and the initial
data as |x| — +co. The hyperbolic variational inequalities of the second order that correspond
to the equation (4) with p(x) =2 and g(x) > 1 are studied in [14].

In case A = B = —A, type (4) equations are considered in [22,26,37]. In particular, the
behaviour as t — +oo of the global solutions to the initial-boundary problems for hyperbolic
equations of the third order are obtained in [37]. The corresponding hyperbolic variational
inequalities in bounded and unbounded domain with the spatial variables are studied in [22]
and [26] respectively if p(x) > 1 and g(x) = 2. The existence and uniqueness theorems are
proved. In the case of the unbounded domain (), the results are obtained without any restric-
tions on behavior (as |x| — +o0) of the solutions and data-in.

In [13] and [17], the authors study the initial-boundary value problems for equation (4)
with

Aup = —diV(|Vut|’(x)_2Vut), Bu = —Au,

g(x) =2,r(x) > 2,and p(x) > 1. The existence and uniqueness of the problem’s solution are
proved for the bounded domain Q). If

Aup = —div(|us|*2Vuy) (s >2), Bu= —Au,

g(x) = 2, and p(x) > 2, then the initial-boundary value problem for equation (4) with the
unbounded domain () is investigated in [36]. Conditions of existence of the problem’s solution
are obtained without any restrictions on the behavior (as |x| — +o0) of the solutions and
data-in.

The various problems for the hyperbolic equations, hyperbolic-parabolic systems, parabo-
lic and elliptic equations with variable exponents of nonlinearity have also studied in [2-8,10-
12,19-21,25,27,31,32,34,35,39] etc. The application is given in [40, 41, 43].

Notice that, if some additional conditions are satisfied, then (1) coincides with (4), where
A=B=-A,1<p(x) <2 and g(x) = 2. We prove the existence and uniqueness of the
solutions to problem (1)—(3) in classes of the functions with some behaviour as |x| — +oo if
coefficients of the equation (1) satisfy some growing conditions.

The paper is organized as follows. In Section 1, we formulate the considered problem and
main results. The auxiliary statements are given in Section 2. Finally, in Section 3 we prove the
main statements.

1 NOTATION AND STATEMENT OF MAIN RESULT

Let || - || = || -; B]| is a norm of some Banach space B, B* is a dual space, and (-,-); is a
scalar product between B* and B. The notation X + Y means the sum of the Banach spaces X
and Y (see [18, p. 23] for more details).



CAUCHY PROBLEM FOR HYPERBOLIC EQUATIONS OF THIRD ORDER WITH VARIABLE EXPONENT... 421

Suppose that m € IN, p € [1, 0], X is a Banach space, O = Q or O = Qr, M(O) is a set of
all measurable functions v : O — R, C"(O), Cy(O), and D(O) are the spaces of the smooth
functions (see [1, p. 9, 19]), Cj'(O) := C™(O) N Cy(O), LP(O) is the Lebesgue space (see [1,
p- 22, 24]), W"* () and W)"* (O) are the Sobolev spaces (see [1, p. 45]), H"(O) := W™?(0O),
HJ(O) = W(;”’z((’)), C([0,T]; X) and C™([0, T]; X) are the spaces of the X-valued smooth
functions defined on [0, T| (see [18, p. 147]), L (0, T; X) is the Lebesgue-Bochner space (see [18,
p. 155]). Also suppose that B+ (O) := {q € L®(O) | esysegﬁ q(y) > 0}. For the sake of

convenience, we will write u(t) instead of u(-,t) and LP(0, T) instead of LP((0,T)) etc. For
every q € B4 (O) by definition, put

- : 0._
o = eSS infa(y), o= es;esgp a(y), (5)
pa(@:0) 1= [ )" dy, v e M(O), ©
iy 9)
q(y) == ) —1 forae. y€ O (7)
(note that -~ + 1~ =1 fora.e.y € O and ¢ € B, (0),if qo > 1).

ay) -~ d'(y)
Assume that q € B4 (0) and qp > 1. The set L) (0) := {v € M(O) | pq(v; O) < +oo}

with the Luxemburg norm ||v; LYW) (O)|| := inf{A > 0 | ps(v/A; O) < 1} is called a Lebesgue
space with variable exponent. By definition, put Lq(y)((’)) = {u € M(O) | V bounded

loc

G e O: u e LW(G)). In the similar way, we define the spaces L (0), HL (0), etc.
Suppose that the following conditions are satisfied.
(A): a;; € L=(0, T; Li5.(R")), a; = aj; (i,j = 1,n);
n
Y a;i(x, t)&;&; > ag|g|* for all § € R" and for a.e. (x,t) € Qr, where ag > 0;
iji=1
V Ry > Lesssup |a;i(x,t)] < aR{, where 6 € [0,1) and & > 0;
Q7!
(B): byj, (i) € L®(0, T; Lo (R™)), bij = bj; (i,j = 1,n); b; € L®(Qr) (i = 1,n);
n n
Z bl-]-(x, t)@z@; > b0|§|2 and Z (bi]-)t(x, f)élé] <0 for all é € R" and for a.e. (X, f) S QT,
ij=1 ij=1

where by > 0;
V Ry > 1esssup |bjj(x,t)| < BRS, where 6 is taken from condition (A) and > 0;

R

Qr?

(O): c1(+,+,¢) is a measurable function on Q7 for all § € R; ¢1(x, ¢, ) is a continuous function
onR fora.e. (x,t) € Qr; c2,c0r € L®(0, T; Lio.(R™));
(64,8 — (Bt )E—1) = 0, a1 bEE = crglelP®, [er(x,t,8)] < Qg1
for all {,7 € R and for a.e. (x,t) € Qr, where c1p € R, c? > 0, p € B4(Q), and
1<po< pO <2
0 < 0 < ca(xt) <Y (car)0 < cae(x,t) < (c24)° < 0 forall R3 > 1 and for a.e.

(x,t) € Q1;3, where constants c; o, cg, (cat)o, and (cp4)? depend on R3;
®: fo, f1,..., fn € L?(0, T; L _(R"));

(U): ug € H!

loc

(R"), uy € L2 _(R").

loc
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Definition 1. A real-valued function u is called a weak solution to problem (1)—3) if
u € L®(0,T; HL (R") N C([0, T|; L2 (R")), ur € L2(0,T; HL (R")) N LPY)(Qy), u satisties

loc loc Ioc loc

condition (2), and for all functions v € L?(0, T; H}, (R")) N Lfoc (Qr) such thatv; € L3 _(Qr),
for any T € (0, T), for arbitrary ¢ € C}(R"), the following equality is true:

/ut(x,r)v( 7)o (x) dx+/ — UL + Z aij (%, )izt (09)

R Qr Bj=1

+ Z bij(x, t)uy, (09)x; + Zb X, )iy, 09 + c1(x, t, ur)vp + ca(x, t)uvq)] dxdt  (8)
ij=1 i=

= /ul(x)v(x,O) dx+/ fo(x,t) vq)—{—Zﬂ x, 1) (ve)x } dxdt.
R" Qr

The main results of our paper are next theorems.

Theorem 1 (the uniqueness). Suppose that conditions (A)—(U) hold. Then problem (1)—3) has
at most one solution in the class of functions u, which for any R > 1 satisfy the condition

/ |us(x, t)|? dxdt < aexp (b R2(179)> ,
Qf

)

where a and b are nonnegative constants and 6 is taken from conditions (A) and (B).

Theorem 2 (the existence). If conditions (A)—-(U) hold and for all R > 1:

/[|u1(x)|2+R92n:|u0,xi( )2 dx+/z|ﬂ x, 1) dxdt < aexp(bR210), 40

BR i=1 QR i=

where a and b are nonnegative constants, then problem (1)<3) has a weak solution.

2 AUXILIARY FACTS

<
Let us consider the function { € C?(R) such that {(¢) = { (1)' g > 2’ and 0 < ¢(¢) <1

for ¢ € R. By definition, we put

hrye(x) = 0(F—=), 9x) = e (0], (11)

where R > 1, 3¢ > 0, and ¢y > 2.
The following lemmas are needed for the sequel.

Lemma 1. Take an arbitrary j € {1,2,...,n}. Then the following statements are true:

ahRn ﬁ.

1) 0 < hg,, <1 and there exists a constant i > 0 such that )

2) foll all x € R" we obtain

p(x) =1 if |x] <R and ¢(x) =0 if |x| > R+
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3) if|x| < R+ », then (pxj(x)‘ < W—E\hR,%(X)W*l;

4) if |x| < R+ , then the following inequality is true:

7N 2
< (2 e, (12

Proof. The first estimate from 1) and equality from 2) are obvious. The second estimate from 1)
oh R 5 ‘

inferred from the equality | [ m L|. To prove the statement from 3) we need to use

—109hR .
the equality quj(x) = 'Y|hR,%(x)|7 1%’#4()'

It is clear that from result of 3), we get the estimate

2
Goxj(x)‘ VN2 R () 2D 4R
< (= d < 72
o= () Mt = () ator,
and (12) holds. Thus, Lemma 1 is proved. O

Lemma 2. Suppose that () is a bounded domain in R" with the piecewise smooth boundary,
r € L®(Q), r > 1. Then for all functions w € L*(0, T; H}(Q)) N L'®)(Qr) N L=(0, T; L2(QY))
such that wy € L2(0, T; H1(Q)) + L") (Qr) and for any s, € [0, T] such thats < T, the
following formula of integration by parts is correct:

2 4 2
/wt(xt) (x,t) dxdt = 2/\wa] x——/\wxs\ dx. (13)
QS,T QT

Proof. In [13], formula (13) is proved for a.e. s,7 € [0,T] such that s < 7. From condi-
tions of Lemma 2, we get w € C([0, T]; H~1(Q) + L""™)(Q)). Then, from [29], it follows that
w € Cy([0, T); L2(QY)). For any s, T € [0, T), let us extends the function w in regard of its con-
tinuity outside the interval [s, T] by constants and then, similarly as in [9] (see also Lemma 4.5
[3, p- 119]), we obtain (13). Lemma 2 is proved. d

Remark 1. In view of (13), for every ¢ € C*(Q) and ¢ € C*([0, T]), we get

/wtxt (x, ) p(x)P(t) dxdt = /]wxr\z )y (T) dx
(14)
——/mxsF p(s) dx =3 [ Jw(6) Po(pe(s) dxdt

Qsr

Proposition 1 ([33], part IV, §2, Theorems 7-8). If n,k € IN, G is a bounded domain in R",

oG C CX, and k > [3] + 2, then there exist a sequence {A;};cN of the positive numbers and a
sequence {w' }jen C H¥(G) N C!(G) of the linearly independent functions whose finite linear
combinations are dense in the space H*(G) N H}(G), and we have

—ijz)xjwj in G and w/|yn=0 forevery jc&N.
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Proposition 2 ([12], Lemma 1). If ¢ € B4 (O) and g9 > 1 (see (5)), then for every a,b € R, for
every§ > 0, and for a.e. y € O the generalized Young inequality

ab < 17]a|"Y) + Yy () b7 W) (15)

holds. Here, Yq(17) = (q° — 1)q, a0/ (90— 1)17’1/(%*1), q° is taken from (5),q is taken from (7)
and if q =2, then Yo(n) = 1/(47).

For every q € B4 (0O), by definition, put S4(s) := max{s®, s}, s > 0.

Proposition 3 ([10], p. 168, Lemma 1). Suppose that q € B(O), qo > 1, Sq is defined above,
and p, is defined by (6). Then for every v € M(QO) the following statements are fulfilled:

D) ||o; LYW (O] < S1/4(pq(0;0)) if pq(v; O) < +oo;
i) pq(v;0) < Sq(||o; LW (O)]]) if |Jo; LIW(O)]| < +o0.

Now we will prove the existence of the weak solution to problem (1)—(3). For this purpose,
let us fix R > 1 and consider the auxiliary problem in the bounded domain Q¥ = BR x (0, T):

n n n

Upp — Z (al-]-(x, t)uxit)xj - Z (bij(xl t)uxi)xj + Z bi(x’ t)uxf

ij=1 ij=1 i=1

. (16)

+c1(x, tup) + co(x, Hu = fR(x,t) — Zﬁ-ﬁci(x,t), (x,t) € QF,
u(x,0) = ul(x), wu(x,0) =ul(x), xeBk (17)
ulygryjo,1] = O- (18)

Here f*(x,t) = fi(x,t) X" (x) (i = 0,m); uff (x) = up(x)x" (x), uf (x) = w1 (x)x"(x), (x,#) € Qr,

<R _
where xR € CH(R"), xR(x) = { 1 m N ﬁ L 0< xR(x) <1,xeRM

Definition 2. A real-valued function u is called a weak solution to problem (16)—18) if
u € L*(0, T; Hy(BR)) nC([o, T); L*(BR)),
up € L(0, T; HY(BR)) N LX) (QRy nc([o, T]; H(BR) + LV ™) (BRY),

u satisfies the condition u® (0) = uX and the equality

/uf(x T)v (dex—i—/ utvt—irZaZ] (x,t)u tvx]—l—Zbl]xtu vx—l—Zb (x,t)u
BR OR ij=1 ij=1 i=1

+cl(x,t,uf)v—{—cz(x,t)uRv]dxdt :/uf( x)v(x,0)dx +/ R(x,1) v—l—Zfl x,t) vx}dxdt
BR QF
holds for every T € (0, T) and v € L?(0, T; H}(BR)) N LP®™)(QR) such thatv; € L*(QX).

Theorem 3. Suppose that conditions (A)—(U) are satistied. Then problem (16)—(18) has a weak
solution.
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Proof. We use the Faedo-Galerkin method. Let {w/}c is taken from Proposition 1 with
G = BR. Without loss of generality we can assume that this sequence is orthonormal in L?(BR).
Then we will find the solution to problem (16)—(18) as a limit of the sequence of the functions

{uN} yen, where uN (x,t) = Z CN(t)w!(x), (x,t) € QR. The functions (CV,...,CX) are de-
fined from the Cauchy problem

/[uﬁw +Za1]xt xtw +Zbl]xtuka—|—Zb x, t)u
i,j=1 i,j=1 i=1

BE ) (19)
+c1(x, t, ul)wk + cz(x,t)uka} dx = /{fé{(x,t)wk + ZfiR(x,t)w]j{l,] dx,
BR =
N,R N,R IV
G (0) = ugs, CN(0) =us, k=T,N. (20)
Here Hui\"R — ufHLz(BR) vy 0 and Huo - — ug"Hé(BR) e 0, where
Z ué\[kak ), Z ui\’kak x € BR.
JUNR O NR

It is clear that uNR(0) = uy™, u;""(0) = ui\”{.

According to the assumptions of Theorem 3 and by the Caratheodory Theorem (see. [15,
p- 54]), we infer that there exists a solution to problem (19)—(20) which is determined in some
interval [0, fy]. From the estimates obtained below it follows that tn = T.

Multiplying (19) by the functions C}(\,’t respectively, summing by k from 1 to N, and integrat-
ing along the interval (0, 7) C (0, T), we obtain

/{uttut + Zal]xt xtuxt+2b1]xtu utx+2b (x, )ul ut
O ij=1 ij=1 i=1

(21)
+cl(x,t,ut )ut + co(x, t)u ih } dxdt = /[fo x, t)uy +Zfl x, t)u ] dxdt.
QF
Taking into account the conditions of Theorem 3, from equality (21) and Proposition 2 we get

¥ @R +bo Z|u 2+ caolu ()] dx
BR
- N |2 =\ N2
+/[(2a0—250);\uxt] + 2cq o|ulN [P } dxdt < /[Z\ut \ +B;]uxl,\ ] dxdt (22)
= QR =
n
/ ) R|2+b0 Y P+ Bl R ] dx -+ [ [N +2¥2(60) Y- IR dxat,
=1 i=1

~ n
8 > 0, where B = esssup Y. b?(x,t). Choosing in (22) dy = a9/2 and using the Gronwall
(xrt) EQT i=1
lemma, we obtain

[ |2+z|u (@OF + N @] dx+ [ [ 1 P+ P dxdt < €, (o

BR Q$ =1
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where the constant C; > 0 is independent of N (but depends on R).
Using Lemma 3.9 [11, p. 865-866], similarly as in [30, p. 89], we conclude that

N
|1ty "LZ(O,T;Hfl(BR))-i-U"(")(Q?) < G, (24)

where the constant C; > 0 is independent of N. From (23) and Proposition 3, we have

[lert t a7 dxdt < 85, (1 P Q) < S, (Collids LAQNIN < Ca s
QR

where the constant C4 > 0 is independent of N.
On the basis of (22)—(25) there exists a subsequence of {u™ } yen (we call it {uN} yen again)
such that

ulV — uR s -weaklyin L®(0,T; H}(BR)),

N—oo
N—> ul  x-weaklyin L*(0,T;L*(BR)),
—00
NN—> ul  weaklyin L?(0,T; H}(BR)) and LPO(QK),
— 00

uﬁ[@uﬁ weakly in  L2(0, T; H1(BR)) + L' ) (QF),

cl(-,-,ufl)@oXR weaklyin  LP () (QR).

Then by Theorem 5.1 [28, p. 70] we obtain uN e ul strongly in L2(QR) and a.e. in Q¥. Thus,

)(R =c1(x,t, uf)

Using Lemma 1.2 [28, p. 20], we prove that

u e C([0, T); L*(BR)), uy € C([0,T); H~'(BR) 4+ LF'™)(BR)).

Similarly as in [12], we prove that u®(0) = uf, uR(0) = u%, and the function u® is a weak

solution to problem (16)—(18). O

R

3 PROOF OF MAIN THEOREMS

Now we will prove Theorem 1.
Proof. Let u! and u? be weak solutions to problem (1)-(3), u = ul —u? . Taking into account

(14), we obtain

_/”tvtq’ dxdt = /%|”t|2€0e_w dxdt—%/|ut(r)|2qoe_?” dx,
Q¢ Qr R"

where v = u;e " and p > 0. Then, from the equality of type (8), we get

2/]ut 2pe M7 dx+/ y\ut\z(pe my Z ity (UrP)xie” noy Z bijux, (ur@)xe” ut

1 1
Qr b= b= (26)

+ Z bivig e M+ (c(x, t,ub) — o1 (x, t,u?))urpe M + czuutgoe””] dxdt = 0.
i=1
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Now let us make some transformations and let us obtain the required estimates. Then,
taking into account conditions of Theorem 1, using (15) and Lemma 1, we get

/ Z Ajjllx;tllx;t e “Hdxdt > aO/Z\uxtyzgoe M dxdt;

Or i,j=1
o

/ Z Ajjllx;t U P K dxdt<(51/ Z ]uxt\z e M dxdt + Y, (6) / Z l]\ut\z e M dxdt
QTl]l QTz]l QTZ]l

< 2 2 2 [ Yha "1 2 2

< nél/Z]uxit] pe Mdxdt + n*(R + ) — | & / lut|?(hg ;)7 %e M dxdt, 61 > 0;
£ 1
Q. =1 Q

/ Z bijuy, Ur@x;e M dxdt < né, / Z |1y, ]2 e M dxdt

Or ij=1
20
+ <’)’hﬁ> n (R4j; %) /|ut|2(hR,%)'y—Ze—yt dxdt, 52 > O,'
4
2 Qr
/ Z bijuixUx;t e “Hdxdt > —/Z\ux 2 pe -7 gy 4 B0 0/2]% 2 pe~ M dxdt;
Or ij=1 Rt =

n n
/Zbiuxiut(pefﬂt dxdt < Bd / Y Juy [P pe M dxdt + 5 / lus|2pe~ " dxdt, &3 >0,
= = QT

0

/czuutq)e Mixdt > 20 > / lu?pe T dx + <Z @) / |u|?pe M dxdt.
Q- R” Q

Moreover, (c1(x, t, u}) —c1(x, t, utz))ut > 0. Thus, from equality (26) we obtain

n B 1 n
/ {\ut\z +bo) |y, |* + cz,olulz] pe T dx + / [(y — ﬁ) |us |2 4 (2a9 — 2n6,) ) |1t |*
Ry i=1 o 3 i=1
. n
+ (ubo — 2ndy — 2B83) ¥ ux,|* + (1 — (c20)°) ]u]z] pe M dxdt (27)
i—1

'yﬁoc 212(R + )% yﬁﬁ 212(R + )2 , o
< y "
- /[( » ) 251 +< » ) 252 ]|ut| (hR,%) e dxdt.
Qr

Let us set u = pg + p1. Choosing d1,9,,93 > 0 sufficiently small and y; > 0 sufficiently
large, from (27), it follows that

n n
J 12 + 0 Y- e P+ caolul? ge ™ dae+ e [ uolus + a0 ) e
R” i=1 o i=1

n Cn(R 20
+ pobo ) |y, |* + yolulz] pe 1! dxdt < 0(%;2%) / s> (Mg )" 2 Mot dudt,
i=1
Qr

(28)
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where Cy = ”2(;511“)2 + " %Zﬁ iy Denote Coe'1T = C. Then taking into account (28) and Lemma 1

(p =1if |x| <R, |hg,| <1ifx € R", hg, = 0if |[x| > R + ), we obtain

. C(R + )%
/ |ut|26 pot dxdt < (717 / |1/l |26 pot dxdt. (29)

Q_Ir{ QR+V
Let us divide the interval [R, R + ] on k parts

2
il R
Put s = % and estimate the expression
C(R+R)®  C(Rk+ R)¥K2 - C(2k)202(1-0) _ C220k2
VO(B)Z nok®R2 = pR2(1-0) = 5 R2(1-0)°

(k=1)% . ks
R+ }

[R;R—I— X

.,[R+

~ 2
Denote py(R, po, k) = %

holds:

Let us choose R, yp and k in such way that the next inequality

0o(R, po k) < e L. (30)

For that purpose we put R = 2/, g = 1022(1-9)], and k = A;[22(1=9)]], where j, Ag, A; € N. We
choose the parameters Ao and A; such that A; = [p220-9)] 4+ 2 and Ao > C229A2¢ (here by [w]
we denote the entire part of w), where b > 0 is taken from (9), 0 € (0,1) is taken from (A)—(B).
Then estimate (30) is correct. Thus, applying (29) k times, we get

/ |us|Pe Mot dxdt < ek / |us[2e~ 10! dxdt.
QF Qf
Taking into account the inequality |e #0!| < 1 which is correct for every t € [0, T] and the

estimate (9), the right-hand side of the last inequality can be estimated by the expression ae~¢,
where & = k — b(2R)2(1=9), Then on the basis of choice k and R we get

Y 22(1-0)j _ pp2(1-0)92(1-0)j > [22(1 0); ]()\1 —b22(1*9)) > [22(179)]']. (32)

(31)

Estimate (32) implies that { — 400 as j — +oo (and consequently R — +o0). Then the right-
hand side of inequality (31) tends to zero as R — +oco. Thus, u! = u? a.e. on QF. Hence,
taking into account an arbitrariness of R and t € (0, T], we get the uniqueness of the solution
to problem (1)—(3) in the domain Q7. Theorem 1 is proved. O

Let us prove Theorem 2.

Proof. Let R = R(k) = 2*, where k € IN. We construct sequence {u*};cn, where u* is a

R(k)

weak solution to problem (16)—(18) in the domain Q" and k € IN. The function u* exists by

Theorem 3. Let us extend the function u* by zero on QT\QI;(k) and let it be again u*. Then for
every k € N, 7 € (0,T], and v € L2(0, T; H} (IR")) such that v; € L?(Qr), we obtain

/”It(( T)o(t (de+/ —MtUt(P+ZasztU(p +sz]bl () +Zbu 0
R” 0 i,j=1 ij=1 i=
) (33)

+cl(x,t,u'§)qu+czukvqo] dxdt :/ uk(x)v(0 (pdx+/ fquH'Zfz VQ)x ] dxdt,
R” Qr =
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where ¢ is taken from (11) with R = R(k) (see proof of Theorem 1). Let us take s € [0, R(k)].
Then supp ¢ C QR+* ¢ QRI+R(K) = Q¥+2" = Q¥ = QR(+1), Consider (33) first for uk+3
and then for u**2. On subtracting the obtained equalities, we take v = u'f+3’k+zq)e_’”, where

p > 0and uf3k+2 = k43 _ k42 Then similarly as (26), we get

k3k2 Vk3k2 k+3,k+2 (. k+3k+2
/|u+ 2)Pge T+ [ [ R+ 3 kR u2)

o
Q- ij=1 ]
k+3,k 2 k+3,k+2 34
i Z bz]”ﬁ(cfgkﬂ(”ﬁ + Jr2buk+3k+2 +3k+ ¢ (34)
ij=1
+ (ar(xt, uk+3) c1(x,t, uk+2))ult<+3,k+2 o+ Czuk+3,k+2ult<+3,k+2 qv] e M dxdt — 0.

Now, taking into account (34), similarly as (31), we obtain

/ |ult<+3,k+2|26—;40t dxdt < e° / |ult<+3,k+2|26—;40t dxdt,

(35)
o ity
where R(k) = 2k, s = A[22070k] Ay = [52600=9)) 42, g = 2022070k and Ay > C220A2e.
It is clear that for every k € IN the next equality is correct:
5 / ‘utyze Wodx + / y‘ulﬂz Z ajju xtuxt+ Z bqu utx
1 1
BR) of 0 i.j= i.j=
+Zbu ¥+ (o, 8, ub)uk + cou ut]e HE dxdt (36)
2 R(k) k —ut
2 |u1 | dx + fo fZ uy e M dxdt.
':1
From (36), similarly as (28), we obtain
n
/ [’”t 2+ bo Z \ux ?+ Czo!uk’ }e Hodx + / Mo — 51)\”’?’2 + (2a9 — €2) Z ’ufc,'t‘z
BR(k) R(k) i=1
n
+ pobo Z |k |? + polu®|? + 2C1,O|ut|p(x)] e Mot dxdt (37)

i=
/ [|u1|2~|— Z bij (0 uOXIqu + 9ub| ] dx + C(eq, €2) / Z|f|ze_’” dxdt.

BR(K) ij=1 ok ® i=0

Since
Zbu quuOX dx < Bn(R / Z]u()xl\ dax,
Rk =1 BR() !
taking into account conditions (A), (B), and (C), from (37), we have

[ kP axar < cs| [ (Juf? +n(RGk Dum )ax+ | Z\fl\zd”ﬂ (38)

R(K) BR(K) R(k i=0
T
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where the constant C5 > 0 is independent of k.
From (38) and (10), it follows that

/ K322 gy < 2 / (]ulﬁ?’\z 4 ’ult<+2’2> dxdt < 4aexp (b(R(k+3))2(179)) . (39)

Qf(kﬂ) Qf(kﬂ)

Since |e~#ot| < 1 for every t € [0, T| and inequalities (35), (39) hold, for every T € (0, T], we get

n
/ [‘ult<+3,k+2(r)’z+Z‘ulgakw(ﬂ’z} dx
BR(K) i=1

) \ (40)
4 / [|ult<+3,k+2|2 4 Z |u1;i+t3,k+2|z + Z |u’§ci+3’k+2|2] dxdt < Cge™",
Qf®) i=1 =1

where v = s — b|R(k 4 3)|2(1=%) and the constant Cs > 0 is independent of k. Since the equality
uk(x,t) = uF(x,0) + fot uk(x,s) ds holds, we obtain

/ luk (x, T)|* dx < C7</ uf|® dx + / |uk|® dxdt), Te (0,T],

(41)
BR(K) BR(K) QR

where s > 1 and the constant C; > 0 is independent of k. Moreover, for every 7 > 0, we have

t
\uk(x,t)\e’”t/z < ]uk(x,O)\e*”t/z—i-e*”t/z/ \u't‘(x,s)\ds
0

t
< [, 0)] + [ fuk(x,5) /2 s
0

and so
t
/ luk|2e= " dxdt < / 2<\uk(0)]2 + t/ |uk|2e1 ds) dxdt
Qr® Qr® 0 (42)
< 2T< / lub|> dx + T / |uk|?e~ " dxdt), T e (0,T].
BR(k) Qf(k)

Using (40), (41), and (42), we obtain

/ |uk+3,k+2(T)|2 dx + / |ult<+3,k+2|2 dxdt < CS e—v’ (43)
BR(k) QR(k)

where the constant Cg is independent of k. Taking into account a choice of s and R(k), the right
side of the estimates (40), (43) tends to zero if k — oo.

. J ) )
Since ufti — yk = Y- (uF+' — 4+1=1) inequality (40) implies that {u*}cp is a fundamental

i=1
sequence in the space C([0, T]; H} (BR)) N L%(0, T; H}(BR)) and {u}1en is a fundamental se-

quence in the space C([0, T]; L?(BR)) N L?(0, T; H'(BR)), where R > 1 is an arbitrary number.
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Hence we have that there exist a subsequence {ukl}kleN C {u}ren and a function u! such
that

ukt v ul in  C([0, T); H{(BY)) N L*(0, T; H{(BY)),

uft — ul in o C([0, T); L3(BY)) N L*(0, T; HY(BY)).

k1*>00
From the sequence {u*1}, <y we choose the subsequence {u*2}, . such that

uk2 — u? in C([0, T]; HY(B?)) N L2(0, T; H}(B?)),

k2—>oo

u? — 42 in C([0,T];L*(B?)) N L*(0, T; H'(B?)),

k2—>oo
and so on.
Let us form a diagonal sequence {u"};c. By the our construction, this sequence tends to
the function u! in each of the domain B! x (0, T). Besides that, u! = u¥ in BY x (0, T), where
I >vy. Letus put u(x,t) = u'(x,t) for (x,t) € B' x (0, T). Then

ul — u in C([0, T]; HL.(R")) N L2(0, T; HL (R™)),

l[*>00
w e in C([0, TSI (R") N 120, T; Hipo(R"))
]—00

and, passing to the limit in (33) with v = w¢, we get that the function u is a weak solution to
problem (1)—(3) in the domain Q7. O
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AOCAIAXYIOTBCST cAabKi po3s’si3ky 3aaaui Kot AAst Tinep6oAiUHNX PiBHSHB TPETHOTO TOPSIAKY
3i 3MiHHMM TIOKa3HMKOM HeAiHIHOCTi. 3apada BMBUAETDCS B ASIKMX KAacax pyHKIIIN, 30KpeMa, B
mpocropax Aebera 3i 3SMiHHMMM ITOKa3HMKaMI. 3Ha{A€HO AOCTATHI YMOBM iCHYBaHHSI Ta €AMHOCTI
PpO3rAsiAyBaHOi 3apadi.

Kntouosi cnosa i ppasu: HeAiHiVHe rinepboaiuHe piBHsIHHS, 3aaava Ko, 3MiHHVIT TOKa3HNK He-
AiHiVHOCTI, mpocTip Aebera 3i 3MiHHIM ITOKa3HMKOM.



