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APPLICATION OF THE AVERAGING METHOD TO THE PROBLEMS OF OPTIMAL
CONTROL OF THE IMPULSE SYSTEMS

KOVAL'CHUK T.V.1, MOGYLOVA V.V.2, STANZHYTSKYI O.M.3, SHOVKOPLYAS T.V.3

The problem of optimal control at finite time interval for a system of differential equations with
impulse action at fixed moments of time as well as the corresponding averaged system of ordinary
differential equations are considered.

It is proved the existence of optimal control of exact and averaged problems. Also, it is estab-
lished that optimal control of averaged problem realize the approximate optimal synthesis of exact
problem. The main result of the article is a theorem, where it is proved that optimal contol of an
averaged problem is almost optimal for exact problem. Substantiation of proximity of solutions of
exact and averaged problems is obtained.
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INTRODUCTION

In this paper, for the system of differential equations with impulse action at fixed moments
of time, the problem of optimal control is considered:

¥ —e[A(tx) + B(t )], t+4, i:1,2,...,i<€>, te[O,%),

Ax\t:t,. :eli(x(tz-),vi), i:1,2,...,i <€> ’ (1)

x(O,u(O), Uz') =Xx9, < ti+1,

where ¢ > 0 is a small parameter, t > 0, T > 0 is some constant value, x € D is a phase n-
dimensional vector, D is a region in R", u € U is a vector of control, U is convex and closed set
in R™,0 € U, i(t) is the number of pulses on [0, t): t1,tp,...,tn, ..., ti(l)' and t,, — o0, 1 — o0;

v,eV,i=1,2,...,i (%), are impulse control vectors, V is a closed set in R".
With respect to the moments of impulsive action, we assume that there exists a constant
C > Osuch that fort > 0,

i(t) < Ct. (2)
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Let A be an n-dimensional vector-function, B be an n X m-dimensional matrix, I;(x,v) is
an n-dimensional vector function. Control u = u(t) = (u1(t), uz(t),..., un(t)) and v = v; =
(vi1,vi2, . - ., viy) will be considered admissible for problem (1), if

al) u(t) € Ly(0, 1) for some p > 1;
a2) u(t) € Uatt € [0, L] almost everywhere;

a3) there exists ¢g > 0 such that for 0 < € < ¢y the solution x(t, 4, v) of the Cauchy problem
(1) has defined by t € [0, L], where ¢ is independent of u(t) and v;;

ad4) v; € V;

ab) for each sequence of control vectors v; € V there exists a vector vy € V such that v; — vy,
i — oo, uniformly for all controls, that is, for arbitrary § > 0 there is a constant N,
independent of v;, vy and such that for all i > Nj the inequality |v; — vy| < J is satisfied.

It should be noted that condition a5) is obviously satisfied if there exists a sequence {a;}
independent of v;: a; — 0, i — oo, such that |v; — vg| < a;.

We denote the set of valid controls as (). Though | - | we denote the norm of vector in
Euclidean space, and through || - || we denote the norm of the matrix consistent with the
norm of the vector.

In this paper, the averaging method is applied to optimal control problems. The main role
here is to justify the closeness of the solutions of the exact and average problems. This type
of results for impulse systems was obtained first in [4] and further developed in the works of
many scientists and applied to optimal control problems (see, for example, [9], where there is
a comprehensive bibliography).

In works [3,6-8], another approach was developed to apply the averaging method to opti-
mal control problems, where the control function was considered a fixed parameter when aver-
aging. This approach had applied to the problems of optimal control of functional-differential
equations in [2].

This work continues the study of [1], however, unlike the work [1], the existence of optimal
controls is also established here for the problem under consideration.

The structure of the article is as follows: the introduction discusses the problem is con-
sidering and provides a literature review, Section 1 gives a rigorous statement of the problem
and formulates the main result, Section 2 formulates and proves the Lemma about averaging,
Section 3 deals with proving of the main result.

1 PROBLEM STATEMENT AND FORMULATION OF THE MAIN RESULTS
The problem of optimal control to be solved in the work is to find such allowable controls
u(t) and v; that minimize the functional

T

]g(u,v):e/E[C(t,x)w(t,u)]dHe Y Wi(x(t),0),

0 Ogti<%

here C, F, ¢; are jointly continuous functions, where C > 0, F and ; satisfy the conditions:
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F(t,u) is defined for t > 0, u € U, it is convex on u, and for some a > 0
F(t,u) >alul?, ;(t,0) > alv|?, 3)

where p > 1is as in condition al) and for some K > 0 there exists ¢y > 0 such that for ¢ < g9
the inequality holds
T
£ / F(t,0)dt < K.
0

We assume that for system (1) the following conditions are fulfilled:

1.1) there are such Ap(x), Bo(x) and Cp(x), such that the following boundaries exist uni-
formly on x € D (averaging conditions):

. 1 (T
Th_ri}o T/O A(t, x)dt — Ap(x)| =0,
. 1 (T
Tlgr;o T/o C(t, x)dt — Co(x)| =0,

T—o0

T
lim % 1B(t, x) — Bo(x)||" dt = 0,
0

where g is determined from the condition % + % =1

1.2) the vector function A(t, x) and the matrix function B(t, x) are measurable on t for each x,
the function C(¢, x) is continuouson t > 0, x € D;

1.3) the functions A(t, x), B(t, x) and C(t, x) are Lipschitz’s functions on x with constant L in
domain D;

1.4) the functions I;(x,v), ¢;(x,v),i=1,2,...,i(t), are jointly continuous;

1.5) the functions ¢;(x,v),i = 1,2,...,i(t), are bounded by the constant M att > 0, x € D,
vEeV,

1.6) the functions I;(x,v), ¢;i(x,v), i = 1,2,...,i(t), are Lipschitz’s functions on x with con-
stant L in the domain D and uniformly continuous on v in their domains;

1.7) for the functions A(t, x), B(t,x), C(t,x) and I;(x,v),i = 1,2,..., i(%), the conditions of
linear growth are fulfilled, i.e., there is a constant K > 0 such that fort > 0O and x € D
the followings inequalities are fulfilled:

[A(t, )| < K1+ |x]),  [IB(£,x)[| < K(1+ |x]),
|Ii] < K(1+ |x]), C(t, x)| < K(1+ [x]).

Let the averaging conditions also be satisfied:

1.8) there exist the following limits uniformlyonx € D,u € U,v € V:

lim1 Y. Li(x, v) = Iy(x, v), lim 1 Y i, v) = o(x, v).

far =
57708 0<t;<s 577008 0<t;<s
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To the problem (1) on the interval [0, %] we will correspond the following averaged prob-
lem:

v = elAo(y) + Bo(y)T + by, 0)], ¢ e [o, 3) ,

y(0,7(0),7;(0)) = xo,

where 7 is the allowable control of the averaging problem (4) that satisfies the same condi-
tions as the allowable control of the exact problem (1), and vy for each v; is selected from the
condition a5).

The set of admissible controls (u(t),vg) of the problem (4) is denoted by Q. The quality
criterion of the problem of averaging is as follows:

(4)

T

Ju(@,9) = ¢ [ “[Coly(t)) + F(t,7) + poly(t), o)l

Let us denote

r = i f ’ 7 Ji = i f ] _/ 0).
Jo = inf o Jelwo) Je = inf  Je(#0)
The purpose of this work is to prove for the problem of optimal control the following state-
ment: for an arbitrary # > 0 there exists ¢g = €o(77) such that for ¢ < ¢y the inequality

|Je = Je(@", )| <7

holds; u*, vj; is the optimal control pair for the problem of averaging, i.e., the optimal control
of the problem of averaging is almost optimal for the exact one.

For the averaged system (4) we assume that the following condition fulfilled.

(A) If the control u satisfies the estimate

T

e/? w(6)|dt < R,
0

where R > 0 does not depend on ¢, 1, then there is ¢y = go(R) such that for 0 < & < g9
the solution y(t,,vy) of the averaged Cauchy problem for ¢ € [0, L] belongs to the region D
together with some p—neighborhood, and p does not depend on ¢, u, vy.

The following theorem holds.

Theorem. Under conditions 1.1)-1.7) and condition (A) there exists ¢g > 0 such that for
0 < & < g the exact and averaged control problems have solutions, and for an arbitrary
n > 0 there exists e1 = €1(1) < € such that the inequality

|Je = Je(@*, )| <1, ©)

holds with 0 < € < €1, where (", v) is the optimal control of the averaging system.

2 THE AVERAGING LEMMA

In this section, we will prove the lemma on the proximity of the solutions of the initial
and averaged systems, which is a generalization of Bogolyubov’s first theorem for impulse
systems [4], in the case of the dependence of the right-hand sides on functional parameters.
This lemma plays an essential role in proving the main result of the work.
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Lemma. If the conditions 1.1)-1.7) and condition (A) are met for an arbitrary 1 > 0, there exists
eo = €9(R, 1) such that for0 < € < ¢ the solution x(t, u, v) of the Cauchy problem of the exact
system (1) was determined on |0, %] and the following estimate holds

|x(t,u,v) —y(et,u,v0)| <1n, te {0/%] ,

for each admissible control (1, v) of the exact problem and for each admissible control (u,v)
of the averaged problem, where u satisfies condition (A), and v is selected from condition a5).

Proof. We take an arbitrary 0 < 1 < ’2—7 and fix it. Going in (1) and (4) to integral images, we
have for an arbitrary + > 0 to the moment of output of the solution x(t) = x(t,u,v) on the
boundary of the domain D:

x(t) = xo +s/0t[A(s,x(s)) + B(s, x(s))u(s)lds +¢ Y ILi(x(t),vi),

0<t;<t

and for y(t) = y(t, u, vp):

(6) = 50 +e [ TAg(y(s)) + Boly()u(s) + oly(s), 00))ds
Then

K(0) —y(t) = ¢ [ [4(5,x(5) = Als,y(5)lds ¢ [ [A(5,y(5)) — Ao(y()]ds
e [1B,3(9) = B,y u)ds +¢ [[1B(5,y(5)) — Boly(s)u(s)ds

8( Z Ii(x(tz- Z I >+€< Z Ii(y(ti)rvi) - Z Ii(y(ti)rvo)>

0<t;<t 0<t;<t 0<t;<t 0<t;<t

+e <0§<tli(y(ti),vo) - /Ot Io(y(S),vo)ds> ,

whence, to the first, third and fifth terms, applying Lipschitz’s conditions 1.3) and 1.6), to the
fourth terms, applying the Holder’s inequality for integrals, we obtain

()~ y(0)] < ek [ (1 u(s)DI(s) —y(s)lds +e | [ 4G y(5)) — Ao(y()]ds

(e [ 1B v(e) - Bolys Ws) (¢ [ us \Pds)

+el ) |x(fi)—3/(fi)|+€( Y Ly(t),v) — ) Ii(l/(fi)'UO))

0<t;<t 0<t;<t 0<t;<t

¥ iv(t),o0) = [ To(y(s), )i

0<t;<t

+ €

That is,
()~ y(O)] <L [ (L+ () |x(s) — y(s)lds + ¢

1

Che [ 11Bs,y(6)) — Boy(s)|as)t +eL ¥ Jalt) — ()

+s< Y Liy(t),vi) — Y L(y(ti),vo) | +¢

0<t;<t 0<ti<t
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According to condition a5), we choose and fix such Ty and Ny = Ny(Tp) that at t; > Ty,
i > Ny, the inequality |v; — vg| < % is fulfilled.
Let us evaluate the term

I:s< Y L(y(t),v)— ), Ii(]/(fz‘)/vo))-

0<t;<t 0<t;<t
Given conditions 1.5), 1.6), as well as condition a5), we have

I<e Y |L(y(t)v)—L(y(t), o)l +e Y, |Ly(t),vi) — Liy(t:), v0)]

0<t;<Ty To<t;<t

< OMCTy+ 201 < 1,
e 4 3
So

t

|[x(8) —y(t)] <eL /Ot(l +u(s)lx(s) —y(s)lds +¢| | [A(s,y(s)) — Ao(y(s))]ds

S—

= =

+CF (e [/ 1B wte)) ~ BowNlias) +el T et —vil+L g

OSti<t

+ €

Y it o) = [ To(y(s), v

0<t;<t

Let us evaluate the last two integrals separately:

11228

4

[ 146s,5(5)) — Aoy()las

and
L= ¢ [ 11B(s,y(s)) = Bo(y(s)) |'ds.

We divide [0, 1] into 7 equal parts by points ;. For an arbitrary t € [1;, T;11]:

t n-l 7y
L <e| [ [AGsy()) — Ao(y(s))lds| <e L | 1A () = Aoly(s)lds
n=l r74
el 714G y(5) = Al y(m))] + 1 Ao(w(m)) = Ao(y(s) )ds

n-l 7y
<aLey. [ iy(s) —y(x)lds +e

n-l 1
Y [ (Al () - Aoly()ds|.
i=0 7"

i

For the difference y(s) — y(t;) we obtain:
) ()| =¢| [ TAoly(0) + Boly(e))u(o)lax

<& [ (Asly()] + Bo(y(x))| - [u(D)|)dx

1

7 . 1 1
<eM [7 1+ fu(r))dt < X+ Me <s/ o |u(s)|vds>” <1>”
Ti Ti

en
1 1
1 . 1
SM—FM(Z)q (s/ +1|u(s)|pds>p.
n n T
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Using the condition (A), we have the following estimate

1
MT T\ 1
yis) —yiwl < 2r v () RE )
So
n—1 T q 1 T
Ity —ZLSZ/ y(T;)|ds <2Ls§) —+M<E> R? <%>

Let us fix n so that the inequality
T (T\i 1
q
2LMT (— + (—) R?> <1 )
n n 4
holds.

Due to conditions 1.1) and 1.8) it is possible to construct such a monotonically decreasing
function ¢(t) — 0, t — oo, that the following inequalities hold uniformly over y € D, v € V:

/Ot[A(s,y)—AO(y)]ds < @
Y. L(x,0) = Io(x,0)T S%T.
0<t;<T

If t € [1;, Tiv1] (except t € [0, 1], 1 < T2), then we have

Iu <:€§: (
n—1 T
<e) (Tir19(tis1) + Tig(h)) < ¢ Z 29 < ) <2nTg (E) :

i=0

Tz+1

)

Als,y(5)) = Ao{y(z))) ds| +| [ (A(s, () = Ao(y(x.) ds

Since 7 is fixed, then for ¢ < g(, we obtain:

‘ /Ot<A<Sfy<Tz->> — Ao(y()))ds| < L.
If t € [0, 7y], then
€ /Ot[A(S/y(Ti)) — Ao(y(m))lds| < S/Ot(|A(s,y(rl-))| + | Ao(y(T))|)ds < 2M§ _ 2]\:T_

In this case, we choose 1 so that in addition to (8) the inequality

2MT _

n — 8

is also will be satisfied.
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When 7 is selected, the function ¢ (L) — 0for e — 0, and therefore, for an arbitrary 7 > 0
there exists ¢y > 0 such that for 0 < &€ < ¢y we have:

e

IS

n-l ety
Y [ (AG () - Ao(y(m)ds| <
i=0 YT

80,11:'/tAs,ys — Ao(y(s)))ds| < g

Now, let us evaluate the expression I,.

Again, we divide the segment [0, Z] on 1 equal parts by the points 7;. For an arbitrary
t € [1;, Ti11], we have:

L= Y e [ IBG () — Boly(s)17ds

n-1 Tit1
=, 8/ |[B(s,y(s)) — B(s,y()) + B(s,y(7:)) — Bo(y(7)) + Bo(y(:) — Bo(y(s)))||"ds.

Using Minkowski’s inequality, we have:

R<el [( JAREEHE) —BO(J/(Tz‘))quS)%

(L7 1806, 9) = Bls w1+ 1Bo(y(m) ~ Ba(y(s)))105) 1 |

1

h<el K/ 18(s,(5)) = Ba(y(e)] s )
(L7 1806, 5) = Bls w1+ 1Bo(y(m) ~ Ba(y(s)))105) ] |

Using condition 1.3) and Iensen’s inequality, we obtain:

n_1 Tit+1 Tit+1
<2t T (20 [ o) — s+ [ 1B y(m) — Bolum) )

i=0 i

For the difference |y(s) — y(7;)| we apply the previously obtained estimate, then

1

n-1 % 1 I Tit1
Loty (zmw <3+(3) Rﬁ) o [TmGs y(Tz))Bo(y(Ti))qu)

T ™ 1) =
<o (1 (5) R ) T2 te T [ B pm) - Boly(m)l s
i—0 7T

n
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We fix n so that the condition

1 q
<2LM <—+ <Z>q Ri>> <l
n n 2
is fullfiled. Estimate the term

=2 1e2 / [1B(s, y(1)) — Bo(y(x)) |"ds.

)ﬂ

(2%)’ ©

By condition 1.1) the inequality / [|B(s,y)—Bo(y)||7ds < t¢(t) holds uniformly over
0
y e D.Ift € [1;, Ti1] (expect t € [0,71], 71 < T2), then we have

n-1 Tit1 T
b <271 1 ([ 11BGs ()~ Boty(r)) s [ 18G5 ~ By s
n—1 n—1
<2 F (el + o) <207l T Lo () <2 (1),
1=0

i=0

since 1 is fixed, then ¢ (%) —0ase — 0.
If t € [0, 7y], then

e [ 1B, () ~ Bo(y ()]s < e [ (1B(s, y(w))I| +1 Bo(y(m)]])ds < 2T

I S also holds. Thus, by

% (ﬁ) , and hence,

We fix n so that in addition to (9) the inequality
choosing a sufficiently small & we have estimate 21nT¢ (L)

<s/0t I1B(s,y(s)) — Bo(y(S»WdS); < %

It remains to estimate the value

Y (), 00) — [ Toly(s),o0)ds

o< <t

21IMIT n
n 8
+ EMIT <

To do this, we again divide the segment [0, %] by the points {7;} into n equal parts. We have

t
f| ¥ L) o) — [ (), v0)ds
0§t1<t 0
n—1 Tegn (10)
=L X s - [ o), ) .
k=0 \ 1<t <Tj41 Tk
Let us estimate each of terms in the last sum:
Tk+1
f Y L))~ [ k() 0)ds
Te<t;<Tjy1 Tk
<el ), Ly(t),v0) = Io(y(w),v0) (1 — ) (11)
T <t;<Tpy1

Tk+1

Io(y (i), v0) (The1 — T) —/T To(y(s),vo)ds| .

k

+¢€
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We separately evaluate each term from (11):

Te+1

Io(y(7),%0) (Tt =) = [ oly(s), 20)ds

Tk

€

T (12)
k+1 Tkt+1
| [ (o(y(m), w0) ~ Io(y(s),00))ds| < eL [ y(xi) — y(s)lds.
T Tk
But, by virtue of (7) we have that
MT T\a _1
y(w) —y(s)l < —=+M <5> R?. (13)

Substituting (13) into (12), we have that

Tk+1

Io(y(10),00) (Tt =) = [ oly(s), v0)ds

Tk

1 1 (14)
gdzeﬁﬁquazzgﬂﬁqgwg.
&n n n n n n

It remains to evaluate the first term in (11). We have

£

=

el Y. L(y(t),v0) — Io(y(k), v0) (Te1 — k)

Te<ti<Tt1

Y. Li(y(w),v0) — Io(y(t),0) (They1 — )

Te<t;<Tg41

1
q 1
< (M (1) k) <
n n n

according to condition (14). Then (10) is evaluated by the following expression:

1
1
TL (—MT +N (IY RP) +e
n n

Let us evaluate the second term. We have

<e Y, Lly(t) —y(w)l+e

Te<ti<Tpt1

Y. Li(y(w),v0) — lo(y(Tk, 00)) (Tkgr — T)

Te<ti<Tjt1

4

n—1
Z( )3 Ii(y(Tk>IUO)(Tk+1_Tk)>'~

i=0 \ T <t;<Tkq1

n—1
Y ( Yo Li(y(w),v0) — Io(y (i), v0) (Tes1 — Tk)> ‘

&

k=0 \T<ti<Ty1
n—1

= e Z( Y. L(y(m),vo) — b(y(w), vo)tr — ) Ii(]/(Tk)IUO)_IO(]/(Tk)IUO)Tk>‘
k=0 \0<t;<Tpy1 0<t; <7
n—-1 n—1

<e Yo Ly(w),vo0) — lo(y(w),vo) T |+ Y. | Y. TLily(w) v0) — Io(y(i), vo) T
k=0 |0<t;<Tit1 k=0 |0<t;<T

n—1 n—1 n—1
Tk Tk T P\ Tk T T T
Se};}#Jﬂ;}%gf:gzq)(_) =”T§0<—>-

&n &n
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We choose ¢ so small that fOI' the selected fixed n the fOllOWlng lnequallty holds:
1 M —LT —MLT
l _ < L
n q) <€ ) e e

and we fix such n.
Returning now to (6), given the choice of ¢, we have

x(t) —y(B)] <7 +el /Ot(l +u(s))]x(s) —y(s)lds +eL ) [x(t) —y(t)l,

(0~ y(O] <y [ L+ (o) DIx(s) —y(s)lds + T eLlxt) — y(t),

0<t;<t
From the analogue of the Gronwall-Bellman lemma [5, p. 12] we obtain

x(t) =y < T (1+eL)et oHlu)as,

o<T<t

Take into account that
t t
eL/ (1 + [u(s)])ds < LT—|—L8/ lu(s)|ds
0 0
t % 1 11
<IT+L (e/ |u(s)|Pds> Ti <L (T—l—RPT@),
0

and
[T (1+eL) = (1+eL)®.

0<T<t

But, from condition (2) we have that

< eCTL‘

3

(1+eL)® < (1+ eL)6

1 1
Therefore, |x(t) — y(t)| < yeL(THRPTT)+CTL pefore leaving the region D. However, y(t) lies
in the region D together with its p-neighborhood at ¢ € [0, L], so by choosing a sufficiently
small 7 we obtain that x(t) lies in the region D together with §-neighborhood for t € [0, %]
therefore, the last inequality valid for all t € [0, L].

The lemma is proved. O

7

3 PROOF OF THE THEOREM

First, we prove the existence of a solution of the problem (1) for each fixed ¢ > 0. It is
obvious that the sets Q) and Q) of admissible controls of exact and averaged problems are not
empty. Indeed, the control u(f) = 0 satisfies condition (A), and then the solution y(t,0,vg) of
the averaged problem lies in D together with the p—neighborhood. Therefore, it follows from
the averaging lemma that the solution of the exact problem x(t,0,vg) also lies in the domain
D for sufficiently small e and t € [0, L]

E .
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Since due to the conditions the functional J.(u,v) > 0, there is a lower bound by all ad-
missible controls. Denote it by m. Let {u(")(t),v(")} be a corresponding minimizing sequence
such that J(u("), (") — m, n — co. From conditions (3) we have that

T
e/g auM@Pdt+e Y alo™P <mt1. (15)
0

0<ti<%

The latter means a week compactness of the sequence u(")(t) in L,(0,1).

From condition (2) it follows that i (%) <C- %, and hence the number of impulses for each
fixed € > 0 is limited, let it be equal to Nj.

Therefore, the number of vectors v(") in (15) is finite. From here and from the weak com-
pactness of the subsequence u") (t) it implies the existence of a weakly convergent in L, (0, %)

i(T
subsequence 1"¥) (t) and convergent in RiI(%) subsequence UE"”’) (t). Itis clear that they can be
chosen so that the numbers 1, and n,, match. Then, without losing generality, we can assume

that (") (t) and vfn) are convergent. Therefore, u(")(t) — u*(t) C L, (0,1), and UZ(”) — v},

n — oostronglyin R",i = 1,i (1).
From the closedness of V it follows, that v} € V,i=1,2,...,N.

According to Mazur’s lemma [10, p. 173] there is a convex combination

, n(k)

of elements u(l)(t) € U, witha; > 0, }° a; = 1, such that in L, we have the convergence
i=1

by — u*, k — co. Thus, there exists a subsequence by, convergent on [0, T} almost everywhere

with respect to Lebesgue measure, such that by (t) — u*(t), I — oo for almost all . Since U

n(k) .

is a convex and closed set, then Y a;u(? (t) € U, and u*(t) € U are for almost all . Then it
i=1

follows from the closedness of the set U that u* € U for almost all t € [0, L].

. For

("))

We now estimate the solutions x(") (t), which correspond to the controls (1" (t), v;
g = p—fl we have

(16)
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Let us evaluate each of the terms separately.
t q
(& [AKA+ 1) + K+ D - 1)])ds )
9
t t ?
< KT [ (14 |x™® qd< 14 [u® pd>”
< ek [+ @) ds ([ @+ s)])rds
(2eK)1 < —I—/ |x(™) |‘7ds>< +/ |u(™) |Pds>
T
< ((25K)‘7€+(28K)‘7/0 () ( y%)( +/ Ju(™) y%)

Let (2eK)7L = C;. Since

q
( +/|u I*’ds> s(z+ﬂ>”=cz,
& a

then continuing inequality (17), we have that the second term in it is estimated by the value

(17)

Ci + Ca(2¢K) / 1) (5)|7ds. (18)

To estimate to the sum in (15), we have

e Y KA+ X)) <ekI{ Y 1+ 27 (1)) -1}

0<t;<t 0<t;<t
9
q P
<eKT Y (145" (t)]) ( Y ’1’;7)
0<t;<t 0<t;i<t
q
< oG <Z>” YK (145 1)])"
€/ o<t<t
q
~q T\ r _ q
SSCP-<E> KT Y 27 1<1+|xf”)(tz)|)
. 0<t;<t (19)
286%-<Z>qu( Y ooliel Y Ixf”)(tz)lq>
€ 0<t<t 0<t <t
9
<eCr - <Z>p1<‘7 (2q—1 i<z> +2171 Y Ix(”)(tz)|q>
€ € 0<t;<t
q T % T q %
—¢Cr - <_> KT .00 <_> +eCr - <_ K7.271 Y x™ (1) ]9
€ 0<t,<t
=Gt G Y (),
0<t;<t

“:l&
—~
1~
~—

<

~

K

N

T

—_

-
—~

~—
~—

~

@

a1

I

[ga)

O

<
—~
)l
~—

=
=

K

N

T

—_

where Cy = eC
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From (16)—(19) we obtain the inequality:
t
XM (1)1 < Cp + Cz(ZKe)q/ x(s)]%ds + Cy +C5 Y [xM (1))
0

t
= o+ Cr [ X () +C5 ¥ ()1,

0<t;<t

where Cg = C1 + Cy, Cy = Gy (ZKS)q.
From the analogue of the Gronwall-Bellman inequality [5, p. 12] we have

()7 < Coe e TT (1+Cs) < Coe™ e (1+C5)') = Gy (20)

0<t;<t

fort € [0, L].
On the interval [0, f1] for any two moments of time ¢/, t/, 0 < t' < " < t;, by virtue of 1.7)
and (20) we have the existence of constant M; > 0 such that

8 @) = [ (1A ()] + B, x(6)) 1) 5)]) ds

<eMy [ (14 ul(s) )ds o

1

1 1 ! 5
< ettt — -+ et — V13 (e [ s s
t/

1 1 1
<eMy|t" — | +erMCr|t — |5,

The inequality (21) means an equal-degree continuity of the sequence of functions {x(")()}
on [0, t1]. Then from (20), (21) it follows the existence of a uniformly convergent subsequence
{xK1)(t)} of the sequence of functions {x(") (¢)} on [0, t1]. Let x1(t) be its limit.

Denote x*1) (t; +0) = x(k1) (¢1) + Il(x(kl)(tl),vll(l). Consider the equation

b0 (0) = b 11+ 0) + [/ [A(s, x40 () + B, ) 5))uh) 5) s

with t € [tl,tz].

Similarly to the previous one, the compactness of the sequence {x1)(#)} on [t;, t,] in a uni-
form metric is proved. Therefore, there is a subsequence {x(2)(#)} of the sequence {x(¥1)(¢)}
such that {x(k2)(t)} converges uniformly to x,(t) at t € [t t2]. For ky — oo we have that
x2(t1 +0) = x1(t1) + I1(x1(t1), v7). Next, on the interval [t,, t3] we consider the equation

x4y = xk2) (£, 4+ 0) + t[A(s, xk2) (s)) + B(s, x*2(s))u*2) (s)]ds.

ty

Similarly, there is a subsequence {x3)(t)} of the sequence {x¥2)(#)}, such that {x(3)(¢)}
converges uniformly to x3(t) at t € [tp, t3].
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Now, let us show that the function

xl(t), t e [O,fl],

xa(t), tE€ [ty ta],
x'(t) = . (22)

wry e [ty
is the solution of the original problem (1) for the controls u*(t) and v}, i.e. that x*(t) satisfies
the equation

x*(t) = x0+ e/ot[A(s,x*(s)) + B(s,x*(s))u*(s)]ds + ¢ Z Loi(x7 (t;), 07).

T
OSti<;

On the interval [0, t1] the statement is obvious. We show that for ¢ € [t1, f5] the equation

() = xa(t) + (), v7) +e [ 1AG,xa(5)) + Bls, () (5)]ds

t
is valid.
Since klim x(k2) (£) = x5 (t) uniformly for t € [ty, t5] and
2—>00
t
) (1) = x4 4 0) + / [A(s, x%2)(5)) + B(s, ) (s))u ) (s)]ds, (23)
51

({ka }-subsequence of the sequence {k; }), then x(*2)(t; + 0) — xa(t; + 0) and

x®2) (11 4 0) = x®2) (1)) + I (x*2) (1), 01)) = 21 (1) + L(x (), o).

We now turn in (23) to the boundary at k, — oo
t
(1) = x1(t1) + L (x(t),07) +¢ lim | [A(s, x%2)(s)) + B(s, x%2) (s))uk2) (5)]ds.

kp—o0 Jt;

t t
But, lim [ A(s,x%)(s))ds = / A(s, x2(s))ds by the Lebesgue’s theorem on major conver-
t

ky—o0 Jt; 1
gence, estimation (20) and linear growth of a function A.

Using the limiting relation klim fttl B(s, x2(s))[u%2) (s) — u*(s)]ds = 0, and using the rela-
2—>00
tion klim B(s,xk2)(s)) = B(s, x2(s)), which is uniform, outside some set S of arbitrary small
2—>00

measure, and the inequality

el < ( [ \u“‘z)(swds);’ ()",

where 1i(s) is Lebesgue measure of the set S, it is possible prove that

lim t[B(s,x(kZ)(s)) — B(s, x2(5))][ul®) (s)|ds = 0,

kp—o0 Jt;

and

/t B(s, y(k2) (s))u(kz) (s)ds — /tlt B(s, x2(s))u*(s)ds.

f
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So, xp(t) = x1(t1) + I1(x(t1),0]) + ¢ /tt(A(s, x2(s)) + B(s, x2(s))u*(s))ds. Similar consider-

1
ations are made at other intervals [t, t;,1]. Hence, the function x*(t), constructed by formula
(22), is the solution of the pulse system

T T
x* =¢e[A(t,x*) + B(t,x"u], t#t, i:1,2,...,i(z>, t6{0,2>,

T
Ax‘t:tizgli(x*(ti)’v?)’ 12172//l<z>/

x(0,u(0),07) = xo, t < tiyq.
It remains to show that the control (u*,v*) is optimal, i.e. that J(u*,v*) = m. We have

T

m = lim Jo(u™,v") = lim {s /0 (C M) + FuM(e))dt+e Y i (1), 0]

n—oo n—oo T
O<tl‘< 3

From (20) by virtue of Lebesgue’s theorem it follows that

T T

lim ¢ /O et xM (1)t = ¢ / CC(t, % (1))t

n—o0 0

From the convexity by u of the function F(t, 1) we also obtain that

A

lim e/f F(t,ul™ (#))dt > e/s F(t, u*(t))dt.

n—o0 0

It is also obvious that

lime Y i (k) 0"y =¢ Y il (1), 7).
o<ti<l o<ti<I

Therefore, m = nlgrolo ] (u(”), v(”)) > J(u*,v*) = m, which proves the existence of optimal
control for each fixed e > 0.

Proving the existence of optimal control for an averaged system (4) is similar.

Let us prove the inequality (5). Note that the minimizing sequences and optimal controls
for exact and averaged problems according to the inequality (15) satisfy the conditions of the
lemma. Therefore, for controls u, v from a given set and control vy, chosen from condition a5),

we have

T

e+t + ¥ pilx(t), )

Ogti<%

|Je(u,0) — J (u, v0)| =

T

— [ “[Coly(t,m,00)) + F(t, 1) + o(y(t u,00))ds

(24)

/Og [C(t, x(t,u,v)) — Co(y(t,u,vp))]dt

<e

Wy /Oglpo(y(t,u,vo))dt—i— Y. yilx(t),vi)| -

Ogti<%
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Similar to the terms estimates, made in the averaging lemma, we can show that the values

of
T

¢ /(:[C(t,x(t, 1,9)) — Coly(t u,v0))]dt

and

s

| vt wode+ ¥ x(t),v)

0§f,‘<%

from (24) can be made arbitrarily small by choosing a sufficiently small e.
Therefore, for an arbitrary 1 > 0 there exists g > 0 such that for ¢ < ¢:

|Je(u,0) = Je(u,v0)| <17 (25)

Let (u$(e), v§(¢e)) be the optimal pair for the averaged problem (4), and let (u*(¢), v*(e)) be
the optimal pair for the original problem (1). Then

JE < Je(u(e), v5(e)) = Te + Je(up (e), v5(e)) — Tel(ug (e), 05 (e))-
But for an arbitrary 77; > 0 for sufficiently small e > 0, by virtue of (25) we have:

Je(ug (€), v5(2)) — Je(ug (e), v5(e))| < 11,

then
Je=Te <m. (26)
Since the pair (u*(¢),v*(¢)) is admissible, there is an admissible pair (u*(¢), vg(e)) from

a5). So, J = Je(ug(e),v5(e)) < Je(u*,v0) + J = Je(u*(e), v (¢)).
But by virtue of (25) for sufficiently small ¢ the estimate

Je(u™ (e),v0(e)) — Je(u™ (e), 0" ()| < 1

holds.
So, from the inequality

L<Ii+m,
and from (26) we obtain

T = Jil < m. (27)

Now, we have the estimate
Je(ug(e), v5(e)) — Ji| < [Je(ug(e), v5(e)) = Te| + ITe — J2I- (28)

The first term in (28) according to (25) does not exceed #; for sufficiently small .

Due to the arbitrariness of #; from (27) and (28) we obtain the proximity of the optimal
controls of the initial problem (1) and the averaged problem (4).

Thus, the theorem is proved.
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Po3srasiHyTO 3apa4y ONTMMAABHOIO KepYBaHHSI Ha CKIHUEHHOMY YaCOBOMY iHTepBaAi AAST cuCTe-
MU AMdpepeHIIiaABHMX PiBHSHD 3 iMIIyABCHOIO Ai€fo ¥ ¢pikcoBaHi MOMEHTM Uacy Ta BiATIOBiAHY it
ycepeAHeHY CUCTeMY 3BMUAMHIX AMdpepeHIiaAbHIX PiBHSHb.

AOBeAeHO iCHyBaHHSI OITMMAABHOTO KepyBaHHSI TOUHOI Ta yCcepeAHeHO]I 3aAay, a TaKOX BCTAaHOB-
A€HO, ITI0 ONTMMaAbHE KepyBaHHSI ycepeAHeHO! 3aAadi 3AiJICHIOE HaOAVDKeHVIT ONITYIMAaABHMIL CHHTE3
TO4HOI 3apayi. OCHOBHMM pe3yAbTaTOM PODOTH € TeOpeMa, sIka AOBOAUTD, IIIO ONTMMAaAbHE KepyBa-
HHs ycepeAHEHO] 3aAa4i € MalKe OIITVMMAABHMM AAsI TOuHOI. OTpuMaHO O6TpyHTYBaHHS OAM3BKOCTI
PO3B’sI3KiB TOUHOI Ta ycepeAHeHOI 3apa4.

Korwouosi cnosa i ppasu: 3apada ONTUMAABHOTO KepyBaHHs, ONTMMaAbHE KepyBaHHsI, TOUHA 3a-
Aava, ycepeAHeHa 3aAada, AOIYCTVMe KepyBaHHS, yMOBM ycepeAHeHHs, cAabka 361KHiCThb, KOMIIa-
KTHIiCTb, HaliBHeIlepepBHICTh, KPUTEPIl SIKOCTI, MiHIMi3yIo4a IIOCAIAOBHICTb.



