References

  1. Aitalioubrahim M. A viabillity result for functional differential inclusions in Banach spaces. Miskolc Math. Notes 2012, 13 (1), 3–22. doi:10.18514/MMN.2012.334
  2. Aitalioubrahim M. On viability result for first order functional differential inclusions. Mat. Vesnik 2018, 70 (4), 283–291.
  3. Brézis H., Brouder F.E. A general principle on ordered sets in nolinear functional analysis. Adv. Math. 1976, 21 (3), 355–364. doi:10.1016/S0001-8708(76)80004-7
  4. Cârjǎ O., Necula M., Vrabie I.I. Necessary and sufficient conditions for viability for semilinear differential inclusions. Trans. Amer. Math. Soc. 2009, 361 (1), 343–390.
  5. Cârjǎ O., Vrabie I.I. Viability for semilinear differential inclusions via the weak sequential tangency condition. J. Math. Anal. Appl. 2001, 262 (1), 24–38. doi:10.1006/jmaa.2001.7477
  6. Cârjǎ O., Ursescu C. The characteristics method for a first order partial differential equation. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. 1993, 39, 367–396.
  7. Castaing C., Valadier M. Convex analysis and measurable multifunctions. Lecture Notes in Mathematics, 580. Springer, Berlin, Heidelberg, 1977.
  8. Dong Q., Li G. Viability for semilinear differential equations with infinite delay. Math. 2016, 4 (4), 64. doi:10.3390/math4040064
  9. Lupulescu V., Necula M. A viability result for nonconvex semilinear functional differential inclusions. Discuss. Math. Differ. Incl. Control Optim. 2005, 25, 109–128.
  10. Zhu Q. On the solution set of differential inclusions in Banach spaces. J. Differential Equations 1991, 93 (2), 213–237. doi:10.1016/0022-0396(91)90011-W