References
- Blaga A.M. On gradient \(\eta\)-Einstein solitons. Kragujevac
J. Math. 2018, 42 (2), 229–237.
doi:10.5937/KgJMath1802229B
- Blair D.E. On the geometric meaning of the Bochner tensor.
Geom. Dedicata 1975, 4 (1), 33–38.
- Blair D.E. Riemannian geometry of contact and symplectic manifolds.
Birkhäuser, Second Edition, 2010.
- Bochner S. Curvature and Betti numbers. \(II\). Ann. of Math. (2) 1949,
50 (1), 77–93. doi:10.2307/1969353
- Călin C., Crasmareanu M. \(\eta\)-Ricci solitons on Hopf hypersurfaces
in complex space forms. Rev. Roumaine Math. Pures Appl. 2012,
57 (1), 53–63.
- Cho J.T., Kimura M. Ricci solitons and real hypersurfaces in a
complex space forms. Tohoku Math. J. (2) 2009, 61
(2), 205–212. doi:10.2748/tmj/1245849443
- Catino G., Mazzieri L. Gradient Einstein solitons. Nonlinear
Anal. 2016, 132, 66–94.
doi:10.1016/j.na.2015.10.021
- Dutta T., Basu N., Bhattacharyya A. Almost conformal Ricci
solituons on 3-dimensional trans-Sasakian manifold. Hacet. J. Math.
Stat. 2016, 45 (5), 1379–1392.
- Gray A. Einstein like manifolds which are not Einstein.
Goem. Dedicata 1978, 7 (3), 259–280.
- Gray A., Hervella L.M. The sixteen classes of almost Hermitian
manifolds and their linear invariants. Ann. Mat. Pura Appl. (4)
1980, 123, 35–58. doi:10.1007/BF01796539
- Hamilton R.S. Three-manifolds with positive Ricci curvature.
J. Differential Geom. 1982, 17 (2), 255–306.
doi:10.4310/jdg/1214436922
- Marrero J.C. The local structure of trans-Sasakian
manifolds. Ann. Mat. Pura. Appl. (4) 1992, 162,
77–86. doi:10.1007/BF01760000
- Matsumoto M., Chūman G. On the C-Bochner curvature tensor.
TRU Math. 1969, 5 (1), 21–30.
- Oubina J.A. New class of almost contact metric structures.
Publ. Math. Debrecen. 1985, 32 (4), 187–193.
- Pahan S. \(\eta\)-Ricci solitons
on \(3\)-dimensional Trans-Sasakian
manifolds. Cubo 2020, 22 (1), 23–37.
doi:10.4067/S0719-06462020000100023
- Pokhariyal G.P., Mishra R.S. Curvature tensor’s and their
relativistic significance. Yokohoma Math. J. 1970,
21, 105–108.
- Szabó Z.I. Structure theorems on Riemannian spaces satisfying
\(R(X,Y)R=0\). \(I\). Local version. J. Differential
Geom. 1982, 17, 531–582. doi:10.4310/jdg/1214437486
- Turan M., De U.C., Yildiz A. Ricci solitons and gradient Ricci
solitons in three-dimensional trans-Sasakian manifolds. Filomat
2012, 26 (2), 363–370. doi:10.2298/FIL1202363T
- De U.C., Tripathi M.M. Ricci tensor in 3-dimensional
Trans-Sasakian manifolds. Kyungpook Math. J. 2003,
43 (2), 247–255.
- Yano K. On torse-forming direction in Riemannian space.
Proc. Imp. Acad. Tokyo. 1944, 20 (1), 340–345.