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APPROXIMATIVE CHARACTERISTICS OF THE NIKOL’SKII-BESOV-TYPE CLASSES

OF PERIODIC FUNCTIONS IN THE SPACE B∞,1

FEDUNYK-YAREMCHUK O.V., HEMBARS’KYI M.V., HEMBARS’KA S.B.

We obtained the exact order estimates of the orthowidths and similar to them approximative

characteristics of the Nikol’skii-Besov-type classes BΩ
p,θ of periodic functions of one and several vari-

ables in the space B∞,1. We observe, that in the multivariate case (d ≥ 2) the orders of orthowidths

of the considered functional classes are realized by their approximations by step hyperbolic Fourier

sums that contain the necessary number of harmonics. In the univariate case, an optimal in the

sense of order estimates for orthowidths of the corresponding functional classes there are the ordi-

nary partial sums of their Fourier series. Besides, we note that in the univariate case the estimates

of the considered approximative characteristics do not depend on the parameter θ. In addition, it is

established that the norms of linear operators that realize the order of the best approximation of the

classes BΩ
p,θ in the space B∞,1 in the multivariate case are unbounded.
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INTRODUCTION

In this paper, we continue to study the approximative characteristics of the classes BΩ
p,θ of

periodic functions of several variables and classes Bω
p,θ of one variable in the space B∞,1, which

norm is stronger than the norm in L∞. We recall that some approximative characteristics of

functional classes in the space B∞,1 were studied in [7, 14, 15, 27, 28]. As noted in these papers,

the motivation to study the approximation characteristics (best approximation, widths, best

M-term approximation etc.) of classes Br
p,θ and BΩ

p,θ in the space B∞,1 was the fact that the

questions of their orders, especially in the multidimensional case, in the space L∞ still remain

open (see also [10]).

The paper consists of two parts. In the first part, we obtain exact order estimates of or-

thowidths of classes BΩ
p,θ and Bω

p,θ in the space B∞,1 and to them similar approximative char-

acteristics as well. Analyzing the results obtained in this part of the paper, we pay attention

to the following facts: in the one-dimensional case, estimates of the considered approximation

characteristics do not depend on the parameter θ; comparing the results of Theorems 4, 6, 8

with estimates of the corresponding quantities in the space L∞, we see that they are identical

in order. As for the multidimensional case, comparing the results of Theorems 4, 5, 7 with the

corresponding estimates in the space L∞, we see that they also coincide, but instead depend

on the parameter θ. This is, in particular, a feature of the multidimensional case, compared
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with the one-dimensional case. We also observe, that in the multivariate case (d ≥ 2) the or-

ders of orthowidths of the considered functional classes are realized by their approximations

by step hyperbolic Fourier sums that contain the necessary number of harmonics. In the uni-

variate case, an optimal in the sense of order estimates for orthowidths of the corresponding

functional classes are the ordinary partial sums of their Fourier series.

The second part of the paper is devoted to the study of norms of linear operators that realize

the orders of the best approximations of the above mentioned classes in the space B∞,1. It was

found that in the multidimensional case (d ≥ 2), such operators have unbounded norms.

1 NOTATIONS, DEFINITIONS AND AUXILIARY STATEMENTS

Let Rd denotes d-dimensional space with elements x = (x1, . . . , xd), and let

(x, y) = x1y1 + . . . + xdyd

be a scalar product of elements x, y ∈ Rd. By Lp(πd), πd = ∏
d
j=1[0; 2π), we denote the space

of functions f (x) which are 2π-periodic in each variable and such that

‖ f‖p =

(
(2π)−d

∫

πd

| f (x)|p dx

)1/p

< ∞, 1 ≤ p < ∞, ‖ f‖∞ = ess sup
x∈πd

| f (x)| < ∞.

Thus, we assume that for f ∈ Lp(πd) the condition

∫ 2π

0
f (x)dxj = 0, j = 1, d,

is satisfied. We denote the set of such functions by L0
p(πd). Sometimes instead of Lp(πd) and

L0
p(πd), we use the simpler notations Lp and L0

p, respectively.

We denote the lth difference of a function f ∈ L0
p, 1 ≤ p ≤ ∞, with a step hj in the variable

xj by the formula

∆l
hj

f (x) =
l

∑
n=0

(−1)l−nCn
l f (x1, . . . , xj−1, xj + nhj, xj+1, . . . , xd).

For f ∈ L0
p, 1 ≤ p ≤ ∞, h = (h1, . . . , hd) and t ∈ Rd

+ we introduce a mixed lth difference

∆l
h f (x) = ∆l

h1
. . . ∆l

hd
f (x) = ∆l

hd
(. . . (∆l

h1
f (x)))

and we denote the mixed modulus of continuity of order l by

Ωl( f , t)p = sup
|hj|≤tj

j=1,d

‖∆l
h f (·)‖p .
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Let Ω(t) = Ω(t1, . . . , td) be a given function of the type of mixed modulus of continuity of

the order l. This means that the function Ω satisfies the following conditions:

1) Ω(t) > 0, tj > 0, j = 1, d, and Ω(t) = 0, if ∏
d
j=1 tj = 0;

2) Ω(t) is nondecreasing in each variable;

3) Ω(m1t1, . . . , mdtd) ≤

(
∏

d
j=1 mj

)l

Ω(t), mj ∈ N, j = 1, d;

4) Ω(t) is continuous for tj ≥ 0, j = 1, d.

Following S.N. Bernstein [8], we call the function of one variable ϕ(τ) almost increasing on

[a, b], if there exists a constant C1 > 0, which does not depend on τ1, τ2, such that

ϕ(τ1) ≤ C1 ϕ(τ2), a ≤ τ1 ≤ τ2 ≤ b,

and almost decreasing on [a, b], if there exists a constant C2 > 0, which does not depend on

τ1, τ2, such that

ϕ(τ1) ≥ C2 ϕ(τ2), a ≤ τ1 ≤ τ2 ≤ b.

We assume that the function Ω(t), t ∈ Rd
+, satisfies also the conditions (Sα) and (Sl), which

are called the Bari-Stechkin conditions [5, 31]. This means the following.

A function of one variable ϕ(τ) ≥ 0, τ ∈ [0, 1], satisfies the condition (Sα) if ϕ(τ)/τα almost

increases for some α > 0.

A function ϕ(τ) ≥ 0, τ ∈ [0, 1], satisfies the condition (Sl) if ϕ(τ)/τγ almost decreases for

some 0 < γ < l, l ∈ N.

In the case of d > 1 we say that Ω(t), t ∈ R
d
+, satisfies these conditions if Ω(t) satisfies

these conditions in each variable tj for fixed ti, i 6= j.

We now define the functional classes BΩ
p,θ, which were considered in the paper [37] by

S. Yongshen, W. Heping.

Let 1 ≤ p, θ ≤ ∞ and let Ω(t) be a given function of the type of mixed modulus of conti-

nuity of the order l, which satisfies conditions 1) – 4), (Sα) and (Sl). Then the classes BΩ
p,θ are

defined as follows

BΩ
p,θ =

{
f ∈ L0

p(πd) : ‖ f‖BΩ
p,θ

≤ 1
}

,

where

‖ f‖BΩ
p,θ

=

{ ∫

πd

(
Ωl( f , t)p

Ω(t)

)θ d

∏
j=1

dtj

tj

}1/θ

, 1 ≤ θ < ∞,

‖ f‖BΩ
p,∞

= sup
t>0

Ωl( f , t)p

Ω(t)
.

We note that, in the case r = (r1, . . . , rd), 0 < rj < l, j = 1, d, and Ω(t) = ∏
d
j=1 t

rj

j , the

classes BΩ
p,θ are identical to analogs of the Besov classes Br

p,θ which were considered in the

papers [2,16]. In turn, for θ = ∞ the classes Br
p,∞ = Hr

p are analogs of the Nikol’skii classes [18].

The classes BΩ
p,∞ = HΩ

p were have studied in the paper by N.N. Pustovoitov [19].

In the following considerations we will use the definition of classes BΩ
p,θ in a slightly differ-

ent form. To do this, we recall the definition of order relation.
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For two non-negative sequences (an)∞
n=1 and (bn)∞

n=1 the relation (order inequality) an ≪ bn

means that there exists a constant C3 > 0, which does not depend on n and such that an ≤ C3bn.

The relation an ≍ bn is equivalent to an ≪ bn and bn ≪ an.

To every vector s ∈ N
d we put the set

ρ(s) =
{

k ∈ Z
d : 2sj−1 ≤ |kj | < 2sj , j = 1, d

}

in correspondence, and, for f ∈ L0
p, 1 < p < ∞, we denote

δs( f ) := δs( f , x) = ∑
k∈ρ(s)

f̂ (k)ei(k,x),

where

f̂ (k) = (2π)−d
∫

πd

f (t)e−i(k,t)dt

are the Fourier coefficients of the function f .

Therefore, for f ∈ BΩ
p,θ, 1 < p < ∞, 1 ≤ θ ≤ ∞, where Ω(t) is a given function of the type

of mixed modulus of continuity of order l, which satisfies conditions 1) – 4), (Sα), (Sl), and the

relations

‖ f‖BΩ
p,θ

≍





(

∑
s

Ω−θ(2−s)‖δs( f )‖θ
p

)1/θ

, 1 ≤ θ < ∞,

sup
s

‖δs( f )‖p

Ω(2−s)
, θ = ∞,

(1)

hold. Here and below, Ω(2−s) = Ω(2−s1 , . . . , 2−sd), sj ∈ N, j = 1, d.

Note that the case 1 ≤ θ < ∞ in (1) was considered in [37], and the case θ = ∞ in [19].

For the norms of functions from the classes BΩ
p,θ for p = 1 and p = ∞ we can write relations

analogous to (1) by replacing the "blocks" δs( f ) by others. Namely, by Vm(t), m ∈ N, t ∈ R, we

denote the Vall’ee-Poussin kernel

Vm(t) = 1 + 2
m

∑
k=1

cos kt + 2
2m−1

∑
k=m+1

(
2m − k

m

)
cos kt

(for the correctness of the definition of Vm(t) we should assume that the last sum in this for-

mula vanishes for m = 1).

To every vector s ∈ N
d, we put the polynomial

As(x) =
d

∏
j=1

(
V

2
sj (xj)− V

2
sj−1(xj)

)
, x ∈ R

d,

in correspondence, and, for f ∈ L0
p, 1 ≤ p ≤ ∞, we set

As( f ) := As( f , x) = ( f ∗ As)(x),

where ∗ means the convolution operation. Then the following relations hold:

‖ f‖BΩ
p,θ

≍





(

∑
s

Ω−θ(2−s)‖As( f )‖θ
p

)1/θ

, 1 ≤ θ < ∞,

sup
s

‖As( f )‖p

Ω(2−s)
, θ = ∞.

(2)
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Note that the case 1 ≤ θ < ∞ in (2) was considered in [30], and the case θ = ∞ in [19].

In the following research, we consider the classes BΩ
p,θ defined by a function of the type of

a mixed modulus of continuity of order l of the special form

Ω(t) = ω

(
d

∏
j=1

tj

)
, (3)

where ω(τ) is a given function (of one variable) of the type of a modulus of continuity of order

l that satisfies conditions (Sα) and (Sl).

It is easy to verify that the function Ω(t) of the form (3) satisfies properties 1) – 4) of a

function of the type of mixed modulus of continuity of order l and satisfies conditions (Sα)

and (Sl). Therefore, the above mentioned relations (1), (2) for the norms of functions of the

class BΩ
p,θ remain true.

Now we define the norm in the subspace B∞,1. For any trigonometric polynomial t, it is

defined by the formula

‖t‖B∞,1
= ∑

s∈Nd
⋃
{0}

‖As(t)‖∞.

In the same way, the norm ‖ f‖B∞,1
for the functions f ∈ L1 under the condition of convergence

of the series ∑s∈Nd
⋃
{0} ‖As( f )‖∞ is defined. We note that, in this case, the relation

‖ · ‖∞ ≤ ‖ · ‖B∞,1
(4)

holds.

2 APPROXIMATIVE CHARACTERISTICS AND AUXILIARY STATEMENTS

Let {ui}
M
i=1 be an orthonormal in the space L2(πd) system of functions ui ∈ L∞(πd), i =

1, M. For every function f ∈ Lq(πd), 1 ≤ q ≤ ∞, we put an approximative aggregate of the

form ∑
M
i=1( f , ui)ui in correspondence, i. e., the orthogonal projection of the function f onto the

subspace generated by the system of functions {ui}
M
i=1. Here and below, we set

( f , ui) = (2π)−d
∫

πd

f (x)ui(x)dx.

Then, for the functional class F ⊂ Lq(πd), the quantity

d⊥M(F, Lq) = inf
{ui}

M
i=1

sup
f∈F

∥∥∥∥ f −
M

∑
i=1

( f , ui)ui

∥∥∥∥
q

(5)

is called the orthowidth (the Fourier-width) of this class in the space Lq(πd). The orthowidth

d⊥M(F, Lq) introduced by V.N. Temlyakov [35].

In addition, in [35] V.N. Temlyakov considered similar to the Fourier-width quantity of

dB
M(F, Lq), which is defined as follows

dB
M(F, Lq) = inf

G∈LM(B)q

sup
f∈F∩D(G)

‖ f − G f‖q . (6)
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Here by LM(B)q we denote the set of linear operators satisfying the conditions:

a) the domain of definition D(G) of these operators contains all trigonometric polynomials,

and their domain of values is contained in a subspace with dimension M of the space Lq(πd);

b) there exists a number B ≥ 1 such that, for all vectors k = (k1, . . . , kd), kj ∈ Z, j = 1, d, the

inequality
∥∥∥Gei(k,·)

∥∥∥
2
≤ B holds.

We note that LM(1)2 contains the operators of orthogonal projection onto the spaces of

dimension M as well as operators defined on an orthonormal system of functions involving a

multiplier defined by a sequence {λm} such that |λm| ≤ 1 for all m.

From (5) and (6), it is easy to see that the quantities d⊥M(F, Lq) and dB
M(F, Lq) are connected

with each other by the inequality

dB
M(F, Lq) ≤ d⊥M(F, Lq).

It is obvious that such a relation also holds for case in which instead of the space Lq the

space B∞,1 is considered, i. e.

dB
M(F, B∞,1) ≤ d⊥M(F, B∞,1). (7)

The quantities (5) and (6) for various functional classes F, both in Lebesgue spaces Lq(πd),

1 ≤ q ≤ ∞, and in other functional spaces were investigated in [1, 3, 4, 6, 9, 12, 13, 20, 24–26, 30,

35, 36]. A more detailed bibliography can be found in the monographs [10, 23, 32, 33].

We recall some of the well-known statements that will be used in the subsequent consider-

ations.

Theorem 1 ([11]). Let 1 ≤ p < ∞, 1 ≤ θ ≤ ∞, Ω(t) = ω
(

∏
d
j=1 tj

)
, where ω satisfies condition

(Sα) with some α > 1/p and condition (Sl). Then for any M, n ∈ N, such that M ≍ 2nnd−1,

the relations

d⊥M(BΩ
p,θ , L∞) ≍ dB

M(BΩ
p,θ, L∞) ≍ ω(2−n)2n/pn(d−1)(1−1/θ)

hold.

Theorem 2 ([11]). Let 1 ≤ θ ≤ ∞, Ω(t) = ω
(

∏
d
j=1 tj

)
, where ω satisfies condition (Sα) with

some α > 0 and condition (Sl). Then for any M, n ∈ N, such that M ≍ 2nnd−1, the relations

dB
M(BΩ

∞,θ, L∞) ≍ ω(2−n)n(d−1)(1−1/θ)

hold.

To formulate the following statement, we need the appropriate notation.

For d ≥ 2 and n ∈ N we denote by Qn the set

Qn :=
⋃

(s,1)<n

ρ(s), (8)

which is called a step hyperbolic cross.

Accordingly, for the function f ∈ L1(πd) we denote by SQn
( f ) its step hyperbolic Fourier

sum

SQn( f ) := ∑
k∈Qn

f̂ (k)ei(k,x)
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and for the functional class F ⊂ X we put

EQn(F)X := sup
f∈F

‖ f − SQn( f )‖X .

In the one-dimensional case, instead of EQn
(F)X we use the notation En(F)X , i. e.

En(F)X := sup
f∈F

‖ f − Sn( f )‖X ,

where

Sn( f ) :=
2n

∑
k=−2n+1

f̂ (k)eikx.

The following statement is obtained in [29].

Theorem 3. Let d ≥ 1, 1 < p < ∞, 1 ≤ θ ≤ ∞, Ω(t) = ω

(
∏

d
j=1 tj

)
, where ω satisfies

condition (Sα) with some α > 1/p and condition (Sl). Then

EQn
(BΩ

p,θ)∞ ≍ ω(2−n)2n/pn(d−1)(1−1/θ).

3 ESTIMATES OF APPROXIMATIVE CHARACTERISTICS

The following theorem is true.

Theorem 4. Let d ≥ 1, 1 < p < ∞, 1 ≤ θ ≤ ∞, Ω(t) = ω
(

∏
d
j=1 tj

)
, where ω satisfies condition

(Sα) with some α > 1/p and condition (Sl). Then for any M, n ∈ N, such that M ≍ 2nnd−1,

the relations

d⊥M(BΩ
p,θ , B∞,1) ≍ dB

M(BΩ
p,θ, B∞,1) ≍ ω(2−n)2n/pn(d−1)(1−1/θ) (9)

hold.

Proof. According to the inequality (7), to prove the relations (9), it is sufficient to establish

the lower bound for the quantity dB
M(BΩ

p,θ , B∞,1) and the upper bound for the orthowidth

d⊥M(BΩ
p,θ , B∞,1).

The lower bound for the quantity dB
M(BΩ

p,θ , B∞,1) is a consequence of Theorem 1 due to the

relation (4). The corresponding upper bound for the orthowidth is obtained as a consequence

of Theorem 3.

Thus, choosing the number n ∈ N according to the condition M ≍ 2nnd−1, we can write

d⊥M(BΩ
p,θ , B∞,1) ≪ EQn(BΩ

p,θ)B∞,1
≍ ω(2−n)2n/pn(d−1)(1−1/θ).

The formulation of Theorem 4 does not contain the cases p = 1 and p = ∞, where we

managed to establish only the order of the quantity dB
M(BΩ

p,θ , B∞,1), p ∈ {1, ∞}.

Theorem 5. Let d ≥ 2, 1 ≤ θ ≤ ∞, Ω(t) = ω
(

∏
d
j=1 tj

)
, where ω satisfies condition (Sα) with

some α > 1 and condition (Sl). Then for any M, n ∈ N, such that M ≍ 2nnd−1, the relation

dB
M(BΩ

1,θ , B∞,1) ≍ ω(2−n)2nn(d−1)(1−1/θ) (10)

holds.
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Proof. Firstly, we establish the upper bound in (10). For this purpose, we choose the number

n ∈ N according to the condition M ≍ 2nnd−1 and consider an approximation of the functions

f ∈ BΩ
1,θ by polynomials of the form

tn( f ) = ∑
(s,1)<n

As( f ). (11)

As it was noted above, the operator G, which puts into the correspondence to the function

f a polynomial of this form, belongs to LM(1)2. Then, according to the definition of the norm

in the space B∞,1 and the convolution property, we can write

‖ f − tn( f )‖B∞,1
=

∥∥∥∥ ∑
(s,1)≥n

As( f )

∥∥∥∥
B∞,1

= ∑
s

∥∥∥∥As ∗ ∑
s′∈N

d

(s′ ,1)≥n

As′( f )

∥∥∥∥
∞

≤ ∑
(s,1)≥n−d

∥∥∥∥As ∗ ∑
‖s−s′‖∞≤1

As′( f )

∥∥∥∥
∞

≤ ∑
(s,1)≥n−d

‖As‖∞

∥∥∥∥ ∑
‖s−s′‖∞≤1

As′( f )

∥∥∥∥
1

= I1.

(12)

Using the relation (see example [32, Ch.2, §5])

‖As‖p ≍ 2(s,1)(1−1/p), 1 ≤ p ≤ ∞,

we continue the estimate as follows

I1 ≍ ∑
(s,1)≥n−d

2(s,1) ∑
‖s−s′‖∞≤1

‖As′( f )‖1 ≪ ∑
(s,1)≥n−2d

2(s,1)‖As( f )‖1

= ∑
(s,1)≥n−2d

ω−1(2−(s,1))‖As( f )‖1ω(2−(s,1))2(s,1) = I2.
(13)

Let us consider several cases depending on the values of parameter θ.

1. Let θ ∈ (1, ∞). Applying the Hölder’s inequality, we obtain

I2 ≤


 ∑

(s,1)≥n−2d

ω−θ(2−(s,1))‖As( f )‖θ
1




1/θ 
 ∑

(s,1)≥n−2d

ωθ′(2−(s,1))2(s,1)θ′




1/θ′

≪ ‖ f‖BΩ
1,θ


 ∑

(s,1)≥n−2d

ωθ′(2−(s,1))2(s,1)θ′




1/θ′

≤


 ∑

(s,1)≥n−2d

ωθ′(2−(s,1))2−(s,1)θ′




1/θ′

= I3,

(14)

where 1/θ + 1/θ′ = 1.

We denote n − 2d = m. Taking into account that for (s, 1) ≥ m

ω(2−(s,1))

2−α(s,1)
≤ C4

ω(2−m)

2−αm
, C4 > 0,

we get

I3 ≪
ω(2−m)

2−αm


 ∑

(s,1)≥m

2−(s,1)(α−1)θ′




1/θ′

=
ω(2−m)

2−αm


∑

j≥m

2−j(α−1)θ′ ∑
(s,1)=j

1




1/θ′

≪
ω(2−m)

2−αm
2−m(α−1)m(d−1)/θ′ = ω(2−m)2mm(d−1)(1−1/θ).

(15)
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2. Let θ = 1. In this case we have

I2 ≤ sup
s:(s,1)≥m

ω(2−(s,1))2(s,1) ∑
(s,1)≥m

ω−1(2−(s,1))‖As( f )‖1

≪ ω(2−m)2m‖ f‖BΩ
1,1

≪ ω(2−m)2m.
(16)

3. If θ = ∞, then for the quantity I2 we can write

I2 ≤ sup
s:(s,1)≥m

||As( f )||1
ω(2−(s,1))

∑
(s,1)≥m

ω(2−(s,1))2(s,1) ≪ || f ||BΩ
1,∞

∑
(s,1)≥m

ω(2−(s,1))

2−α(s,1)
2−(α−1)(s,1)

≪
ω(2−m)

2−αm
2−(α−1)mmd−1 = ω(2−m)2mmd−1.

(17)

Thus, taking into account the relations (12)–(17), we obtain the required upper bound for

the quantity dB
M(BΩ

1,θ , B∞,1).

The corresponding lower bound in (10) follows from Theorem 1 according to the relation

(4).

With a certain modification of the considerations, it is easy to establish an analogue of

Theorem 5 for the one-dimensional case. The corresponding statement is as follows.

Theorem 6. Let d = 1, 1 ≤ θ ≤ ∞, and ω satisfies condition (Sα) with some α > 1 and

condition (Sl). Then the relation

dB
M(Bω

1,θ , B∞,1) ≍ ω(M−1)M

holds.

Now we establish the order estimate of the quantity dB
M(BΩ

∞,θ, B∞,1).

Theorem 7. Let d ≥ 2, 1 ≤ θ ≤ ∞, Ω(t) = ω(∏d
j=1 tj

)
, where ω satisfies condition (Sα) with

some α > 0 and condition (Sl). Then for any M, n ∈ N, such that M ≍ 2nnd−1, the relation

dB
M(BΩ

∞,θ, B∞,1) ≍ ω(2−n)n(d−1)(1−1/θ) (18)

holds.

Proof. Similarly as in the proof of Theorem 5, the upper bound is obtained by approximating

the functions f ∈ BΩ
∞,θ by trigonometric polynomials of the form (11) under the condition

M ≍ 2nnd−1. The corresponding estimate is obtained in [15].

Regarding the lower bound in (18), we note that it is a consequence of the Theorem 2 ac-

cording to the inequality (4).

The corresponding statement for the one-dimensional case is as follows.

Theorem 8. Let d = 1, 1 ≤ θ ≤ ∞, and ω satisfies condition (Sα) with some α > 0 and

condition (Sl). Then the relation

dB
M(Bω

∞,θ, B∞,1) ≍ ω(M−1)

holds.

Remark 1. Analyzing the results obtained in this part of the paper, we get the following con-

clusion: in the one-dimensional case, in contrast to the multidimensional one, the obtained

estimates of the corresponding approximative characteristics are independent of the parame-

ter θ.
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4 ESTIMATES OF NORMS OF APPROXIMATION OPERATORS

Firstly, we make some remarks and introduce necessary notation. Let Qn be a set denoted

by (8) and

T(Qn) =

{
t : t(x) = ∑

k∈Qn

ckei(k,x), x ∈ R
d

}
.

Let X ∈ L1(πd) be some normed functional space with norm ‖ · ‖X.

For f ∈ X we denote the quantity

EQn( f )X := inf
t∈T(Qn)

‖ f − t‖X

and for the class F ⊂ X we put

EQn(F)X := sup
f∈F

EQn( f )X .

The quantities EQn
( f )X and EQn

(F)X are called the best approximations in the space X

respectively of the function f ∈ X and of the class F by trigonometric polynomials from the

set T(Qn).

In the one-dimensional case, the corresponding approximative characteristics are defined

as follows.

Let X ∈ L1(π1) be a normed functional space with norm ‖ · ‖X and T(2n), n ∈ N, be the

set of trigonometric polynomials of the form

T(2n) =

{
t : t(x) =

2n−1

∑
k=−2n+1

ckeikx, x ∈ R

}
.

Then for the function f ∈ X by E2n( f )X we denote the quantity of its best approximation

by polynomials from the set T(2n), i.e.

E2n( f )X = inf
t∈T(2n)

‖ f − t‖X

and for the functional class F ⊂ X we put

E2n(F)X := sup
f∈F

E2n( f )X .

The following statement is established in the paper [15].

Theorem 9. Let d ≥ 2, 1 ≤ θ ≤ ∞, Ω(t) = ω
(

∏
d
j=1 tj

)
, where ω satisfies condition (Sα) with

some α > 0 and condition (Sl). Then

EQn(BΩ
∞,θ)B∞,1

≍ ω(2−n)n(d−1)(1−1/θ). (19)

It is important to note that the estimate (19) is obtained by approximation using the lin-

ear method. More specifically, such a method in [15] used a sequence of linear operators

{VQn}
∞
n=1, which to the function f ∈ BΩ

∞,θ put in correspondence the polynomial of the form

VQn f = VQn( f ) = ∑
(s,1)<n

As( f ) = f ∗ VQn ,
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where

VQn
:= VQn

(x) = ∑
(s,1)<n

As(x).

However, the sequence of operators {VQn
}∞

n=1 has one significant drawback, that is that

the norm of the operator VQn
, as an operator going from L∞ to L∞ is equal to ‖VQn

‖1 and thus,

(see consequence [32, Theorem 1.2.1])

‖VQn‖1 ≫ nd−1.

In other words, the sequence of norms of linear operators {VQn}
∞
n=1, which realize the

order of quantity EQn(BΩ
∞,θ)B∞,1

for d ≥ 2, is unbounded.

Therefore, the question naturally arises about the existence of a sequence of linear operators

LQn
: L∞ → T(Qn) with bounded norms ‖LQn

‖, which well approximate the classes BΩ
∞,θ in

the space B∞,1.

The answer to this question is contained in the following two statements in multidimen-

sional (d ≥ 2) and one-dimensional cases, respectively.

Theorem 10. Assume that on L0
∞(πd), d ≥ 2, a sequence of bounded linear operators LQn is

defined, that to every function from L0
∞(πd) put in correspondence the trigonometric polyno-

mial from the set TQn , so that for the functions f ∈ BΩ
∞,θ, 1 ≤ θ ≤ ∞, Ω(t) = ω

(
∏

d
j=1 tj

)
,

where ω satisfies the conditions (Sα), α > 0 and (Sl), the order inequality

‖ f −LQn( f )‖B∞,1
≪ EQn(BΩ

∞,θ)B∞,1

holds.

Then for any ε > 0 the following estimate is true

‖LQn
‖ ≫ n(d−1)(1−ε).

Proof. Let τ = (τ1, . . . , τd), τj ∈ R, j = 1, d, and Iτ denotes a shift operator of the argument of

the function f to the vector τ, i. e. Iτ f (x) = f (x + τ). Following J. Marcinkiewicz [17], consider

the bounded linear operator TQn defined by the equality

(TQn f )(x) = (2π)−d
∫

πd

(I−τLQn Iτ f )(x)dτ.

Then, due to the invariance of the norm for the shift of the argument, for the norms of the

operators TQn
and LQn

the relation

‖TQn
‖ ≤ ‖LQn

‖ (20)

is valid.

It is also easy to see (see example [21]) that the operator TQn acts on the function f as a

convolution operator, i.e.

(TQn f )(x) = f (x) ∗ ∑
k∈Qn

cn,kei(k,x). (21)
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Next, let f ∈ BΩ
∞,θ. Then Iτ f ∈ BΩ

∞,θ and according to the condition of the theorem we get

‖Iτ f −LQn(Iτ f )‖B∞,1
≪ EQn(BΩ

∞,θ)B∞,1
. (22)

Let I be the identical operator. Then, using (22), we have

‖ f − TQn
( f )‖B∞,1

= (2π)−d

∥∥∥∥∥∥

∫

πd

I−τ(I −LQn
)(Iτ f )dτ

∥∥∥∥∥∥
B∞,1

≤ (2π)−d
∫

πd

‖I−τ(Iτ( f ) −LQn(Iτ( f )))‖B∞,1
dτ

= (2π)−d
∫

πd

‖Iτ( f )−LQn
(Iτ( f ))‖B∞,1

dτ ≪ EQn
(BΩ

∞,θ)B∞,1
.

(23)

Thus, it follows from relations (20) and (23), that it is sufficient to prove the theorem for the

operator acting according to the formula (21).

Let

LQn
( f ) = (2π)−d

∫

πd

f (x − y)LQn
(y)dy,

where

LQn
(y) = ∑

k∈Qn

cn,kei(k,y).

In this case, for the norm of the operator LQn
we have ‖LQn

‖ = ‖LQn
‖1.

For further consideration, we need an auxiliary statement.

Lemma 1. There exists δ > 0 such that inequality

∑
k∈Qn

|cn,k| ≥ δ|Qn|

holds for all n.

Proof. We use the method of the opposite, i.e. assume that for any δ > 0 there exists n such

that

∑
k∈Qn

|cn,k| < δ|Qn|.

Denote by S the set of such vectors s = (s1, . . . , sd), (s, 1) ≤ n, ρ(s) ∈ Qn, that for some

vector ks = (ks
1, . . . , ks

d) ∈ ρ(s) the inequality |cn,ks | ≤ 1/2 holds. In [21] it is established that

for the number of elements of the set S the following estimate is true

|S| ≫ nd−1 log2

1

δ
. (24)

Let us consider the function

f1(x) = C5|S|
−1/θ ∑

s∈S

ω(2−‖s‖1)ei(ks,x), 1 ≤ θ ≤ ∞, C5 > 0,

where the vectors ks = (ks
1, . . . , ks

d) ∈ Qn are defined above.
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It is easy to prove that this function with the corresponding constant C5 > 0 belongs to the

class BΩ
∞,θ, 1 ≤ θ ≤ ∞.

Next we need the estimation obtained in [15], namely

EQn
(BΩ

∞,θ)B∞,1
≍ ω(2−n)n(d−1)(1−1/θ), 1 ≤ θ ≤ ∞. (25)

Since for the function f1 the relation

‖ f1 −LQn( f1)‖B∞,1
≪ EQn(BΩ

∞,θ)B∞,1
(26)

is fulfilled, according to (25) and (26) we get

‖ f1 −LQn( f1)‖B∞,1
≪ ω(2−n)n(d−1)(1−1/θ), 1 ≤ θ ≤ ∞. (27)

Now we establish the lower bound of left part in (20). We have

‖ f1 −LQn( f1)‖B∞,1
≥ ‖ f1 −LQn( f1)‖∞ ≥ | f1(0)−LQn( f1(0))|

= C5|S|
−1/θ

∣∣∣∣ ∑
s∈S

(1 − cn,ks)ω(2−‖s‖1)

∣∣∣∣

≫ |S|−1/θ ∑
s∈S

ω(2−‖s‖1) ≫ ω(2−n)|S|−1/θ |S| = ω(2−n)|S|1−1/θ .

(28)

From (27) and (28) we get the relation

ω(2−n)|S|1−1/θ ≪ ω(2−n)n(d−1)(1−1/θ);

it follows the estimation |S| ≪ nd−1.

By comparing (24), we get

nd−1 log2

1

δ
≪ nd−1,

so

log2

1

δ
≤ C6,

where C6 is some constant.

It is easy to see that for some δ > 0 this inequality is false.

To complete the proof of Theorem 10, we need the following auxiliary statement [34].

Lemma 2. For each η > 0 there exists a constant C(η) such that for any polynomial t ∈ T(Qn)

the following inequality holds

∑
k∈Qn

|̂t(k)| ≤ C(η)nη2n‖t‖1. (29)

So by submitting (29) as

‖t‖1 ≥ C(δ)n−δ2−n ∑
k∈Qn

|̂t(k)|

and using Lemma 1, where the number δ > 0 satisfies its conditions, we have

‖LQn
‖ = ‖LQn

‖1 ≫ n−δ2−n|Qn| ≍ n−δ2−n2nnd−1 = n(d−1)(1−δ/(d−1)). (30)

Now we put ε = δ/(d − 1) and with (30) we get the necessary estimate.
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Thus, as the obtained result shows, in the case of d ≥ 2 the norms of sequences of opera-

tors {LQn
}∞

n=1, which realize the orders of the best approximations of the classes BΩ
∞,θ in the

space B∞,1 by trigonometric polynomials from the set T(Qn), are unbounded. In this regard,

it should be noted that in the one-dimensional case, the situation is completely different.

We recall that in the paper [15] the following statement was established.

Theorem 11. Let d = 1, 1 ≤ θ ≤ ∞, and ω satisfies condition (Sα) with some α > 0 and

condition (Sl). Then

E2n(Bω
∞,θ)B∞,1

≍ ω(2−n). (31)

It should be noted that the estimate (31) is realized by approximation by trigonometric

polynomials

tn( f ) := tn( f , x) =
n−1

∑
s=1

As( f , x), x ∈ R, f ∈ Bω
∞,θ,

which are generated by the operators An, acting by the formula

An f = τn( f ).

But it is easy to see that the sequence of norms of the operators {An}∞
n=1 is bounded be-

cause

‖An‖ =

∥∥∥∥∥
n−1

∑
s=1

As

∥∥∥∥∥
1

≤ ‖V1‖1 + ‖Vn−1‖1 ≤ C7, C7 > 0.

Remark 2. In the case of Ω(t) = Πd
j=1t

rj

j , i.e. for the classes Br
p,θ similar problems were studied

in [22].
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[10] Dũng D., Temlyakov V.N., Ullrich T. Hyperbolic Cross Approximation. Birkhauser, Basel, 2018.

[11] Fedunyk O.V. Estimates of approximation characteristics of the classes BΩ
p,θ of periodic functions of several variables

in the space Lq. Approx. Theory of Functions and Related Problems: Proc. Inst. Math. NAS Ukr. 2005, 2 (2),

268–294. (in Ukrainian)

[12] Fedunyk-Yaremchuk O.V., Hembars’ka S.B. Estimates of approximative characteristics of the classes BΩ
p,θ of periodic

functions of several variables with given majorant of mixed moduli of continuity in the space Lq. Carpathian Math.

Publ. 2019, 11 (2), 281–295. doi:10.15330/cmp.11.2.281-295

[13] Galeev E.M. Orders of the orthoprojection widths of classes of periodic functions of one and of several variables.

Math. Notes 1988, 43 (2), 110–118. doi:10.1007/BF01152547 (translation of Mat. Zametki 1988, 43 (2), 197–211.

(in Russian))

[14] Hembars’kyi M.V., Hembars’ka S.B. Approximate characteristics of the classes BΩ
p,θ of periodic functions of one

variable and many ones. J. Math. Sci. (N.Y.) 2019, 242 (6), 820–832. doi:10.1007/s10958-019-04518-0 (translation

of Ukr. Mat. Visn. 2019, 16 (1), 88–104. (in Ukrainian))

[15] Hembarskyi M.V., Hembarska S.B., Solich K.V. The best approximations and widths of the classes of periodic

functions of one and several variables in the space B∞,1. Mat. Stud. 2019, 51 (1), 74–85. doi:10.15330/ms.51.1.74-85

(in Ukrainian)

[16] Lizorkin P.I., Nikol’skii S.M. Spaces of functions with mixed smoothness from the decomposition point of view. Proc.

Steklov Inst. Math. 1990, 187, 163–184. (translation of Tr. Mat. Inst. Steklova 1989, 187, 143–161. (in Russian))

[17] Marcinkiewicz J. Quelques remarques Quelques remarques sur l’interpolation. Acta Sci. Math. (Szeged), 1937, 8

(2-3), 127–130. (in French)

[18] Nikol’skii S.M. Functions with dominant mixed derivative, satisfying a multiple Holder condition. Sibirsk. Mat. Zh.

1963, 4 (6) 1342–1364. (in Russian)

[19] Pustovoitov N.N. Representation and approximation of periodic functions of several variables with given mixed mod-

ulus of continuity. Anal. Math. 1994, 20, 35–48. doi:10.1007/BF01908917 (in Russian)

[20] Pustovoitov N.N. The orthowidths of classes of multidimensional periodic functions, for which the majorant of mixed

continuity moduli contains power and logarithmic multipliers. Anal. Math. 2008, 34, 187–224. doi:10.1007/s10476-

008-0303-6 (in Russian)

[21] Romanyuk A.S. Approximability of the classes Br
p,θ of periodic functions of several variables by linear methods and

best approximations. Sb. Math. 2004, 195 (2), 237–261. doi:10.1070/SM2004v195n02ABEH000801 (translation of

Mat. Sb. 2004, 195 (2), 91–116. doi:10.4213/sm801 (in Russian))

[22] Romanyuk A.S. Approximation characteristics and properties of operators of the best approximation of classes of

functions from Sobolev and Nikol’skii-Besov spaces. Ukr. Mat. Visn. 2020, 17 (3), 372–395. (in Ukrainian)

[23] Romanyuk A.S. Approximative Characteristics of the Classes of Periodic Functions of Many Variables. Proc.

of the Institute of Mathematics of the NAS of Ukraine, Kiev, 2012, 93. (in Russian)

[24] Romanyuk A.S. Diameters and best approximation of the classes Br
p,θ of periodic functions of several variables. Anal.

Math. 2011, 37, 181–213. doi:10.1007/s10476-011-0303-9 (in Russian)

[25] Romanyuk A.S. Estimates for Approximation Characteristics of the Besov Classes Br
p,θ of Periodic Functions of Many

Variables in the Space Lq. I. Ukrain. Math. J. 2001, 53 (9), 1473–1482. doi:10.1023/A:1014314708184 (translation

of Ukrain. Mat. Zh. 2001, 53 (9), 1224–1231. (in Russian))

[26] Romanyuk A.S. Estimates for Approximation Characteristics of the Besov Classes Br
p,θ of Periodic Functions of Many

Variables in the Space Lq. II. Ukrain. Math. J. 2001, 53 (10), 1703–1711. doi:10.1023/A:1015200128349 (translation

of Ukrain. Mat. Zh. 2001, 53 (10), 1402–1408. (in Russian))



APPROXIMATIVE CHARACTERISTICS OF THE NIKOL’SKII–BESOV-TYPE CLASSES 391

[27] Romanyuk A.S., Romanyuk V.S. Approximating characteristics of the classes of periodic multivariate functions in

the space B∞,1. Ukrain. Math. J. 2019, 71 (2), 308–321. doi: 10.1007/s11253-019-01646-3 (translation of Ukrain.

Mat. Zh. 2019, 71 (2), 271–282. (in Ukrainian))

[28] Romanyuk A.S., Romanyuk V.S. Estimation of Some Approximating Characteristics of the Classes of Periodic Func-

tions of One and Many Variables. Ukrain. Math. J. 2020, 71 (8), 1257–1272. doi:10.1007/s11253-019-01711-x (trans-

lation of Ukrain. Mat. Zh. 2019, 71 (8), 1102–1115. (in Ukrainian))

[29] Stasyuk S.A. Approximation of the Classes BΩ
p,θ of Periodic Functions of Many Variables in Uniform Metric. Ukrain.

Math. J. 2002, 54 (11), 1885–1896. doi:10.1023/A:1024000709997 (translation of Ukrain. Mat. Zh. 2002, 54 (11),

1551–1554. (in Ukrainian))

[30] Stasyuk S.A., Fedunyk O.V. Approximation characteristics of the classes BΩ
p,θ of periodic functions of many variables.

Ukrain. Math. J. 2006, 58 (5), 779–793. doi:10.1007/s11253-006-0101-x (translation of Ukrain. Mat. Zh. 2006,

58 (5), 692–704. (in Ukrainian))

[31] Stechkin S.B. On the order of the best approximations of continuous functions. Izv. Ross. Akad. Nauk Ser. Mat.

1951, 15 (3) 219–242. (in Russian)

[32] Temlyakov V.N. Approximation of functions with bounded mixed derivative. Proc. Steklov Inst. Math. 1989, 178,

1–121. (translation of Tr. Mat. Inst. Steklova 1986, 178, 3–113. (in Russian))

[33] Temlyakov V.N. Approximation of Periodic Functions. Nova Science Publishers, Inc., New York, 1993.

[34] Temlyakov V.N. Approximation of periodic functions of several variables by trigonometric polynomials, and widths of

some classes of functions. Izv. Math. 1986, 27 (2), 285–322. doi:10.1070/IM1986v027n02ABEH001179 (translation

of Izv. Ross. Akad. Nauk Ser. Mat. 1985, 49 (5), 986–1030. (in Russian))

[35] Temlyakov V.N. Diameters of some classes of functions of several variables. Dokl. Akad. Nauk 1982, 267 (2), 314–

317. (in Russian)

[36] Temlyakov V.N. Estimates of the asymptotic characteristics of classes of functions with bounded mixed derivative or

difference. Proc. Steklov Inst. Math. 1990, 189, 161–197. (translation of Tr. Mat. Inst. Steklova 1989, 189, 138–168.

(in Russian))

[37] Yongsheng S., Heping W. Representation and approximation of multivariate periodic functions with bounded mixed

moduli of smoothness. Tr. Mat. Inst. Steklova 1997, 219, 356–377.

Received 02.10.2020

Федуник-Яремчук О.В., Гембарський М.В., Гембарська С.Б. Апроксимацiйнi характеристики

класiв типу Нiкольського-Бєсова перiодичних функцiй у просторi B∞,1 // Карпатськi матем. публ.

— 2020. — Т.12, №2. — C. 376–391.

Встановлено точнi за порядком оцiнки ортопоперечникiв та близьких до них апроксима-

цiйних характеристик класiв типу Нiкольського-Бєсова BΩ
p,θ перiодичних функцiй однiєї та

багатьох змiнних у просторi B∞,1. Виявлено, що в багатовимiрному випадку (d ≥ 2) порядки

ортопоперечникiв згаданих класiв функцiй реалiзуються за наближення їх схiдчасто-гiпербо-

лiчними сумами Фур’є, якi мiстять необхiдну кiлькiсть гармонiк. У одновимiрному випадку

оптимальними, з точки зору порядкових оцiнок ортопоперечникiв вiдповiдних класiв фун-

кцiй, є звичайнi частиннi суми їх рядiв Фур’є. Крiм цього слiд зазначити, що в одновимiрному

випадку оцiнки розглянутих апроксимацiйних характеристик не залежать вiд параметра θ.

Також показано, що норми лiнiйних операторiв, якi реалiзують порядок найкращого набли-

ження класiв BΩ
∞,θ у просторi B∞,1, у багатовимiрному випадку є необмеженими.

Ключовi слова i фрази: клас типу Нiкольського-Бєсова, ортопоперечник, найкраще набли-

ження.


