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Application of slice regularity to functions of a
dual-quaternionic variable
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In this paper, we present the algebraic properties of dual quaternions and define a slice regularity

of a dual quaternionic function. Since the product of dual quaternions is non-commutative, slice

regularity is derived in two ways. Thereafter, we propose the Cauchy-Riemann equations and a

power series corresponding to dual quaternions.
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Introduction

Many fields of analysis have explored the theory of quaternionic valued functions of quater-

nion variables, which consider holomorphic functions of complex variables. R. Fueter [4] first

defined the differential operator as follows

∂

∂q
=

1

4

( ∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3

)

,

called the Cauchy-Fueter operator and constructed a space consisting of solutions of the equa-

tion expressed by the Cauchy-Fueter operator. Since then, based on [3], many results on prop-

erties and applications of solutions of the Cauchy-Fueter equation have been reported (see

[1, 11, 12]). However, a function defined as a solution of the Cauchy-Fueter equation expresses

the identity as the equation f (q) = q, but there exists the situation that polynomials and series

of this function are not regular in quaternions. To solve these problems, consider the definition

of the Cullen regular function that was proposed and developed by C.G. Cullen [2]. According

to this definition, polynomials and power series of the form ∑
∞
n=0 qnan, where q ∈ H, being the

set of quaternions, and an are constants in H, are regular. In addition, R. Fueter defined the

class of holomorphic functions over H and expressed polynomials and power series of quater-

nionic variables, based on that class. Thereafter, G. Laville and I. Ramadanoff [9] developed

the theory of holomorphic functions over H and constructed the definition of holomorphic

Cliffordian functions. Since the Laplacian equation denoted by the differential operator ∂
∂q∆

has solutions that are holomorphic functions over H, the set of Cullen regular functions and

the set of Fueter regular functions are not equivalent. The class of Cullen regular functions

consists of all solutions of a generalized Cauchy-Riemann system of equations, which pro-

poses polynomials and series expansion in H. To provide the generalized Cullen definition,
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let S be the unit sphere of a pure imaginary quaternion, i.e.

S = {q = ix1 + jx2 + kx3 | x2
1 + x2

2 + x2
3 = 1}.

If I ∈ H, then I2 = −1 and the elements of S are called imaginary units. G. Gentili and

D.C. Struppa [5, 6] developed properties and theories of slice regularity by using the genera-

lized Cullen definition. Building upon [5, 6], this study extends the notions and properties of

slice regularity in dual quaternions. J.E. Kim et al. [7,8] investigated the extended the regularity

of dual quaternionic functions and represented dual quaternionic functions by using various

forms such as their polar form in Clifford analysis. This study shows that the generalized

Cullen definition can be applied to the set of dual quaternions and that theories of slice regular

functions can be applied to dual quaternions. Therefore, in this study, we provide the algebraic

properties of dual quaternions and define a slice regularity of a dual quaternionic function.

Due to the non-commutativity of the product of dual quaternions, slice regularity induces the

corresponding Cauchy-Riemann equations and power series in dual quaternions.

1 Preliminaries

In this section, we provide the basic definitions and algebraic properties of dual quater-

nions. We recall that the set of dual quaternions Dq is denoted by

Dq = {p | p = x0 + ix1 + jx2 + kx3, xt ∈ R, t = 0, 1, 2, 3},

where the imaginary unit i and dual unit j with the condition that ij = k satisfy the following

properties:

i2 = −1, j2 = 0, ij = k = −ji, jk = kj = 0, ki = j = −ik. (1)

Given the existence of these units, if we consider an example by means of the matrix form such

as

1 =

(

1 0

0 1

)

, i =

(

i 0

0 −i

)

, j =

(

0 1

0 0

)

and k =

(

0 i

0 0

)

,

then these matrices satisfy equations (1).

From the properties of units for dual-quaternions, we define the conjugate of a dual-qua-

ternion p as p∗ = x0 − ix1 − jx2 − kx3. Then, its modulus | · |D is given by

|p|2
D

= pp∗ = x2
0 + x2

1

and the real and imaginary part of p are denoted by Re(p) = x0 and Im(p) = ix1 + jx2 + kx3,

respectively. If the coefficients x0 of 1 and x1 of i are both nonzero, we have the multiplicative

inverse of p, denoted by

p−1 =
p∗

|p|2
D

.

Let L be a set of pure imaginary dual-quaternions, denoted by

L = {p ∈ Dq | Re(p) = 0, |Im(p)| = 1},

where |Im(p)| = |x1|, i.e. |Im(p)| is isomorphic to a projection πi : Dq → Ri, where Ri is the

set of real numbers that are coefficients of the unit i. Any I ∈ L satisfies the equation I2 = −1.

Consider the complex plane

ΛI = {x + Iy | x, y ∈ R}.
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For any p ∈ ΛI , there exist unique values of x, y ∈ R such that p = x + Iy. Since the elements

of ΛI satisfy the condition that the square of each element is −1, we obtain the differential

operators

D∗
I :=

1

2

( ∂

∂x
+ I

∂

∂y

)

and DI =
1

2

( ∂

∂x
− I

∂

∂y

)

.

Using these operators, we define other functions that are described in the following section.

2 Slice regular function in dual-quaternions

To define the slice regular function in Dq, we introduce the following definition.

Definition 1 ([10]). A subset Ω of Dq is said to be a dual subset if there exists a subset O ⊂ R2

such that Ω = O × R
2. The subset O is called the generator of Ω. The subset Ω is said to be

an open dual subset of Dq if the generator of Ω is an open subset of R
2. The set Ω is said to

be a closed dual subset of Dq if its complementary is an open subset of Dq. The set Ω is said

to be a connected dual subset of Dq if its generator is a connected subset of R2.

Let f : Ω → Dq be a function with the units used in Dq such that

f (p) = u0 + iu1 + ju2 + ku3,

where ur = ur(x0, x1, x2, x3), r = 0, 1, 2, 3, are real-valued functions. The function f is called a

dual quaternionic function.

Next, we provide the definition of a slice regular function in dual-quaternions.

Definition 2. Let Ω be a domain in Dq. A function f : Ω → Dq is said to be slice left regular

(SLR), if its restriction f I : Ω ∩ ΛI → Dq has a continuous partial derivative and satisfies the

equation D∗
I f (p) = D∗

I f (x + Iy) = 0 for p = x + Iy ∈ Ω ∩ ΛI , that is

D∗
I f (p) =

1

2

(∂ f I(p)

∂x
+ I

∂ f I(p)

∂y

)

on Ω ∩ ΛI . In addition, f is said to be slice right regular (SRR), if f I is differentiable and

satisfies f (p)D∗
I = f (x + Iy)D∗

I = 0, that is we have

f (p)D∗
I =

1

2

(∂ f I(x + Iy)

∂x
+

∂ f I(x + Iy)

∂y
I
)

on Ω ∩ ΛI .

Example. We consider the power series of p = x+ Iy ∈ Ω∩ΛI , that is, for p = x+ Iy ∈ Ω∩ΛI

f (p) = pn =
n

∑
k=0

(

n

2k

)

(−1)kxn−2ky2k + I
n

∑
k=0

(

n

2k + 1

)

(−1)k xn−2k−1y2k+1.

Since f satisfies

D∗
I f (p) =

n

∑
k=0

(

n

2k

)

(−1)kxn−2ky2k + I
n

∑
k=0

(

n

2k + 1

)

(−1)kxn−2k−1y2k+1

=
n

∑
k=0

(

n

2k

)

(−1)k(n − 2k)xn−2k−1y2k + I
n

∑
k=0

(

n

2k + 1

)

(−1)k(n − 2k − 1)xn−2k−2y2k+1

+ I
{ n

∑
k=1

(

n

2k

)

(−1)k2kxn−2ky2k−1 + I
n

∑
k=0

(

n

2k + 1

)

(−1)k(2k + 1)xn−2k−1y2k
}

,
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where
(

n

2k

)

(n − 2k) =

(

n

2k + 1

)

(2k + 1) and

(

n

2k + 1

)

(n − 2k − 1) =

(

n

2(k + 1)

)

2(k + 1)

for k = 0, 1, 2, . . . . Thus, we obtain

D∗
I f (p) =

{ n

∑
k=0

(

n

2k

)

(−1)k(n − 2k)xn−2k−1y2k −
n

∑
k=0

(

n

2k + 1

)

(−1)k(2k + 1)xn−2k−1y2k
}

+ I
{ n

∑
k=0

(

n

2k + 1

)

(−1)k(n − 2k − 1)xn−2k−2y2k+1 +
n

∑
k=1

(

n

2k

)

(−1)k2kxn−2ky2k−1
}

= 0.

Therefore, the function f can be called SLR.

Definition 3. Let Ω be a domain in Dq and let f be a SLR function. The slice left derivative

(SLD) DI of f is defined as

DI f (x + Iy) =
1

2

(∂ f I(x + Iy)

∂x
− I

∂ f I(x + Iy)

∂y

)

and the slice right derivative (SRD) DI of f is defined as

f (x + Iy)DI =
1

2

(∂ f I(x + Iy)

∂x
−

∂ f I(x + Iy)

∂y
I
)

.

Since the calculus processes of SLR and SRR are similar, for brevity, we mainly deal with

the definition of SLR alone in this study.

Proposition 1. Let Ω be a domain in Dq and a function f be SLR in Dq. Then, the function f

satisfies the following equations

DI f (x + Iy) =
∂ f I(x + Iy)

∂x
or DI f (x + Iy) = −I

∂ f I(x + Iy)

∂y
. (2)

Proof. Since f is a SLR function, it satisfies

D∗
I f (p) =

1

2

(∂ f I

∂x
+ I

∂ f I

∂y

)

= 0.

Therefore, we have

DI f (p) =
1

2

(∂ f I

∂x
− I

∂ f I

∂y

)

=
∂ f I

∂x
or DI f (p) = −I

∂ f I

∂y
.

Thus, we obtain equation (2).

Proposition 2. Let Ω be a domain in Dq. Let f be a SLR function that acts on Ω. Then, the

SLD of f , denoted by Dn
I f : Ω → Dq, is SLR and it satisfies

Dn
I f (x + Iy) =

∂n f (x + Iy)

∂xn
. (3)

Proof. From Proposition 1, by means of induction, equation (3) is obtained.
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Proposition 3. Let Ω be a domain in Dq. If f is a SLR function, then the SLD of f is also

regular.

Proof. Since operators DI and D∗
I commute with each other, they satisfy the equation

D∗
I (DI f ) = DI(D∗

I f ). In addition, since f is SLR in Ω, the function f satisfies D∗
I f (p) = 0.

Thus, we obtain D∗
I (DI f ) = DI(D∗

I f ) = 0.

Theorem 1. Let Ω be a domain in Dq. If f is a SLR function on Ω, then for every I, J ∈ L there

exist SLR functions F, G : Ω ∩ ΛI → ΛI such that for any p ∈ ΛI it satisfies

f I(p) = F(p) + G(p)J.

Proof. Consider the restriction f I of f to Ω ∩ ΛI such that f I(x + Iy) = f0 + I f1 + J f2 + K f3,

where ft : R2 → R, t = 0, 1, 2, 3, are real-valued functions and let K := I J. Since f is a SLR

function, it satisfies D∗
I f = 0. Hence, we have

0 =
1

2

( ∂

∂x
+ I

∂

∂y

)

{ f0(x, y) + I f1(x, y) + J f2(x, y) + K f3(x, y)}

=
1

2

{∂ f0

∂x
+ I

∂ f1

∂x
+ J

∂ f2

∂x
+ K

∂ f3

∂x
+ I

∂ f0

∂y
−

∂ f1

∂y
+ K

∂ f2

∂y
− J

∂ f3

∂y

}

=
1

2

{(∂ f0

∂x
−

∂ f1

∂y

)

+ I
(∂ f1

∂x
+

∂ f0

∂y

)

+ J
(∂ f2

∂x
−

∂ f3

∂y

)

+ K
(∂ f3

∂x
+

∂ f2

∂y

)}

.

This implies














∂ f0

∂x
=

∂ f1

∂y
,

∂ f1

∂x
= −

∂ f0

∂y
,

and















∂ f2

∂x
=

∂ f3

∂y
,

∂ f3

∂x
= −

∂ f2

∂y
.

(4)

If we let F = f0 + I f1 and G = f2 + I f3, then F and G satisfy the equations D∗
I F = 0 and

D∗
I G = 0. Thus, F and G are SLR functions, and we obtain f I = F + GJ.

The equations (4) that appeared in the above proof procedure are called corresponding

Cauchy-Riemann equations, and they are derived from D∗
I f I = 0.

We now consider polynomials and power series in Dq. The standard polynomial pnan, with

an being dual-quaternions for each n ∈ N, is regular. In addition, the sum of SLR functions is

SLR. From these properties of regularity in Dq, we obtain polynomials with dual-quaternionic

coefficients on the right that are slice regular. We define the space of regular functions that

have a uniform convergence on compact sets.

Theorem 2. Let Ω be a domain in Dq. Let f : Ω → Dq be a SLR function on Ω. Then, there

exists

f (p) =
∞

∑
n=0

pn 1

n!

∂n f (0)

∂xn
(5)

converging on Ω.

Proof. Let DI be a disc centered at the origin with a radius a > 0, where a < R. From Theo-

rem 1, we consider an integral representation for f I in DI . Since f I = F + GJ, where both F

and G are SLR in Ω ∩ ΛI , for any ζ, p ∈ Ω ∩ ΛI , each of F(p) and G(p) is commutative with

(ζ − p)−1 =
(ζ − p)∗

|ζ − p|2
,
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where ζ = τ0 + Iτ1 and p = x0 + Ix1 with τt 6= xt, t = 0, 1. Therefore, we write the following

equations

(ζ − p)−1F(p) :=
F(p)

ζ − p
and (ζ − p)−1G(p) :=

G(p)

ζ − p
.

Hence, for any p in DI we have

f I(p) =
1

2πI

(

∫

bDI

F(ζ) + G(ζ)J

ζ − p
dζ

)

=
1

2πI

{

∫

bDI

F(ζ)

ζ − p
dζ +

(

∫

bDI

G(ζ)

ζ − p
dζ

)

J
}

.

Since ζ ∈ Ω ∩ ΛI , we write ζ−1 = 1
ζ if it is expressed with other elements of ΛI .

f I(p) =
1

2πI

{

∫

bDI

1

1 − p
ζ

F(ζ)

ζ
dζ +

(

∫

bDI

1

1 − p
ζ

G(ζ)

ζ
dζ

)

J
}

=
1

2πI

{

∑
n∈N

pn
∫

bDI

F(ζ)

ζ
dζ +

(

∑
n∈N

pn
∫

bDI

G(ζ)

ζ
dζ

)

J
}

.

Since the power series is regular in its domain of convergence, we have

f I(p) = ∑
n∈N

pn 1

n!
(Dn

I F(0) + Dn
I G(0)J) = ∑

n∈N

pn 1

n!
Dn

I f (0).

From Proposition 2, we have

f I(p) = ∑
n∈N

pn 1

n!
Dn

I f (0) = ∑
n∈N

pn ∂n f (0)

∂xn
.

Since the function f I(p) can be expressed as a series for arbitrary I ∈ ΛI, we obtain the condi-

tion that for any I ∈ ΛI , the function f has a series expansion such that equation (5) holds.

Example. Considering the definition of the exponential function in quaternion, we denote

exp(p) = exp(x)(cos y + I sin y). Since the exponential function of p ∈ Ω ∩ ΛI satisfies

D∗
I exp(p) = exp(x)(cos y + I sin y) + I exp(x)(− sin y + I cos y) = 0

for p ∈ Ω ∩ ΛI , exp(p) is SLR. The exponential function exp(p) has
∂n

∂xn
exp(p) = exp(p), and

thus, exp(p) =
∞

∑
n=0

pn 1

n!
can be obtained.

3 Conclusion

In this paper, the algebraic properties of dual quaternions is given and the slice regularity

of a dual quaternionic function is defined. The interesting property of dual quaternions is that

they can be expressed as the Galilean transformation in one quaternion equation. Since the

multiplication of two dual quaternions is a dual quaternion, the set of dual quaternions form a

division algebra under multiplication. Dual quaternions are useful mathematical tools for the

rigid body motions in engineering and physics. The dual quaternions are applied as a num-

ber system to represent rigid transformations in three dimensions. Since the product of dual

quaternions is non-commutative, when defining the notion of slice regularity, it is necessary to

consider the order of the associated functional calculus. Also, before we consider power series

expansions of slice regular functions of a dual quaternion variable, we need to introduce a new

type of derivative for slice regular functions. Power series in the dual quaternion variable are

more complicated than complex power series because of the non-commutativity of the quater-

nionic multiplication. In view of the non-commutativity and slice regularity, we propose the

left(right)-Cauchy-Riemann equations and a power series corresponding to dual quaternions.
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Кiм Дж.I. Застосування регулярностi зрiзiв до функцiй дуальної кватернiонної змiнної // Карпат-

ськi матем. публ. — 2021. — Т.13, №2. — C. 298–304.

У цiй статтi ми презентуємо алгебраїчнi властивостi дуальних кватернiонiв i визначаємо

регулярнiсть зрiзiв функцiї дуальної кватернiонної змiнної. Оскiльки добуток дуальних ква-

тернiонiв є некомутативним, то регулярнiсть зрiзiв виводиться двома способами. Пiсля цього

ми розглядаємо рiвняння Кошi-Рiмана та степеневi ряди, що вiдповiдають дуальним кватер-

нiонам.

Ключовi слова i фрази: дуальне число, кватернiон, рiвняння Кошi-Рiмана, регулярна щодо

зрiзiв функцiя, аналiз Клiффорда.


