References
- Aitalioubrahim M. A viabillity result for functional differential
inclusions in Banach spaces. Miskolc Math. Notes 2012,
13 (1), 3–22. doi:10.18514/MMN.2012.334
- Aitalioubrahim M. On viability result for first order functional
differential inclusions. Mat. Vesnik 2018, 70 (4),
283–291.
- Brézis H., Brouder F.E. A general principle on ordered sets in
nolinear functional analysis. Adv. Math. 1976, 21
(3), 355–364. doi:10.1016/S0001-8708(76)80004-7
- Cârjǎ O., Necula M., Vrabie I.I. Necessary and sufficient
conditions for viability for semilinear differential inclusions.
Trans. Amer. Math. Soc. 2009, 361 (1), 343–390.
- Cârjǎ O., Vrabie I.I. Viability for semilinear differential
inclusions via the weak sequential tangency condition. J. Math.
Anal. Appl. 2001, 262 (1), 24–38.
doi:10.1006/jmaa.2001.7477
- Cârjǎ O., Ursescu C. The characteristics method for a first order
partial differential equation. An. Stiint. Univ. Al. I. Cuza Iasi.
Mat. 1993, 39, 367–396.
- Castaing C., Valadier M. Convex analysis and measurable
multifunctions. Lecture Notes in Mathematics, 580. Springer, Berlin,
Heidelberg, 1977.
- Dong Q., Li G. Viability for semilinear differential equations
with infinite delay. Math. 2016, 4 (4), 64. doi:10.3390/math4040064
- Lupulescu V., Necula M. A viability result for nonconvex
semilinear functional differential inclusions. Discuss. Math.
Differ. Incl. Control Optim. 2005, 25, 109–128.
- Zhu Q. On the solution set of differential inclusions in Banach
spaces. J. Differential Equations 1991, 93 (2),
213–237. doi:10.1016/0022-0396(91)90011-W