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APPLICATION OF THE AVERAGING METHOD TO THE PROBLEMS OF OPTIMAL

CONTROL OF THE IMPULSE SYSTEMS

KOVAL’CHUK T.V.1 , MOGYLOVA V.V.2 , STANZHYTSKYI O.M.3 , SHOVKOPLYAS T.V.3

The problem of optimal control at finite time interval for a system of differential equations with

impulse action at fixed moments of time as well as the corresponding averaged system of ordinary

differential equations are considered.

It is proved the existence of optimal control of exact and averaged problems. Also, it is estab-

lished that optimal control of averaged problem realize the approximate optimal synthesis of exact

problem. The main result of the article is a theorem, where it is proved that optimal contol of an

averaged problem is almost optimal for exact problem. Substantiation of proximity of solutions of

exact and averaged problems is obtained.
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INTRODUCTION

In this paper, for the system of differential equations with impulse action at fixed moments

of time, the problem of optimal control is considered:

ẋ = ε[A(t, x) + B(t, x)u], t 6= ti, i = 1, 2, . . . , i

(
T

ε

)
, t ∈

[
0,

T

ε

)
,

△x|t=ti
= εIi(x(ti), vi), i = 1, 2, . . . , i

(
T

ε

)
, (1)

x(0, u(0), vi) = x0, ti < ti+1,

where ε > 0 is a small parameter, t ≥ 0, T > 0 is some constant value, x ∈ D is a phase n-

dimensional vector, D is a region in Rn, u ∈ U is a vector of control, U is convex and closed set

in Rm, 0 ∈ U, i(t) is the number of pulses on [0, t): t1, t2, . . . , tn, . . . , ti( T
ε )

, and tn → ∞, n → ∞;

vi ∈ V, i = 1, 2, . . . , i(T
ε ), are impulse control vectors, V is a closed set in R

r.

With respect to the moments of impulsive action, we assume that there exists a constant

C̃ > 0 such that for t ≥ 0,

i(t) ≤ C̃t. (2)
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Let A be an n-dimensional vector-function, B be an n × m-dimensional matrix, Ii(x, v) is

an n-dimensional vector function. Control u = u(t) = (u1(t), u2(t), . . . , um(t)) and v = vi =

(vi1, vi2, . . . , vir) will be considered admissible for problem (1), if

a1) u(t) ∈ Lp(0, T
ε ) for some p > 1;

a2) u(t) ∈ U at t ∈ [0, T
ε ] almost everywhere;

a3) there exists ε0 > 0 such that for 0 < ε < ε0 the solution x(t, u, v) of the Cauchy problem

(1) has defined by t ∈ [0, T
ε ], where ε0 is independent of u(t) and vi;

a4) vi ∈ V;

a5) for each sequence of control vectors vi ∈ V there exists a vector v0 ∈ V such that vi → v0,

i → ∞, uniformly for all controls, that is, for arbitrary δ > 0 there is a constant N0,

independent of vi, v0 and such that for all i ≥ N0 the inequality |vi − v0| < δ is satisfied.

It should be noted that condition a5) is obviously satisfied if there exists a sequence {ai}

independent of vi: ai → 0, i → ∞, such that |vi − v0| < ai.

We denote the set of valid controls as Ω. Though | · | we denote the norm of vector in

Euclidean space, and through || · || we denote the norm of the matrix consistent with the

norm of the vector.

In this paper, the averaging method is applied to optimal control problems. The main role

here is to justify the closeness of the solutions of the exact and average problems. This type

of results for impulse systems was obtained first in [4] and further developed in the works of

many scientists and applied to optimal control problems (see, for example, [9], where there is

a comprehensive bibliography).

In works [3, 6–8], another approach was developed to apply the averaging method to opti-

mal control problems, where the control function was considered a fixed parameter when aver-

aging. This approach had applied to the problems of optimal control of functional-differential

equations in [2].

This work continues the study of [1], however, unlike the work [1], the existence of optimal

controls is also established here for the problem under consideration.

The structure of the article is as follows: the introduction discusses the problem is con-

sidering and provides a literature review, Section 1 gives a rigorous statement of the problem

and formulates the main result, Section 2 formulates and proves the Lemma about averaging,

Section 3 deals with proving of the main result.

1 PROBLEM STATEMENT AND FORMULATION OF THE MAIN RESULTS

The problem of optimal control to be solved in the work is to find such allowable controls

u(t) and vi that minimize the functional

Jε(u, v) = ε

∫ T
ε

0
[C(t, x) + F(t, u)]dt + ε ∑

0≤ti<
T
ε

Ψi(x(ti), vi),

here C, F, ψi are jointly continuous functions, where C ≥ 0, F and ψi satisfy the conditions:
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F(t, u) is defined for t ≥ 0, u ∈ U, it is convex on u, and for some a > 0

F(t, u) ≥ a|u|p, ψi(t, v) ≥ a|v|p , (3)

where p > 1 is as in condition a1) and for some K > 0 there exists ε0 > 0 such that for ε < ε0

the inequality holds

ε

∫ T
ε

0
F(t, 0)dt ≤ K.

We assume that for system (1) the following conditions are fulfilled:

1.1) there are such A0(x), B0(x) and C0(x), such that the following boundaries exist uni-

formly on x ∈ D (averaging conditions):

lim
T→∞

∣∣∣∣
1

T

∫ T

0
A(t, x)dt − A0(x)

∣∣∣∣ = 0,

lim
T→∞

∣∣∣∣
1

T

∫ T

0
C(t, x)dt − C0(x)

∣∣∣∣ = 0,

lim
T→∞

1

T

∫ T

0
||B(t, x)− B0(x)||q dt = 0,

where q is determined from the condition 1
p +

1
q = 1;

1.2) the vector function A(t, x) and the matrix function B(t, x) are measurable on t for each x,

the function C(t, x) is continuous on t ≥ 0, x ∈ D;

1.3) the functions A(t, x), B(t, x) and C(t, x) are Lipschitz’s functions on x with constant L in

domain D;

1.4) the functions Ii(x, v), ψi(x, v), i = 1, 2, . . . , i(t), are jointly continuous;

1.5) the functions ψi(x, v), i = 1, 2, . . . , i(t), are bounded by the constant M at t ≥ 0, x ∈ D,

v ∈ V;

1.6) the functions Ii(x, v), ψi(x, v), i = 1, 2, . . . , i(t), are Lipschitz’s functions on x with con-

stant L in the domain D and uniformly continuous on v in their domains;

1.7) for the functions A(t, x), B(t, x), C(t, x) and Ii(x, v), i = 1, 2, . . . , i(T
ε ), the conditions of

linear growth are fulfilled, i.e., there is a constant K > 0 such that for t ≥ 0 and x ∈ D

the followings inequalities are fulfilled:

|A(t, x)| ≤ K(1 + |x|), ‖B(t, x)‖ ≤ K(1 + |x|),

|Ii| ≤ K(1 + |x|), |C(t, x)| ≤ K(1 + |x|).

Let the averaging conditions also be satisfied:

1.8) there exist the following limits uniformly on x ∈ D, u ∈ U, v ∈ V:

lim
s→∞

1

s ∑
0<ti<s

Ii(x, v) = I0(x, v), lim
s→∞

1

s ∑
0<ti<s

ψi(x, v) = ψ0(x, v).
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To the problem (1) on the interval [0, T
ε ] we will correspond the following averaged prob-

lem:

ẏ = ε[A0(y) + B0(y)u + I0(y, v0)], t ∈

[
0,

T

ε

)
,

y(0, u(0), vi(0)) = x0,

(4)

where u is the allowable control of the averaging problem (4) that satisfies the same condi-

tions as the allowable control of the exact problem (1), and v0 for each vi is selected from the

condition а5).

The set of admissible controls (u(t), v0) of the problem (4) is denoted by Ω. The quality

criterion of the problem of averaging is as follows:

J̄ε(u, v) = ε

∫ T
ε

0
[C0(y(t)) + F(t, u) + ψ0(y(t), v0)]dt.

Let us denote

J∗ε = inf
(u(t), vi)∈Ω

Jε(u, v), J̄∗ε = inf
(u(t), v0)∈Ω

Jε(u, v).

The purpose of this work is to prove for the problem of optimal control the following state-

ment: for an arbitrary η > 0 there exists ε0 = ε0(η) such that for ε < ε0 the inequality

|J∗ε − Jε(u
∗, v∗0)| ≤ η

holds; u∗, v∗0 is the optimal control pair for the problem of averaging, i.e., the optimal control

of the problem of averaging is almost optimal for the exact one.

For the averaged system (4) we assume that the following condition fulfilled.

(А) If the control u satisfies the estimate

ε

∫ T
ε

0
|u(t)|dt ≤ R,

where R > 0 does not depend on ε, u, then there is ε0 = ε0(R) such that for 0 < ε < ε0

the solution y(t, u, v0) of the averaged Cauchy problem for t ∈ [0, T
ε ] belongs to the region D

together with some ρ–neighborhood, and ρ does not depend on ε, u, v0.

The following theorem holds.

Theorem. Under conditions 1.1)–1.7) and condition (А) there exists ε0 > 0 such that for

0 < ε < ε0 the exact and averaged control problems have solutions, and for an arbitrary

η > 0 there exists ε1 = ε1(η) ≤ ε0 such that the inequality

|J∗ε − Jε(u
∗, v∗0)| ≤ η, (5)

holds with 0 < ε < ε1, where (u∗, v∗0) is the optimal control of the averaging system.

2 THE AVERAGING LEMMA

In this section, we will prove the lemma on the proximity of the solutions of the initial

and averaged systems, which is a generalization of Bogolyubov’s first theorem for impulse

systems [4], in the case of the dependence of the right-hand sides on functional parameters.

This lemma plays an essential role in proving the main result of the work.
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Lemma. If the conditions 1.1)–1.7) and condition (А) are met for an arbitrary η > 0, there exists

ε0 = ε0(R, η) such that for 0 < ε < ε0 the solution x(t, u, v) of the Cauchy problem of the exact

system (1) was determined on [0, T
ε ] and the following estimate holds

|x(t, u, v)− y(εt, u, v0)| ≤ η, t ∈

[
0,

T

ε

]
,

for each admissible control (u, v) of the exact problem and for each admissible control (u, v0)

of the averaged problem, where u satisfies condition (А), and v0 is selected from condition а5).

Proof. We take an arbitrary 0 < η <
ρ
2 and fix it. Going in (1) and (4) to integral images, we

have for an arbitrary t ≥ 0 to the moment of output of the solution x(t) = x(t, u, v) on the

boundary of the domain D:

x(t) = x0 + ε

∫ t

0
[A(s, x(s)) + B(s, x(s))u(s)]ds + ε ∑

0≤ti<t

Ii(x(ti), vi),

and for y(t) = y(t, u, v0):

y(t) = x0 + ε

∫ t

0
[A0(y(s)) + B0(y(s))u(s) + I0(y(s), v0)]ds.

Then

x(t)− y(t) = ε

∫ t

0
[A(s, x(s)) − A(s, y(s))]ds + ε

∫ t

0
[A(s, y(s)) − A0(y(s))]ds

+ ε

∫ t

0
[B(s, x(s)) − B(s, y(s))]u(s)ds + ε

∫ t

0
[B(s, y(s)) − B0(y(s))]u(s)ds

+ ε

(

∑
0≤ti<t

Ii(x(ti), vi)− ∑
0≤ti<t

Ii(y(ti), vi)

)
+ ε

(

∑
0≤ti<t

Ii(y(ti), vi)− ∑
0≤ti<t

Ii(y(ti), v0)

)

+ ε

(

∑
0≤ti<t

Ii(y(ti), v0)−
∫ t

0
I0(y(s), v0)ds

)
,

whence, to the first, third and fifth terms, applying Lipschitz’s conditions 1.3) and 1.6), to the

fourth terms, applying the Hölder’s inequality for integrals, we obtain

|x(t)− y(t)| ≤ εL
∫ t

0
(1 + |u(s)|)|x(s) − y(s)|ds + ε

∣∣∣∣
∫ t

0
[A(s, y(s)) − A0(y(s))]ds

∣∣∣∣

+

(
ε

∫ t

0
|B(s, y(s)) − B0(y(s))|

qds

) 1
q
(

ε

∫ t

0
|u(s)|pds

) 1
p

+ εL ∑
0≤ti<t

|x(ti)− y(ti)|+ ε

(

∑
0≤ti<t

Ii(y(ti), vi)− ∑
0≤ti<t

Ii(y(ti), v0)

)

+ ε

∣∣∣∣∣ ∑
0≤ti<t

Ii(y(ti), v0)−
∫ t

0
I0(y(s), v0)ds

∣∣∣∣∣ .

That is,

|x(t)− y(t)| ≤ εL
∫ t

0
(1 + |u(s)|)|x(s) − y(s)|ds + ε

∣∣∣∣
∫ t

0
[A(s, y(s)) − A0(y(s))]ds

∣∣∣∣

+ C
1
p (ε

∫ t

0
||B(s, y(s)) − B0(y(s))||

qds)
1
q + εL ∑

0≤ti<t

|x(ti)− y(ti)|

+ ε

(

∑
0≤ti<t

Ii(y(ti), vi)− ∑
0≤ti<t

Ii(y(ti), v0)

)
+ ε

∣∣∣∣∣ ∑
0≤ti<t

Ii(y(ti), v0)−
∫ t

0
I0(y(s), v0)ds

∣∣∣∣∣ .
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According to condition а5), we choose and fix such T0 and N0 = N0(T0) that at ti > T0,

i ≥ N0, the inequality |vi − v0| <
η
4 is fulfilled.

Let us evaluate the term

I = ε

(

∑
0≤ti<t

Ii(y(ti), vi)− ∑
0≤ti<t

Ii(y(ti), v0)

)
.

Given conditions 1.5), 1.6), as well as condition а5), we have

I ≤ ε ∑
0≤ti<T0

|Ii(y(ti), vi)− Ii(y(ti), v0)|+ ε ∑
T0≤ti<t

|Ii(y(ti), vi)− Ii(y(ti), v0)|

≤ ε2MC̃T0 + ε
T

ε
C̃

η

4
<

η

3
.

So

|x(t)− y(t)| ≤ εL
∫ t

0
(1 + |u(s)|)|x(s) − y(s)|ds + ε

∣∣∣∣
∫ t

0
[A(s, y(s)) − A0(y(s))]ds

∣∣∣∣

+ C
1
p

(
ε

∫ t

0
||B(s, y(s)) − B0(y(s))||

q ds

) 1
q

+ εL ∑
0≤ti<t

|x(ti)− y(ti)|+
η

3

+ ε

∣∣∣∣∣ ∑
0≤ti<t

Ii(y(ti), v0)−
∫ t

0
I0(y(s), v0)ds

∣∣∣∣∣ .

(6)

Let us evaluate the last two integrals separately:

I1 = ε

∣∣∣∣
∫ t

0
[A(s, y(s)) − A0(y(s))]ds

∣∣∣∣ ,

and

I2 = ε

∫ t

0
||B(s, y(s)) − B0(y(s))||

q ds.

We divide [0, T
ε ] into n equal parts by points τi. For an arbitrary t ∈ [τi, τi+1]:

I1 ≤ ε

∣∣∣∣
∫ t

0
[A(s, y(s)) − A0(y(s))]ds

∣∣∣∣ ≤ ε

∣∣∣∣∣
n−1

∑
i=0

∫ τi+1

τi

[A(s, y(s)) − A0(y(s))]ds

∣∣∣∣∣

≤ ε
n−1

∑
i=0

∫ τi+1

τi

(|A(s, y(s)) − A(s, y(τi))|+ |A0(y(τi))− A0(y(s))|)ds

≤ 2Lε
n−1

∑
i=0

∫ τi+1

τi

|y(s)− y(τi)|ds + ε

∣∣∣∣∣
n−1

∑
i=0

∫ τi+1

τi

(A(s, y(τi))− A0(y(τi)))ds

∣∣∣∣∣ .

For the difference y(s)− y(τi) we obtain:

|y(s)− y(τi)| = ε

∣∣∣∣
∫ s

τi

[A0(y(τ)) + B0(y(τ))u(τ)]dτ

∣∣∣∣

≤ ε

∫ s

τi

(|A0(y(τ))| + |B0(y(τ))| · ||u(τ)||)dτ

≤ εM
∫ τi+1

τi

(1 + |u(τ)|)dτ ≤
MT

n
+ Mε

(
ε

∫ τi+1

τi

|u(s)|pds

) 1
p
(

T

εn

) 1
q

≤
MT

n
+ M

(
T

n

) 1
q
(

ε

∫ τi+1

τi

|u(s)|pds

) 1
p

.
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Using the condition (А), we have the following estimate

|y(s)− y(τi)| ≤
MT

n
+ M

(
T

n

) 1
q

R
1
p . (7)

So

I11 = 2Lε
n−1

∑
i=0

∫ τi+1

τi

|y(s) − y(τi)|ds ≤ 2Lε
n−1

∑
i=0

[
MT

n
+ M

(
T

n

) 1
q

R
1
p

](
T

nε

)

≤ 2LMT

(
T

n
+

(
T

n

) 1
q

R
1
p

)
.

Let us fix n so that the inequality

2LMT

(
T

n
+

(
T

n

) 1
q

R
1
p

)
≤

η

4
(8)

holds.

Due to conditions 1.1) and 1.8) it is possible to construct such a monotonically decreasing

function ϕ(t) → 0, t → ∞, that the following inequalities hold uniformly over y ∈ D, v ∈ V:

∣∣∣∣
∫ t

0
[A(s, y)− A0(y)]ds

∣∣∣∣ ≤
tϕ(t)

2
,

∣∣∣∣∣ ∑
0<ti<T

Ii(x, v)− I0(x, v)T

∣∣∣∣∣ ≤
ϕ(T)

2
T.

If t ∈ [τi, τi+1] (except t ∈ [0, τ1], τ1 < τ2), then we have

I12 ≤ ε
n−1

∑
i=0

(∣∣∣∣
∫ τi+1

0
(A(s, y(τi))− A0(y(τi))) ds

∣∣∣∣+
∣∣∣∣
∫ τi

0
(A(s, y(τi))− A0(y(τi))) ds

∣∣∣∣
)

≤ ε
n−1

∑
i=0

(τi+1ϕ(τi+1) + τiϕ(τi)) ≤ ε
n−1

∑
i=0

T

ε
ϕ

(
T

nε

)
≤ 2nTϕ

(
T

nε

)
.

Since n is fixed, then for ε < ε0, we obtain:

ε

∣∣∣∣
∫ t

0
(A(s, y(τi))− A0(y(τi)))ds

∣∣∣∣ ≤
η

8
.

If t ∈ [0, τ1], then

ε

∣∣∣∣
∫ t

0
[A(s, y(τi))− A0(y(τi))]ds

∣∣∣∣ ≤ ε

∫ t

0
(|A(s, y(τi))|+ |A0(y(τi))|)ds ≤ 2M

T

εn
=

2MT

n
.

In this case, we choose n so that in addition to (8) the inequality

2MT

n
≤

η

8

is also will be satisfied.
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When n is selected, the function ϕ
(

T
nε

)
→ 0 for ε → 0, and therefore, for an arbitrary η > 0

there exists ε0 > 0 such that for 0 < ε < ε0 we have:

ε

∣∣∣∣∣
n−1

∑
i=0

∫ τi+1

τi

(A(s, y(τi))− A0(y(τi)))ds

∣∣∣∣∣ ≤
η

4
.

So, I1 =

∣∣∣∣
∫ t

0
(A(s, y(s)) − A0(y(s)))ds

∣∣∣∣ ≤
η

2
.

Now, let us evaluate the expression I2.

Again, we divide the segment [0, T
ε ] on n equal parts by the points τi. For an arbitrary

t ∈ [τi, τi+1], we have:

I2 =
n−1

∑
i=0

ε

∫ τi+1

τi

||B(s, y(s)) − B0(y(s))||
qds

=
n−1

∑
i=0

ε

∫ τi+1

τi

||B(s, y(s)) − B(s, y(τi)) + B(s, y(τi))− B0(y(τi)) + B0(y(τi)− B0(y(s)))||
q ds.

Using Minkowski’s inequality, we have:

I2 ≤ ε
n−1

∑
i=0

[(∫ τi+1

τi

||B(s, y(τi))− B0(y(τi))||
qds

) 1
q

+

(∫ τi+1

τi

||B(s, y(s)) − B(s, y(τi))||+ ||B0(y(τi)− B0(y(s))||)
q ds

) 1
q

]
.

I2 ≤ ε
n−1

∑
i=0

[(∫ τi+1

τi

||B(s, y(τi))− B0(y(τi))||
qds

) 1
q

+

(∫ τi+1

τi

||B(s, y(s)) − B(s, y(τi))||+ ||B0(y(τi)− B0(y(s))||)
q ds

) 1
q

]
.

Using condition 1.3) and Iensen’s inequality, we obtain:

I2 ≤ 2q−1ε
n−1

∑
i=0

(
2Lq

∫ τi+1

τi

|y(s)− y(τi)|
qds +

∫ τi+1

τi

||B(s, y(τi))− B0(y(τi))||
qds

)
.

For the difference |y(s)− y(τi)| we apply the previously obtained estimate, then

I2 ≤ 2q−1ε
n−1

∑
i=0


2LqMq

(
T

n
+

(
T

n

) 1
q

R
1
p

)q
T

εn
+
∫ τi+1

τi

||B(s, y(τi))− B0(y(τi))||
qds




≤ LqMq

(
T

n
+

(
T

n

) 1
q

R
1
p

)q

T + 2q−1ε
n−1

∑
i=0

∫ τi+1

τi

||B(s, y(τi))− B0(y(τi))||
qds.
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We fix n so that the condition
(

2LM

(
T

n
+

(
T

n

) 1
q

R
1
p

))q

T ≤
1

2

( η

2R

)q
(9)

is fullfiled. Estimate the term

I21 = 2q−1ε
n−1

∑
i=0

∫ τi+1

τi

||B(s, y(τi))− B0(y(τi))||
qds.

By condition 1.1) the inequality
∫ t

0
||B(s, y)−B0(y)||

qds ≤ tϕ(t) holds uniformly over

y ∈ D. If t ∈ [τi, τi+1] (expect t ∈ [0, τ1], τ1 < τ2), then we have

I21 ≤ 2q−1ε
n−1

∑
i=0

(∫ τi+1

τi

||B(s, y(τi))− B0(y(τi))||
qds −

∫ τi

0
||B(s, y(τi))− B0(y(τi))||

qds

)

≤ 2q−1ε
n−1

∑
i=0

(τi+1ϕ(τi+1) + τi ϕ(τi)) ≤ 2q−1ε
n−1

∑
i=0

T

ε
ϕ

(
T

nε

)
≤ 2qnTϕ

(
T

nε

)
,

since n is fixed, then ϕ
(

T
nε

)
→ 0 as ε → 0.

If t ∈ [0, τ1], then

ε

∫ t

0
||B(s, y(τi))− B0(y(τ))||

q ds ≤ ε

∫ t

0
(||B(s, y(τi))||+ ||B0(y(τi))||)

qds ≤
2qMqT

n
.

We fix n so that in addition to (9) the inequality 2q MqT
n ≤ η

8 also holds. Thus, by

choosing a sufficiently small ε we have estimate 2qnTϕ
(

T
nε

)
+ 2q MqT

n ≤ 1
2

( η
2R

)q
, and hence,

(
ε

∫ t

0
||B(s, y(s)) − B0(y(s))||

qds

) 1
q

≤
η

2R
.

It remains to estimate the value

ε

∣∣∣∣∣ ∑
0≤τi<t

Ii(y(τi), v0)−
∫ t

0
I0(y(s), v0)ds

∣∣∣∣∣ .

To do this, we again divide the segment [0, T
ε ] by the points {τk} into n equal parts. We have

ε

∣∣∣∣ ∑
0≤ti<t

Ii(y(ti), v0)−
∫ t

0
I0(y(s), v0)ds

∣∣∣∣

= ε

∣∣∣∣∣
n−1

∑
k=0

(

∑
τk≤ti<τk+1

Ii(y(ti), v0)−
∫ τk+1

τk

I0(y(s), v0)ds

)∣∣∣∣∣ .
(10)

Let us estimate each of terms in the last sum:

ε

∣∣∣∣ ∑
τk≤ti<τk+1

Ii(y(ti), v0)−
∫ τk+1

τk

I0(y(s), v0)ds

∣∣∣∣

≤ ε

∣∣∣∣∣ ∑
τk≤ti<τk+1

Ii(y(ti), v0)− I0(y(τk), v0)(τk+1 − τk)

∣∣∣∣∣

+ ε

∣∣∣∣I0(y(τk), v0)(τk+1 − τk)−
∫ τk+1

τk

I0(y(s), v0)ds

∣∣∣∣ .

(11)
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We separately evaluate each term from (11):

ε

∣∣∣∣I0(y(τk), v0)(τk+1 − τk)−
∫ τk+1

τk

I0(y(s), v0)ds

∣∣∣∣

= ε

∣∣∣∣
∫ τk+1

τk

(I0(y(τk), v0)− I0(y(s), v0))ds

∣∣∣∣ ≤ εL
∫ τk+1

τk

|y(τk)− y(s)|ds.

(12)

But, by virtue of (7) we have that

|y(τk)− y(s)| ≤
MT

n
+ M

(
T

n

) 1
q

R
1
p . (13)

Substituting (13) into (12), we have that

ε

∣∣∣∣I0(y(τk), v0)(τk+1 − τk)−
∫ τk+1

τk

I0(y(s), v0)ds

∣∣∣∣

≤ εL
T

εn

(
MT

n
+ M

(
T

n

) 1
q

R
1
p

)
=

TL

n

(
MT

n
+ M

(
T

n

) 1
q

R
1
q

)
.

(14)

It remains to evaluate the first term in (11). We have

ε

∣∣∣∣ ∑
τk≤ti<τk+1

Ii(y(ti), v0)− I0(y(τk), v0)(τk+1 − τk)

∣∣∣∣

≤ ε ∑
τk≤ti<τk+1

L|y(ti)− y(τk)|+ ε

∣∣∣∣∣ ∑
τk≤ti<τk+1

Ii(y(τk), v0)− I0(y(τk), v0)(τk+1 − τk)

∣∣∣∣∣

≤
TL

n

(
MT

n
+ M

(
T

n

) 1
q

R
1
p

)
+ ε

∣∣∣∣∣ ∑
τk≤ti<τk+1

Ii(y(τk), v0)− I0(y(τk , v0))(τk+1 − τk)

∣∣∣∣∣ ,

according to condition (14). Then (10) is evaluated by the following expression:

TL

(
MT

n
+ N

(
T

n

) 1
q

R
1
p

)
+ ε

∣∣∣∣∣
n−1

∑
i=0

(

∑
τk≤ti<τk+1

Ii(y(τk), v0)(τk+1 − τk)

)∣∣∣∣∣ .

Let us evaluate the second term. We have

ε

∣∣∣∣∣
n−1

∑
k=0

(

∑
τk≤ti<τk+1

Ii(y(τk), v0)− I0(y(τk), v0)(τk+1 − τk)

)∣∣∣∣∣

= ε

∣∣∣∣∣
n−1

∑
k=0

(

∑
0≤ti<τk+1

Ii(y(τk), v0)− I0(y(τk), v0)τk+1 − ∑
0<ti<τk

Ii(y(τk), v0)− I0(y(τk), v0)τk

)∣∣∣∣∣

≤ ε
n−1

∑
k=0

∣∣∣∣∣ ∑
0≤ti<τk+1

Iiy(τk), v0)− I0(y(τk), v0)τk+1

∣∣∣∣∣+ ε
n−1

∑
k=0

∣∣∣∣∣ ∑
0<ti<τk

Ii(y(τk), v0)− I0(y(τk), v0)τk

∣∣∣∣∣

≤ ε
n−1

∑
k=0

τk+1ϕ(τk+1)

2
+ ε

n−1

∑
k=0

τk ϕ(τk)

2
≤ ε

n−1

∑
k=0

T

ε
ϕ

(
T

εn

)
= nTϕ

(
T

εn

)
.
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We choose ε so small that for the selected fixed n the following inequality holds:

nTϕ

(
T

εn

)
≤

η

4
e−LTe−MLT

and we fix such n.

Returning now to (6), given the choice of ε, we have

|x(t)− y(t)| ≤ η + εL
∫ t

0
(1 + |u(s)|)|x(s) − y(s)|ds + εL ∑

0≤ti<t

|x(ti)− y(ti)|,

or

|x(t)− y(t)| ≤ η +
∫ t

0
εL(1 + |u(s)|)|x(s) − y(s)|ds + ∑

0≤ti<t

εL|x(ti)− y(ti)|.

From the analogue of the Gronwall-Bellman lemma [5, p. 12] we obtain

|x(t)− y(t)| ≤ η ∏
0<τi<t

(1 + εL)eεL
∫ t

0 (1+|u(s)|)ds.

Take into account that

εL
∫ t

0
(1 + |u(s)|)ds ≤ LT + Lε

∫ t

0
|u(s)|ds

≤ LT + L

(
ε

∫ t

0
|u(s)|pds

) 1
p

T
1
q ≤ L

(
T + R

1
p T

1
q

)
,

and

∏
0<τi<t

(1 + εL) = (1 + εL)i(t).

But, from condition (2) we have that

(1 + εL)i(t) ≤ (1 + εL)C̃ T
ε ≤ eC̃TL.

Therefore, |x(t)− y(t)| ≤ ηeL(T+R
1
p T

1
q )+CTL before leaving the region D. However, y(t) lies

in the region D together with its ρ–neighborhood at t ∈ [0, T
ε ], so by choosing a sufficiently

small η we obtain that x(t) lies in the region D together with
ρ
2 –neighborhood for t ∈ [0, T

ε ],

therefore, the last inequality valid for all t ∈ [0, T
ε ].

The lemma is proved.

3 PROOF OF THE THEOREM

First, we prove the existence of a solution of the problem (1) for each fixed ε > 0. It is

obvious that the sets Ω and Ω of admissible controls of exact and averaged problems are not

empty. Indeed, the control u(t) ≡ 0 satisfies condition (А), and then the solution y(t, 0, v0) of

the averaged problem lies in D together with the ρ−neighborhood. Therefore, it follows from

the averaging lemma that the solution of the exact problem x(t, 0, v0) also lies in the domain

D for sufficiently small ε and t ∈ [0, T
ε ].
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Since due to the conditions the functional Jε(u, v) ≥ 0, there is a lower bound by all ad-

missible controls. Denote it by m. Let {u(n)(t), v(n)} be a corresponding minimizing sequence

such that J(u(n), v(n)) → m, n → ∞. From conditions (3) we have that

ε

∫ T
ε

0
a|u(n)(t)|pdt + ε ∑

0<ti<
T
ε

a|v
(n)
i |p ≤ m + 1. (15)

The latter means a week compactness of the sequence u(n)(t) in Lp

(
0, T

ε

)
.

From condition (2) it follows that i
(

T
ε

)
≤ C̃ · T

ε , and hence the number of impulses for each

fixed ε > 0 is limited, let it be equal to N1.

Therefore, the number of vectors v(n) in (15) is finite. From here and from the weak com-

pactness of the subsequence u(n)(t) it implies the existence of a weakly convergent in Lp

(
0, T

ε

)

subsequence u(nk)(t) and convergent in Ri( T
ε ) subsequence v

(nm)
i (t). It is clear that they can be

chosen so that the numbers nk and nm match. Then, without losing generality, we can assume

that u(n)(t) and v
(n)
i are convergent. Therefore, u(n)(t)

w
−→ u∗(t) ⊂ Lp

(
0, T

ε

)
, and v

(n)
i → v∗i ,

n → ∞ strongly in Rr, i = 1, i
(

T
ε

)
.

From the closedness of V it follows, that v∗i ∈ V, i = 1, 2, . . . , N.

According to Mazur’s lemma [10, p. 173] there is a convex combination

bk(t) =
n(k)

∑
i=1

αi(k)u
(i)(t)

of elements u(i)(t) ∈ U, with αi ≥ 0,
n(k)

∑
i=1

αi = 1, such that in Lp we have the convergence

bk → u∗, k → ∞. Thus, there exists a subsequence bkl
convergent on [0, T

ε ] almost everywhere

with respect to Lebesgue measure, such that bkl
(t) → u∗(t), l → ∞ for almost all t. Since U

is a convex and closed set, then
n(k)

∑
i=1

αiu
(i)(t) ∈ U, and u∗(t) ∈ U are for almost all t. Then it

follows from the closedness of the set U that u∗ ∈ U for almost all t ∈ [0, T
ε ].

We now estimate the solutions x(n)(t), which correspond to the controls (u(n)(t), v
(n)
i ). For

q = p
p−1 we have

|x(n)(t)|q ≤

(
|x0|+ ε

∫ t

0
|A(s, x(n)(s)) + B(s, x(n)(s))| · |u(n)(s)|ds + ε ∑

0≤ti<t

I0i

(
x
(n)
i (ti), v

(n)
i

))q

≤ 3q



|x0|
q +



ε

t∫

0

{
K
(

1 + |x(n)(s)|
)
+ K

(
1 + |x(n)(s)|

)
· |u(n)(s)|

}
ds




q

+ ε

(

∑
0≤ti<t

K
(

1 + |x
(n)
i (ti)|

))q)
.

(16)
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Let us evaluate each of the terms separately.

(
ε

∫ t

0
{K(1 + |x(n)(s)|) + K(1 + |x(n)(s)|) · |u(n)(s)|}ds

)q

≤ εqKq
∫ t

0
(1 + |x(n)(s)|)qds

(∫ t

0
(1 + |u(n)(s)|)pds

) q
p

≤ (2εK)q

(
T

ε
+
∫ t

0
|x(n)(s)|qds

)(
T

ε
+
∫ t

0
|u(n)(s)|pds

) q
p

≤

(
(2εK)q T

ε
+ (2εK)q

∫ t

0
|x(n)(s)|qds

)(
T

ε
+
∫ t

0
|u(n)(s)|pds

) q
p

.

(17)

Let (2εK)q T
ε = C1. Since

(
T

ε
+
∫ t

0
|u(n)(s)|pds

) q
p

≤

(
T

ε
+

m

a

) q
p

= C2,

then continuing inequality (17), we have that the second term in it is estimated by the value

C1 + C2(2εK)q
∫ t

0
|x(n)(s)|qds. (18)

To estimate to the sum in (15), we have

ε ∑
0≤ti<t

{K(1 + |x
(n)
i (ti)|)}

q ≤ εKq{ ∑
0≤ti<t

(1 + |x
(n)
i (ti)|) · 1}q

≤ εKq ∑
0≤ti<t

(1 + |x
(n)
i (ti)|)

q
·

(

∑
0≤ti<t

|1|p
) q

p

≤ εC̃
q
p ·

(
T

ε

) q
p

∑
0≤ti<t

Kq
(

1 + |x
(n)
i (ti)|

)q

≤ εC̃
q
p ·

(
T

ε

) q
p

Kq ∑
0≤ti<t

2q−1
(

1 + |x
(n)
i (ti)|

)q

= εC̃
q
p ·

(
T

ε

) q
p

Kq

(

∑
0≤ti<t

2q−1 + 2q−1 ∑
0≤ti<t

|x
(n)
i (ti)|

q
)

≤ εC̃
q
p ·

(
T

ε

) q
p

Kq

(
2q−1 · i

(
T

ε

)
+ 2q−1 ∑

0≤ti<t

|x
(n)
i (ti)|

q

)

= εC̃
q
p ·

(
T

ε

) q
p

· Kq · 2q−1i

(
T

ε

)
+ εC̃

q
p ·

(
T

ε

) q
p

· Kq · 2q−1 ∑
0≤ti<t

|x
(n)
i (ti)|

q

= C4 + C5 · ∑
0≤ti<t

|x
(n)
i (ti)|

q,

(19)

where C4 = εC̃
q
p ·
(

T
ε

) q
p · Kq · 2q−1 · i(t), C5 = εC̃

q
p ·
(

T
ε

) q
p · Kq · 2q−1.
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From (16)–(19) we obtain the inequality:

|x(n)(t)|q ≤ C1 + C2(2Kε)q
∫ t

0
|x(n)(s)|qds + C4 + C5 ∑

0≤ti<t

|x(n)(ti)|
q

= C6 + C7

∫ t

0
|x(n)(s)|qds + C5 ∑

0≤ti<t

|x(n)(ti)|
q,

where C6 = C1 + C4, C7 = C2(2Kε)q.

From the analogue of the Gronwall-Bellman inequality [5, p. 12] we have

|x(n)(t)|q ≤ C6eC7
T
ε ∏

0≤ti<t

(1 + C5) ≤ C6eC7
T
ε (1 + C5)

i(t) = C8 (20)

for t ∈ [0, T
ε ].

On the interval [0, t1] for any two moments of time t′, t′′, 0 ≤ t′ ≤ t′′ ≤ t1, by virtue of 1.7)

and (20) we have the existence of constant M1 > 0 such that

|x(n)(t′)− x(n)(t′′)| =
∫ t′′

t′

(
|A(s, x(n)(s))|+ |B(s, x(n)(s))||u(n)(s)|

)
ds

≤ εM1

∫ t′′

t′
(1 + |u(n)(s)|)ds

≤ εM1|t
′′ − t′|+ M1ε

1
q |t′′ − t′|

1
q

(
ε

∫ t′′

t′
|u(n)(s)|pds

) 1
p

≤ εM1|t
′′ − t′|+ ε

1
q M1C

1
p |t′′ − t′|

1
q .

(21)

The inequality (21) means an equal-degree continuity of the sequence of functions {x(n)(t)}

on [0, t1]. Then from (20), (21) it follows the existence of a uniformly convergent subsequence

{x(k1)(t)} of the sequence of functions {x(n)(t)} on [0, t1]. Let x1(t) be its limit.

Denote x(k1)(t1 + 0) = x(k1)(t1) + I1(x(k1)(t1), vk1
1 ). Consider the equation

x(k1)(t) = x(k1)(t1 + 0) +
∫ t

t1

[A(s, x(k1)(s)) + B(s, x(k1)(s))u(k1)(s)]ds

with t ∈ [t1, t2].

Similarly to the previous one, the compactness of the sequence {x(k1)(t)} on [t1, t2] in a uni-

form metric is proved. Therefore, there is a subsequence {x(k2)(t)} of the sequence {x(k1)(t)}

such that {x(k2)(t)} converges uniformly to x2(t) at t ∈ [t1, t2]. For k2 → ∞ we have that

x2(t1 + 0) = x1(t1) + I1(x1(t1), v∗1). Next, on the interval [t2, t3] we consider the equation

x(k2)(t) = x(k2)(t2 + 0) +
∫ t

t2

[A(s, x(k2)(s)) + B(s, xk2(s))u(k2)(s)]ds.

Similarly, there is a subsequence {x(k3)(t)} of the sequence {x(k2)(t)}, such that {x(k3)(t)}

converges uniformly to x3(t) at t ∈ [t2, t3].
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Now, let us show that the function

x∗(t) =





x1(t), t ∈ [0, t1],

x2(t), t ∈ [t1, t2],

. . .

xi( T
ε )

, t ∈
[
ti( T

ε )
, T

ε

]
(22)

is the solution of the original problem (1) for the controls u∗(t) and v∗i , i.e. that x∗(t) satisfies

the equation

x∗(t) = x0 + ε

∫ t

0
[A(s, x∗(s)) + B(s, x∗(s))u∗(s)]ds + ε ∑

0≤ti<
T
ε

I0i(x∗i (ti), v∗i ).

On the interval [0, t1] the statement is obvious. We show that for t ∈ [t1, t2] the equation

x2(t) = x1(t1) + I1(x(t1), v∗1) + ε

∫ t

t1

[A(s, x2(s)) + B(s, x2(s))u
∗(s)]ds

is valid.

Since lim
k2→∞

x(k2)(t) = x2(t) uniformly for t ∈ [t1, t2] and

x(k2)(t) = x(k2)(t1 + 0) +
∫ t

t1

[A(s, x(k2)(s)) + B(s, x(k2)(s))u(k2)(s)]ds, (23)

(
{k2}–subsequence of the sequence {k1}

)
, then x(k2)(t1 + 0) → x2(t1 + 0) and

x(k2)(t1 + 0) = x(k2)(t1) + I1(x(k2)(t1), v
(k2)
1 ) → x1(t1) + I1(x(t1), v∗1).

We now turn in (23) to the boundary at k2 → ∞

x2(t) = x1(t1) + I1(x(t1), v∗1) + ε lim
k2→∞

∫ t

t1

[A(s, x(k2)(s)) + B(s, x(k2)(s))u(k2)(s)]ds.

But, lim
k2→∞

∫ t

t1

A(s, x(k2)(s))ds =
∫ t

t1

A(s, x2(s))ds by the Lebesgue’s theorem on major conver-

gence, estimation (20) and linear growth of a function A.

Using the limiting relation lim
k2→∞

∫ t
t1

B(s, x2(s))[u
(k2)(s)− u∗(s)]ds = 0, and using the rela-

tion lim
k2→∞

B(s, x(k2)(s)) = B(s, x2(s)), which is uniform, outside some set S of arbitrary small

measure, and the inequality

∫

S
|u(k2)(s)|ds ≤

(∫ t

t1

|u(k2)(s)|pds

) 1
p

· (µ(s))
1
q ,

where µ(s) is Lebesgue measure of the set S, it is possible prove that

lim
k2→∞

∫ t

t1

[B(s, x(k2)(s))− B(s, x2(s))]|u
(k2)(s)|ds = 0,

and ∫ t

t1

B(s, x(k2)(s))u(k2)(s)ds →
∫ t

t1

B(s, x2(s))u
∗(s)ds.
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So, x2(t) = x1(t1) + I1(x(t1), v∗1) + ε

∫ t

t1

(A(s, x2(s)) + B(s, x2(s))u
∗(s))ds. Similar consider-

ations are made at other intervals [tk, tk+1]. Hence, the function x∗(t), constructed by formula

(22), is the solution of the pulse system

x∗ = ε[A(t, x∗) + B(t, x∗)u], t 6= ti, i = 1, 2, . . . , i

(
T

ε

)
, t ∈

[
0,

T

ε

)
,

△x|t=ti
= εIi(x∗(ti), v∗i ), i = 1, 2, . . . , i

(
T

ε

)
,

x(0, u(0), v∗i ) = x0, ti < ti+1.

It remains to show that the control (u∗, v∗) is optimal, i.e. that J(u∗, v∗) = m. We have

m = lim
n→∞

Jε(u
(n), v(n)) = lim

n→∞

[
ε

∫ T
ε

0
(C(t, x(n)(t)) + F(t, u(n)(t)))dt + ε ∑

0<ti<
T
ε

ψi(x(n)(ti), v
(n)
i )

]
.

From (20) by virtue of Lebesgue’s theorem it follows that

lim
n→∞

ε

∫ T
ε

0
C(t, x(n)(t))dt = ε

∫ T
ε

0
C(t, x∗(t))dt.

From the convexity by u of the function F(t, u) we also obtain that

lim
n→∞

ε

∫ T
ε

0
F(t, u(n)(t))dt ≥ ε

∫ T
ε

0
F(t, u∗(t))dt.

It is also obvious that

lim
n→∞

ε ∑
0<ti<

T
ε

ψi(x(n)(ti), v
(n)
i ) = ε ∑

0<ti<
T
ε

ψi(x∗(ti), v∗i ).

Therefore, m = lim
n→∞

J(u(n), v(n)) ≥ J(u∗, v∗) = m, which proves the existence of optimal

control for each fixed ε > 0.

Proving the existence of optimal control for an averaged system (4) is similar.

Let us prove the inequality (5). Note that the minimizing sequences and optimal controls

for exact and averaged problems according to the inequality (15) satisfy the conditions of the

lemma. Therefore, for controls u, v from a given set and control v0, chosen from condition a5),

we have

|Jε(u, v)− J(u, v0)| =

∣∣∣∣∣∣
ε

∫ T
ε

0
[C(t, x(t, u, v)) + F(t, u)]dt + ∑

0≤ti<
T
ε

ψi(x(ti), vi)

−ε

∫ T
ε

0
[C0(y(t, u, v0)) + F(t, u) + ψ0(y(t, u, v0))]dt

∣∣∣∣∣

≤ ε

∣∣∣∣∣

∫ T
ε

0
[C(t, x(t, u, v))− C0(y(t, u, v0))]dt

∣∣∣∣∣

+ ε

∣∣∣∣∣∣

∫ T
ε

0
ψ0(y(t, u, v0))dt + ∑

0≤ti<
T
ε

ψi(x(ti), vi)

∣∣∣∣∣∣
.

(24)
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Similar to the terms estimates, made in the averaging lemma, we can show that the values

of

ε

∣∣∣∣∣

∫ T
ε

0
[C(t, x(t, u, v))− C0(y(t, u, v0))]dt

∣∣∣∣∣

and

ε

∣∣∣∣∣∣

∫ T
ε

0
ψ0(y(t, u, v0))dt + ∑

0≤ti<
T
ε

ψi(x(ti), vi)

∣∣∣∣∣∣

from (24) can be made arbitrarily small by choosing a sufficiently small ε.

Therefore, for an arbitrary η > 0 there exists ε0 > 0 such that for ε < ε0:

|Jε(u, v)− Jε(u, v0)| < η. (25)

Let (u∗
0(ε), v∗0(ε)) be the optimal pair for the averaged problem (4), and let (u∗(ε), v∗(ε)) be

the optimal pair for the original problem (1). Then

J∗ε ≤ Jε(u
∗
0(ε), v∗0(ε)) = J

∗
ε + Jε(u

∗
0(ε), v∗0(ε))− Jε(u

∗
0(ε), v∗0(ε)).

But for an arbitrary η1 > 0 for sufficiently small ε > 0, by virtue of (25) we have:

|Jε(u
∗
0(ε), v∗0(ε))− Jε(u

∗
0(ε), v∗0(ε))| ≤ η1,

then

J∗ε − J
∗
ε ≤ η1. (26)

Since the pair (u∗(ε), v∗(ε)) is admissible, there is an admissible pair (u∗(ε), v0(ε)) from

а5). So, J
∗
ε = Jε(u

∗
0(ε), v∗0(ε)) ≤ Jε(u

∗, v0) + J∗ε − Jε(u∗(ε), v∗(ε)).

But by virtue of (25) for sufficiently small ε the estimate

|Jε(u
∗(ε), v0(ε))− Jε(u

∗(ε), v∗(ε))| ≤ η1

holds.

So, from the inequality

J
∗
ε ≤ J∗ε + η1,

and from (26) we obtain

|J
∗
ε − J∗ε | ≤ η1. (27)

Now, we have the estimate

|Jε(u
∗
0(ε), v∗0(ε))− J∗ε | ≤ |Jε(u

∗
0(ε), v∗0(ε))− J

∗
ε |+ |J

∗
ε − J∗ε |. (28)

The first term in (28) according to (25) does not exceed η1 for sufficiently small ε.

Due to the arbitrariness of η1 from (27) and (28) we obtain the proximity of the optimal

controls of the initial problem (1) and the averaged problem (4).

Thus, the theorem is proved.
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Ковальчук Т.В., Могильова В.В., Станжицький О.М., Шовкопляс Т.В. Застосування методу усе-

реднення до задач оптимального керування iмпульсними системами // Карпатськi матем. публ.

— 2020. — Т.12, №2. — C. 504–521.

Розглянуто задачу оптимального керування на скiнченному часовому iнтервалi для систе-

ми диференцiальних рiвнянь з iмпульсною дiєю у фiксованi моменти часу та вiдповiдну їй

усереднену систему звичайних диференцiальних рiвнянь.

Доведено iснування оптимального керування точної та усередненої задач, а також встанов-

лено, що оптимальне керування усередненої задачi здiйснює наближений оптимальний синтез

точної задачi. Основним результатом роботи є теорема, яка доводить, що оптимальне керува-

ння усередненої задачi є майже оптимальним для точної. Отримано обгрунтування близькостi

розв’язкiв точної та усередненої задач.

Ключовi слова i фрази: задача оптимального керування, оптимальне керування, точна за-

дача, усереднена задача, допустиме керування, умови усереднення, слабка збiжнiсть, компа-

ктнiсть, напiвнеперервнiсть, критерiй якостi, мiнiмiзуюча послiдовнiсть.


