References

  1. Blaga A.M. On gradient \(\eta\)-Einstein solitons. Kragujevac J. Math. 2018, 42 (2), 229–237. doi:10.5937/KgJMath1802229B
  2. Blair D.E. On the geometric meaning of the Bochner tensor. Geom. Dedicata 1975, 4 (1), 33–38.
  3. Blair D.E. Riemannian geometry of contact and symplectic manifolds. Birkhäuser, Second Edition, 2010.
  4. Bochner S. Curvature and Betti numbers. \(II\). Ann. of Math. (2) 1949, 50 (1), 77–93. doi:10.2307/1969353
  5. Călin C., Crasmareanu M. \(\eta\)-Ricci solitons on Hopf hypersurfaces in complex space forms. Rev. Roumaine Math. Pures Appl. 2012, 57 (1), 53–63.
  6. Cho J.T., Kimura M. Ricci solitons and real hypersurfaces in a complex space forms. Tohoku Math. J. (2) 2009, 61 (2), 205–212. doi:10.2748/tmj/1245849443
  7. Catino G., Mazzieri L. Gradient Einstein solitons. Nonlinear Anal. 2016, 132, 66–94. doi:10.1016/j.na.2015.10.021
  8. Dutta T., Basu N., Bhattacharyya A. Almost conformal Ricci solituons on 3-dimensional trans-Sasakian manifold. Hacet. J. Math. Stat. 2016, 45 (5), 1379–1392.
  9. Gray A. Einstein like manifolds which are not Einstein. Goem. Dedicata 1978, 7 (3), 259–280.
  10. Gray A., Hervella L.M. The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. (4) 1980, 123, 35–58. doi:10.1007/BF01796539
  11. Hamilton R.S. Three-manifolds with positive Ricci curvature. J. Differential Geom. 1982, 17 (2), 255–306. doi:10.4310/jdg/1214436922
  12. Marrero J.C. The local structure of trans-Sasakian manifolds. Ann. Mat. Pura. Appl. (4) 1992, 162, 77–86. doi:10.1007/BF01760000
  13. Matsumoto M., Chūman G. On the C-Bochner curvature tensor. TRU Math. 1969, 5 (1), 21–30.
  14. Oubina J.A. New class of almost contact metric structures. Publ. Math. Debrecen. 1985, 32 (4), 187–193.
  15. Pahan S. \(\eta\)-Ricci solitons on \(3\)-dimensional Trans-Sasakian manifolds. Cubo 2020, 22 (1), 23–37. doi:10.4067/S0719-06462020000100023
  16. Pokhariyal G.P., Mishra R.S. Curvature tensor’s and their relativistic significance. Yokohoma Math. J. 1970, 21, 105–108.
  17. Szabó Z.I. Structure theorems on Riemannian spaces satisfying \(R(X,Y)R=0\). \(I\). Local version. J. Differential Geom. 1982, 17, 531–582. doi:10.4310/jdg/1214437486
  18. Turan M., De U.C., Yildiz A. Ricci solitons and gradient Ricci solitons in three-dimensional trans-Sasakian manifolds. Filomat 2012, 26 (2), 363–370. doi:10.2298/FIL1202363T
  19. De U.C., Tripathi M.M. Ricci tensor in 3-dimensional Trans-Sasakian manifolds. Kyungpook Math. J. 2003, 43 (2), 247–255.
  20. Yano K. On torse-forming direction in Riemannian space. Proc. Imp. Acad. Tokyo. 1944, 20 (1), 340–345.