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ON THE CONVERGENCE OF MULTIDIMENSIONAL S-FRACTIONS WITH
INDEPENDENT VARIABLES

BODNAR O.S.1, DMYTRYSHYN R.I.2, SHARYN S.V.2

The paper investigates the convergence problem of a special class of branched continued frac-
tions, i.e. the multidimensional S-fractions with independent variables, consisting of

Nz & G@%h W& Ci(3)%is
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which are multidimensional generalizations of S-fractions (Stieltjes fractions). These branched con-
tinued fractions are used, in particular, for approximation of the analytic functions of several vari-
ables given by multiple power series. For multidimensional S-fractions with independent variables
we have established a convergence criterion in the domain

H= {z = (z1,22,...,2n) €CN: Jarg(zp +1)| <7, 1 <k < N}
as well as the estimates of the rate of convergence in the open polydisc
Q= {z = (z1,22,...,2N) eCN: |zl <1, 1<k < N}

and in a closure of the domain Q.
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INTRODUCTION

Special classes of branched continued fractions play an important role dealing with prob-
lem of the approximation of analytic functions of several variables. Among others, one of the
classes is the class of multidimensional S-fractions with independent variables.

Let N be a fixed natural number and

Ik = {l(k) . Z(k) = (il,iz,...,ik), 1 S ip S l'pfl, 1 S p S k, io = N}, k Z 1,
be the sets of multiindices. In addition, let i(0) = 0 and Zy = {0}.
Multidimensional S-fractions with independent variables are of the form
Nocimzi & Ci)Zi, oA Ci(3)Zis
™ . 1
L + L5 + L5 + M
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where the c;) > 0 foralli(k) € Zy, k > 1,z = (z1,22,...,2N) € CN.

Some of their important properties are studied in [2], convergent domains (here domain is
an open connected set) and convergent regions (here region is a domain together with all, part
or none of its boundary) are investigated in [2,5,13,17], estimates of the rate of convergence are
established in [1-5,7,10].

The paper is a continuation of the article [17], where it was investigated the convergence
domains of (1) with coefficients c;(, i(k) € Zy, k > 1, satisfying the inequalities

i) < Ty (1= rige—y) forall i(k) € T, k> 1, 2)
where {ri(k) }i(k) e7,, k>0 18 a sequence of real numbers such that
0 <rjg) <1 forall i(k) € Zy, k > 0. (3)

For multidimensional S-fractions with independent variables (1) we have established a new
convergence criteria and estimates of the rate of convergence in an open polydisc

Q= {ZECN Iz < 1, 1<k<N} 4)

and in a closure of the domain Q.

Various problems of the convergence of other classes have been studied in [2, 6,7, 15] for
multidimensional regular C-fractions with independent variables, in [20,21] for multidimen-
sional g-fractions with independent variables, and in [3, 4, 8, 11, 12, 18] for multidimensional
A- and J-fractions with independent variables. Expansions of certain analytic functions of
several variables in the above mentioned branched continued fractions may be found in [12,14,
16,19,21].

MAIN RESULTS

Let
G (z) =1+ Z k+1 Cilk+1)Zir i"i Citk+2)Ziss i"zl Ci(n)Zin
i) + . 1 + o+, 1 7
Ikr1=1 igp2=1 in=1
wherei(k) € Iy, 1 <k <n—1, n > 2. Then
G(( ) =1+ Z SDBen ) e T 1<k<n—1,n>2, )

fy1=1 G; (k+1)(z)

with the initial conditions Gl(nn))( ) =1,i(n) € Z,, n > 1. Thus, the n-th approximant of (1) we
have written as
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IfG()( z) Z0foralli(k) € Z,1 <k <n,n > 1, then foreachn > 1 and m > 1 the
following formula is valid (see [5])

Hn+1 sz
Frim(z Sy ey ot

ih=1i=1  i= 1Hn+1 n+m( )Hk 1G )( )

Theorem 1. Let (1) be a multidimensional S-fraction with independent variables whose co-
efficients c;), i(k) € Iy, k > 1, satisfy the conditions (2)-(3). Then the multidimensional
S-fraction with independent variables (1) converges to a holomorphic function in the domain

(6)

H= {z cCN: Jarg(z+ 1) <7, 1 <k<N}
The convergence is uniform on every compact subset of H.

Proof. By [17, Theorem 1] the assertions of the theorem are valid for all z in the domain
R = {ZECN |arg(zx +1/4)| < m, 1 <k<N}

Therefore it suffices to show that these assertions are also valid in the domain (4). From [18,
Corollary 2.1] it follows that the multidimensional S-fraction with independent variables (1)
converges for all z € Q. Hence, by [9, Theorem 2.17] (see also [22, Theorem 24.2]), the conver-
gence of (1) is uniform on every compact subset of Q. O

Theorem 2. Let (1) be a multidimensional S-fraction with independent variables whose coeffi-
cients c;(), i(k) € Iy, k > 1, satisfy conditions (2), where {;x) }i(k)ez,, k>0 IS @ sequence of real
numbers such that

1/2 < ri(k) <1 forall Z(k) S Ik, k>0.

Assume that the multidimensional S-fraction with independent variables converges to a func-
tion f(z) holomorphic in the domain (4). If f,(z) denotes the n-th approximant of (1), then for
eachz € Q

(1 . r n+1 iy n+l

|f(Z) _fﬂ(z)| < T’N+n 1 Z Z Z H |sz n=1, (7)
i1=1li= inp1=1k=
where
= inf Y- 8
' i(k)elg(,kzor’(k) ®

Proof. Let n be an arbitrary natural number and z be an arbitrary fixed point from the domain
(4). By induction on k for each multiindex i(k) € Z; we show that the following inequalities
are valid

|G ()|>r ),1§k§n. 9)

It is clear that for k = n, i(n) € Z,, relations (9) hold. By induction hypothesis that (9) hold
fork=s+1,s <n—1,i(s+1) € Zs;1, we prove (9) for k = s and for each i(s) € Z. Indeed,
using of relations (2)—(5) for the arbitrary multiindex i(s) € Z; leads to

i . ‘ i, plstl rz:sﬂil(l—r- )
R T B
is11=1 ‘G (s+1) ( )’ is11=1 ‘G (s+1) ( )‘
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By virtue of estimates (9), we have Gl((s)+1 (z) # 0. Therefore, replacing r S(Z}H by |G (5+1) (z)],

we obtain inequalities (9) for k = s and for all i(s) € Z.
From (9) it follows that G! ik )( z) # 0 for all indices. Applying the inequalities (2), (3), and
(9) to the formula (6), forn > 1 and m > 1 we get

N i in T ci |z
|futm(2) = fu(2z)] < il; z‘;_Z::l‘ W T |G (n+m) ( 2)| T, |Gi((’;<))(z)|
< i lzl i T iy llfkll)(l_ itk-n) 2
o W R M| I—[,'f+11 Zk ITi=y 7y
N i i [T r i"k 1)(1_7’i(k71))|zik|

-y Y.L Y

i

i=li=1  iy1=1 Hk:1 itk—1) [Tk rik
N +1

Qo g T

y 3y TeEl

11 112 1 Zn+1 1Hk 1 k)
ro(1—r)**t ) ln 1

T Ntn-1 Z Z Y H|sz

n=1ip= inp1=1k=

Hence, passing to the limit as m — co, we obtain estimates (7). O

We remark that the expression in the right-hand side of inequality (7) tends to 0 as n — co.
Indeed, let z be an arbitrary fixed point from the domain (4). It is clear that forany n > 1

(1)22 iﬁmmzz iﬁw

i1=1ip inp1=1k= h=1i= inp1=1k=

where 1/2 < r < 1. It is known (see [1]) that for an arbitrary natural N the following equality
holds for eachn > 0

In

> Z L 1=Cu

i1=1li= an:l

Let1/L(z) = max{|z1|, |z2|,...,|zn]|} Then for any n > 1

in n+l N}i n N +k n (k+1) ()—N—k
. SN _ _ ,
Y [T = 5y = L e H<1 (k+1)L(z) )

i1=1i=1 inp1=1k= ( k=0 z
Hence, since the series

© (k+1)L(z) — N —k
kg (k+1)L(z)

diverges, it follows that the expression in the right-hand side of inequality (7) tends to 0 as
n — 0.
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From Theorem 2 we have the following assertion.

Corollary 1. Let (1) be a multidimensional S-fraction with independent variables whose coef-
ficients ¢y, i(k) € Iy, k > 1, satisfy

cipy < PN (1—r) forall i(k) € Iy, k> 1, (10)
where 1/2 < r < 1, and which converges to a function f(z) holomorphic in the domain

(4). If f4(z) denotes the n-th approximant of multidimensional S-fraction with independent
variables (1), then for each z € Q the estimates (7) hold.

The following theorem can be proved in much the same way as Theorem 2.

Theorem 3. Let (1) be a multidimensional S-fraction with independent variables whose coet-
ficients ¢;(y), i(k) € Iy, k > 1, satisfy the conditions (2), where {ri(k) }i(k) €T, k>0 18 a sequence of
real numbers such that

1/2+e<rjp) <1 forall i(k) € Iy, k > 0,
where 0 < ¢ < 1/2. Then:

(A) the multidimensional S-fraction with independent variables (1) converges to a finite
value f(z) for each z € Q, where Q is the closure of the domain Q defined by (4), and it
converges uniformly on every compact subset of Q;

(B) if f,(z) denotes the n-th approximant of multidimensional S-fraction with independent
variables (1), then for allz € Q

&) — fula)] < U avt sy, a

where r is defined by (8).
In view of Corollary 1, the following corollary follows directly from Theorem 3.

Corollary 2. Let (1) be a multidimensional S-fraction with independent variables whose coef-
ficients c;y), i(k) € Iy, k > 1, satisfy the conditions (10), where1/2 < r < 1. Then:

(A) the multidimensional S-fraction with independent variables (1) converges to a finite
value f(z) for each z € Q, where Q is the closure of the domain Q defined by (4), and it
converges uniformly on every compact subset of Q;

(B) if f,(z) denotes the n-th approximant of multidimensional S-fraction with independent
variables (1), then for all z € Q the estimates (11) hold.
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AOCAIAXY€EThCSI IMTaHHS 3615KHOCTI CIleiaAbHOTO KAACY TiAASICTMX AQHIIFOTOBUX APODGIiB — ba-
raTOBMMIiPHMX S-ApobiB 3 HepiBHO3HAYHVMIY 3MiHHIIMI

Nocin)ziy, oL Ci@)%h & Ci3)Zis
DR Ve ) D

i1=1 =1 iz=1

IO € 6araTOBMMIPHMM y3aTaAbHEHHSIM S-ApobiB (aApo6iB CriaTbeca). Li TiaAsIcTi AaHIFOTOBi Apobu
BUKOPVICTOBYIOTBCSI, 30KpeMa, AAS HabOAVDKEHHs aHaAITMUHMX (pyHKIIN baraThox 3MiHHMX, 3aAa-
HUX KPAaTHUMU CTETIeHEeBUMU PSAaMU. AAST 6araToBUMipHUX S-ApobiB 3 HepiBHO3HAYHMMM 3MiHHU-
MM BCTAaHOBAEHO KPUTePiit 361KHOCTI B 06AacTi

H= {z = (z1,22,...,28) €CN: Jarg(zr +1)| <7, 1 <k < N}
Ta OTPMMAHO OIiHKM IIBYAKOCTI 361KHOCTI ¥ BIAKPUTOMY IOAIKPY3i
Q= {Z = (21,22,...,21\7) ECNZ |Zk| <1, 1<k< N}

Ta y 3aMMKaHHi obaacti Q.

Kntouosi cnoea i ppasi: TIAASICTHIE AQHITIOTOBMIA APi6, KpuUTepiit 36iXHOCTi, piBHOMipHa 361KHICTB,
OLIIHKM IIBMAKOCTI 361>KHOCTI, HellepepBHIIL APib.



